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Abstract
A remote sensing based land cover change assessment methodology is presented and applied to a case study of the Oil Sands

Mining Development in Athabasca, Alta., Canada. The primary impact was assessed using an information extraction method

applied to two LANDSAT scenes. The analysis based on derived land cover maps shows a decrease of natural vegetation in the

study area (715,094 ha) for 2001 approximately �8.64% relative to 1992. Secondary assessment based on a key resources

indicator (KRI), calculated using normalized difference vegetation index (NDVI measurements acquired by NOAA–AVHRR

satellites), air temperature and global radiation was performed for a time period from 1990 to 2002. KRI trend analysis indicates

a slightly decreasing trend in vegetation greenness in close proximity to the mining development. A good agreement between the

time series of inter-annual variations in NDVI and air temperature is observed increasing the confidence of NDVI as an indicator

for assessing vegetation productivity and its sensitivity to changes in local conditions.
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1. Introduction

Quantification of the effects that mining activities

have on ecosystems is a major issue in sustainable

development and resources management. The conflict

between mining activities and environmental protec-
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tion has intensified over recent years, emphasizing

the need for improved information on the dynamics

of impacts at regional and local scales. Assessing

cumulative environmental impacts is an important

aspect of sustainable management and involves

balancing benefits from resource exploitation against

environmental degradation. The success in defin-

ing an appropriate balance directly depends on our

ability to quantitatively predict and assess impacts

on the environment caused by industrial develop-

ments.
Elsevier B.V. All rights reserved.
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The difficulties in addressing the effects of mining

development are accentuated by the fact that the

effects of many types of disturbance are similar, and

that responses of plants to several stressors do not

allow for identification of the specific source. Stress

has many causes and collateral effects such as insects

and disease that further damage plants in their already

weakened state. Sorting out causes and effects is a

challenging task and is critical for assessing and

mitigating the impact mining might have on the

surrounding environment.

A successful monitoring approach for evaluating

surface processes and their dynamics at a regional scale

requires observations with frequent temporal coverage

over a long period of time in order to differentiate

natural changes from those associated with human

activities. However, long-term field observations in

remote areas that have recently become suitable for

mining development are typically not available.

Systematic long-term measurements of vegetation

properties in such remote areas usually cannot be

economically justified prior to mining development. In

most cases, remote sensing is the only alternative to

field collected observations when a historical record is

needed for studying the long-term vegetation cycles.

So far, the only available source of long-term terrestrial

observations is data collected by several generations of

NOAA AVHRR and LANDSAT satellites. The

AVHRR (advanced very high resolution radiometer)

onboard a series of NOAA satellites have provided

daily measurements since 1979 with a coarse spatial

resolution of 1.1 km. Despite numerous limitations,

the AVHRR historical time series is considered as a

primary data set for terrestrial monitoring at regional or

global scales. LANDSAT MSS, TM and ETM+, with

medium spatial resolutions (30–80 m pixel size) have

provided measurements since 1972 at a temporal

resolution of 16–18 days.

In addition to being the only available data source

in many areas, remote sensing has the added

advantage of acquiring data with sufficient area

coverage and temporal frequency for studying and

monitoring primary impacts caused by surface mining

at low cost. It can also be used for studying

atmospheric emissions and water pollution indirectly

by monitoring green vegetation, an indicator of

ecosystem health and conditions. A number of

published papers (Ress and Williams, 1997; Schmidt
and Glaesser, 1998; Prakash and Gupta, 1998; Wright

and Stow, 1999; Olthof and King, 2000) suggest

usefulness of such techniques for detecting contam-

ination, determining success in reclaiming open cast

mined areas and for providing other relevant spatial

data for assessing mining impact on the environment.

Since the 1970s analog aerial photographs have been

used for mapping spatial changes in mined areas

(Anderson, 1977; Schneider, 1984) and for monitoring

reclamation success (Barr, 1981; Mamula, 1978).

Since the 1980s vegetation phenology has been

studied over broad scales using AVHRR time series

(Ducemin et al., 1999; Justice et al., 1985; Townshend

et al., 1991). Some of the work focused on producing

characteristic phenologies and monitoring surface

dynamics for evaluating intra-annual deviations from

baseline conditions, while other work was directed at

mapping land cover distribution using various methods

(Tucker et al., 1985; Malingreau, 1986; Malingreau

et al., 1989; Loveland et al., 1991; Loveland and

Belward, 1997; Townshend, 1994; DeFries et al., 1995;

Cihlar et al., 1996; Nenami and Running, 1997; Gopal

et al., 1994).

The numerous studies of remote sensing for

environmental monitoring indicate that remote sensing

observations are becoming increasingly important tools

for studying different aspects of ecosystems at local,

regional and global scales. It is also evident that satellite

based remote sensing is widely accepted and utilized by

different disciplines, often related to environmental

condition, ecosystem dynamics e.g. atmosphere, bio-

sphere and hydrosphere exchanges. However, the lack

of studies related to environmental impacts of mining

and remote sensing indicates under-utilization in this

sector. Therefore, the objective of this study was to

provide an initial assessment approach based on remote

sensing data and evaluate the use of such data in

investigating trends in vegetation productivity in order

to assess the rate of abrupt and transitional land cover

changes in the Athabaska Oil Sands region.
2. Methods

2.1. Study area

The study area is located north of Fort McMurray,

Alta., in the Athabasca Oil Sands region (Fig. 1). The
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Fig. 1. A general view of the Athabasca Oil Sends study area located in northeast Alberta. The white boundary outlines area of recoverable oil

sands reserves. The red boundaries outline exploration leases.
region is in the Boreal Plains ecozone, and includes

fractions of three ecoregions according to the Canadian

Ecological Land Classification System (1995):

Wabasca Lowland (ecoregion number 142) in the

southwest, Slave River Lowland (ecoregion number

136) in the north and Boreal Uplands (ecoregion

number 147) in the west. Cool summers and long cold

winters characterize the subhumid mid-boreal ecocli-

mate type with mean annual temperature of 0.5 8C and

mean annual precipitation ranging from 350 to

500 mm. Dominant vegetation types are medium to

closed canopy stands of aspen (Populus tremuloides)

and balsam poplar (Populus balsamifera) with white

spruce (Picea glauca), black spruce (Picea mariana)

and balsam fir (Abies balsamea). Cold poorly drained

fens and bogs are covered with tamarack (Larix

laricina) and black spruce. Organic soil is dominant

covering 50% of the region. Land uses include forestry,

water oriented recreation, wildlife hunting and trap-

ping, and oil and gas exploration.

In addition to mining and processing of oil sands,

other industrial activities are present in the region that

also can contribute to stress on the surrounding

environment, such as timber harvesting, urban growth

in Fort McMurray and Fort McKay, and new linear
disturbances such as exploration seismic lines, roads

and pipelines.

2.2. Spatial and temporal approach

An important goal in monitoring vegetation

condition is to provide data for predicting incremental

effects resulting from the combined influences of

various stressors. Long-term impacts on the environ-

ment can be caused by, not only individual activities,

but also by the combined effects of successive

activities. These incremental effects may be signifi-

cant even though the effects of each action, when

independently assessed, are considered insignificant.

Large-scale surface mining and processing operations

at the Athabasca Oil Sands (AOS) region is the case

where extensive development of long duration cover-

ing a large area may have significant cumulative

effects on the regional ecosystem. In addition to a

large surface disturbance, potential mining impacts on

vegetation in this region can also arise from

acidification of soils, acute leaf exposure to SO2,

metal deposition, excess nitrogen fertilization, and

deposition and uptake of ground-level ozone and

organic compounds emitted by the oil sand processing
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facilities. As with acid deposition, response to stress

can be either acute or chronic, affecting the viability of

plants primarily by interfering with photosynthesis

(Krupa and Kickert, 1989). The combined effects of

soil acidification, exposure of vegetation to SO2, NOx

and O3, metal deposition, and nitrogen deposition are

not sufficiently understood to allow their effects to be

accurately predicted. In cases where assessment and

prediction of individual cause–effects is difficult,

focusing on key resources indicator (KRIs) can be an

effective means of assessment. The KRIs are used in

impact assessment studies because environmental

systems include a very large number of complex

interconnected elements, with each element contri-

buting to the functioning of an ecosystem as a whole.

Such an indicator is selected for the entire system to

represent the range of ecological activities that is

being studied.

To facilitate the analysis in this study, the effects on

vegetation are separated into primary and secondary

impacts. Primary impacts are considered as all surface

disturbances resulting from exploration, mining devel-

opment, urban development and logging. Secondary

impacts are considered as all changes in vegetation

productivity resulting from pollutant uptake and depo-

sition, changes in available water capacity or any other

changes in growing conditions caused by development.

The primary impact was identified by mapping

baseline and current land cover distributions using two

LANDSAT scenes. Post-classification change detec-

tion methods were then employed to assess primary

impacts.

The secondary impact assessment is based on a

KRI approach where a selected indicator is related to

vegetation net primary productivity (NPP). The KRI is

computed from AVHRR surface reflectance time

series (1990–2002) as the integrated normalized

difference vegetation index (NDVI) over the peak

of growing season and its relation to the fraction of

photosynthetically active radiation (FPAR), average

temperature and incoming solar radiation. NDVI is

selected as a key parameter because it has been

associated with morphological or physiological

indicators of plant growth and vigor, such as biomass,

leaf area index (LAI), and FPAR. Information derived

from NDVI can be related to long-term meteorological

events, plant species distribution or human induced

changes in terrestrial vegetation.
A theoretical comparison of NDVI with photo-

synthesis and transpiration models suggest that for

vegetation experiencing optimal temperature and

water availability, NDVI might be directly related

to canopy CO2, H2O exchange and conductance. The

relation of NPP to NDVI is based on the premise that

plant production is related to both the absorbed and

reflected radiation by green vegetation. An in-depth

technical description of how reflected light energy

such as that received from the AVHRR sensors can be

used as surrogates for estimating NPP as well as other

biophysical properties is available elsewhere (Sallers,

1985, 1987; Sallers et al., 1992; Tucker and Sallers,

1986; Running and Ramakrishna, 1988).

The use of the NPP–NDVI relation for assessing

secondary impacts is based on the following hypoth-

esis: a deviation in the KRI multiyear trend estimated

from measured NDVI and the KRI trend estimated by

a simulation model driven only by environmental

condition (such as temperature, global radiation, etc.)

indicates an influence of other factors not accounted

by the model e.g. a significant presence of air

pollutants such as SO2, NOx and O3, a change in

water condition or other stressors. The hypothesis

assumes that following two requirements are met:
1. A
 seasonal NDVI trend can approximately

represent the seasonal rates of photosynthesis

and transpiration of natural forest cover, thus

annual integration of NDVI correlates with annual

NPP.
2. O
ther long-term factors that influence NPP such as

soil type, terrain aspect and slope, and availability

of nutrition are assumed constant i.e. they do not

influence the inter-annual comparison.

Two types of models are typically used for mapping

NPP at regional scales namely process and production

efficiency (or ‘epsilon’) models (Cramer et al., 1999).

Process models derive NPP by simulating a series of

plant physiological processes, while production effi-

ciency models are based on light use efficiency. The

latter models combine simple equations for estimating

NPP by relating NPP to absorbed photosynthetically

active radiation under non-stressed conditions. Alth-

ough each method for determining NPP is slightly

different, the use of various summations of NDVI over

a growing season is common to all of them (Markon
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and Peterson, 2002). Goward et al. (1985) found a

strong relationship between NDVI integrated over the

growing season and NPP for 12 biomes in North A-

merica. Similar results confirming the relation betw-

een NPP and NDVI have been reported elsewhere

(Box et al., 1989; Benedetti and Rossini, 1993; Jang

et al., 1996).

The KRI used in this study for assessing secondary

impacts is computed based on the well-known GPP

approach of Kumar and Monteith (1981):

GPP ¼ pðTÞ � CO2fert
� e� fPAR � c � sðSgrÞ;

NPP ¼ GPPð1 � AÞ
(1)

where GPP is the gross primary production represent-

ing the gross uptake of carbon by photosynthesis; NPP

the net primary production; c the climate efficiency;

p(T) the normalized temperature dependency factor;

CO2fert
the normalized CO2 fertilization factor; fPAR

the fraction of absorbed PAR; e the photosynthetic

efficiency; s the normalized global radiation depen-

dency factor; Sgr the incoming solar radiation; A the

autotrophic respiration.

Asfsuming a linear relation between NDVI and

fPAR (Sallers, 1985, 1987) and holding other long-term

factors constant (CO2fert
, e and c) during the

comparison period, an NPP based indicator that

roughly accounts for environmental condition is

computed as:

KRI ¼ pðTÞ � sðSgrÞ � NDVI (2)

where dependence of stomatal resistance on environ-

mental condition to temperature and global radiation

is described by the Jarvis–Stewart approach (Jarvis,

1976; Stewart, 1988):

pðTÞ ¼ ta � T1

T2 � T1

� �
T3 � ta

T3 � T2

� �T3�T2=T2�T1

(3)

where ta is the actual temperature; T1 the minimum

temperature (=0 8C); T2 the optimum temperature

(=20 8C); T3 the maximal temperature (=30 8C).

Incoming solar radiation calculated as:

sðSgrÞ ¼
St

S1

S1 þ S2

St � S2

� �
(4)

St is the actual global radiation [W m�2];

S1 = 1000 W m�2; S2 = 125 W m�2.

KRI trend analysis was focused on answering two

basic questions: what are the trends and variations in
KRI over time and space? The spatial trend in KRI was

examined in relation to the proximity of the surface

mining operation in order to assess the extent of the

impact zone. An additive parameter field can represent

the KRI’s spatial and temporal variations. This

assumes that the variability in KRI or NDVI can be

decomposed into three independent types of variation:
� a
 deterministic or trend component;
� s
easonality or cyclical variations;
� s
tochastic or irregular variations.

Regular variations in a KRI time series may result

from a tendency to follow some cyclical pattern thr-

ough time, for example seasonal variation in vegeta-

tion growth conditions. The seasonal and cyclical

variations are most often caused by phenological c-

ycles that are controlled by environmental parameters

such as air temperature and global radiation. Random

or irregular variations can be caused by human acti-

vities, such as logging, mining and other industrial

developments, or caused by natural disturbances such

as forest fire, flood, or severe weather conditions.

2.3. Experimental design

In order to relate surface disturbance and trends in

vegetation growth to the proximity of surface mining

operations, the study area was spatially delineated into

three separate impact zones using potential acid input

(PAI) prediction. PAI is the preferred method for

evaluating overall effects of acid forming chemicals

on the environment since it accounts for the acidifying

effect of sulfur and nitrogen species, as well as the

neutralizing effect of available base cations. The PAI

prediction used in this study is adopted from the

Suncor In Situ Oil Sands application. Annual

concentration and deposition were predicted using

CALPUFF a multi-layer, multi species non-steady-

state puff dispersion model which can simulate the

effects of time and space varying methodological

condition on pollutant transport, transformation and

removal (EPA, 1995).

Three impact zones were defined using isopleths

maps representing annual PAI and generic critical load

values taken from the Clean Air Strategic Alliance

(CASA) (Target Loading Subgroup, 1996): low

deposition (0.25 keq/ha/year), medium deposition
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Fig. 2. Spatial distribution of annual potential acid input predicted by CALPUFF model run (adopted from in situ Oil Sands Application Firebeg

Project).
(0.5 keq/ha/year) and high deposition (1.00 keq/ha/

year) (Fig. 2). In the following text these areas are

referred as Zone-PAI 0.25, Zone-PAI 0.50 and Zone-

PAI 0.75.

Direct surface disturbances are assessed for each

impact zone by comparing the baseline 1992 versus

the current 2001 conditions as defined by land cover

maps.

Secondary impacts are ascertained using the KRI

trend analysis in the three rings surrounding the

surface mining development. The spatial extent of the

rings are defined by PAI ranges with Ring-PAI 0.25 the

area covered by 0.25 > PAI < 0.50 keq/ha/year,

Ring-PAI 0.50 is the area in which 0.50 > PAI <
0.75 keq/ha/year and Ring-PAI 0.75 is the area in

which PAI > 0.75 keq/ha/year.

A seasonal-trend decomposition procedure based

on Loess smoothing (STL) with a moving time

window of 3 years and tricub weight function was used

for decomposition of the KRI time series into seasonal

and random trend components. STL has simple design

that consists of a sequence of applications of Loess

smoother (Cleveland et al., 1990).
3. Data and data processing

3.1. Medium resolution satellite data

3.1.1. Scene selection and study area boundary

Remote sensing based land cover mapping was

conducted over the AOS region within the extents of a

single LANDSAT scene. The three images used in this

study are—(1) LANDSAT 5 TM path: 43, row: 20

acquired on 11 June 1992; (2) LANDSAT 7 ETM+

path: 43, row: 20 acquired on 17 August 1999; (3)

LANDSAT7 ETM+ path: 42, row 20 acquired on 23

August 2001. The selected images span a 9-year

period during the most intensive mining activity.

3.1.2. Scene geometric rectification

Geometric rectification of the selected images was

performed using 20 geographically dispersed ground

control points (GCPs) with a first order polynomial

and nearest neighbour resampling. An average RMS

error below 1.0 pixel was targeted as an acceptable

rectification goal. For the 1992 LANDSAT scene an

RMS error of 0.65 pixel was achieved. In order to
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correctly co-register the 1999 and 2001 scenes with

the geo-rectified 1992 scene, pixels were identified in

each scene corresponding to geo-referenced pixels in

the 1992 scene. Rectification of the 1999 and 2001

scenes was performed using these pixels as GCPs. The

RMS errors for each geo-rectification were 0.35 pixels

and 0.38 for the 1999 and 2001 scene, respectively.

3.1.3. Scene radiometric normalization

Variation in solar illumination condition, phenol-

ogy and detector performance results in differences in

radiance values unrelated to the reflectance of the land

surface. Radiometric normalization was performed
Table 1

Description and hierarchical structure of landscape classes

Landscape class Description

Vegetated natural origin

Deciduous forest

Deciduous forest Deciduous trees (aspen, birch, bals

than 60% canopy cover

Mixedwood forest

Broadleaf mixed Deciduous and conifer trees aspen

or balsam poplar–white spruce wh

more than 60%. Canopy cover mo

Coniferous mixed Coniferous and deciduous trees wh

more than 60%. Canopy cover mo

Coniferous forest

Black spruce forest Coniferous trees mainly black Spr

of white spruce and pine. Mosses

in understory. Canopy cover greate

Black spruce young forest Generally young forest after old p

Pine forest Coniferous trees manly jack pine w

shrub in understory. Canopy cover

Pine–black spruce forest Coniferous trees co-dominant blac

Mosses forbs and shrub in underst

Non-forest

Treed Sparse coniferous tree less than 25

on poor sites associated with wetla

a proportion of broadleaf vegetatio

Deciduous shrub Dominated by shrubland or grassla

Burn Burn are usually characterized by

with the age and intensity of a bur

Open wetland Open fen, marsh, or swamp

Non-vegetation

Barren land Bare soil, rock space herbaceous a

Water

Anthropogenic origin

Disturbance Forestry cutblock, forestry cutbloc

Industrial development Surface mining, build-up, roads, a

No data Clouds, shadows
using the approach given by Du et al. (2001). The

process consist of the following steps: (1) selection of

pixels pairs in overlap area; (2) principal component

analysis for the selection of characteristic pixels; (3)

calculation of gain and offset; (4) radiometric

normalization.

3.1.4. Land cover classification

Selected scenes were classified into 15 land cover

classes following the method described in Cihlar et al.

(1998) and Latifovic et al. (1999). The images were

enhanced using a linear stretch as in Beaubien (1986)

to equalize the dynamic range of each spectral band.
Label Clusters

am poplar) greater 1 1, 2, 3

–pine, aspen–white spruce

ere deciduous fraction is

re than 60%

4 4

ere coniferous fraction is

re than 60%

5 5

uce with fraction

and shrub dominate

r than 60%

6 6, 7

erturbation 9 9

ith lichen and some

less than 60%

10 10

k spruce, jack pine.

ory. Canopy cover more than 60%

13

% canopy covers. Commonly located

nd. This class usually includes

n mostly shrub

8 8, 12

nd 11

sparse vegetation cover varying

n

14 14, 22

15

nd grass 20

16

k regrowth 18

nd exploration lines 19 19, 21

17
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All pixels in the full-resolution enhanced image were

classified into 150 spectral clusters using a K-means

classifier. Further cluster agglomeration was per-

formed based on cluster spectral similarity and spatial

proximity. The procedure employs basic statistical

parameters that determine between cluster spatial

proximity and within cluster spectral space data

distributions. It uses the arithmetic mean of clusters to

compute the Euclidean distance between cluster pairs

and the standard deviation to represent clusters’

ellipsoid major axis and orientation relative to other

clusters. Spectral clusters are first sorted according to

decreasing size and then examined for the most similar

cluster pairs, starting with the smallest clusters. The

spatial criterion is based on the property that many

spectral clusters represent gradients within cover types

and for these clusters there frequently exists a strong

relationship between their spatial and spectral

characteristics. The agglomeration procedure utilizes

this relationship as a weighting function in computing

cluster similarity. More detail on the agglomeration

procedure is provided in Latifovic et al. (1999). The

agglomeration yielded 55 significantly different

spectral clusters further grouped into 15 land cover
Fig. 3. Athabasca Oil Sands region landscape classifications baseline cond

TM/ETM+ satellite data.
classes and labeled according to the legend provided

in Table 1. Post-classification refinement included

corrections in delineating forest cutblocks, urban and

mining development leading to the final land cover

maps presented in Fig. 3

Two land cover maps were compared to each other

to assess map consistency and then to reference data to

assess accuracy. The reference data were project

footprints obtained from Environmental Impact

Assessment Studies of Millennium, Muskeg River

and Forth Hills Oil Sands Projects. Other reference

data used for the assessment included segments of

AlPac Alberta vegetation inventory based on inter-

pretation of 1:20,000 scale aerial photographs from

1991 and series of reports on the Terrestrial

Environmental Effect Monitoring (TEEM) Program

of the Wood Buffalo Environmental Association

(WBEA).

Map consistency assessment was performed on a

pixel basis over the area that did not undergo change

from direct impacts by comparison of pixel label

agreement. The assumption was that if both classifica-

tions map the same temporally stable pixel with the

same label, confidence in mapping accuracy increases.
ition in 1992 and current condition in 2001, derived from LANDSAT
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For example, 90% of all pixels mapped as broadleaf

forest in the 1992 land cover map were also classified

with the same label in the 2001 land cover map.

Overall average agreement of all classes weighted by

class extent was 87%. Higher consistency was

achieved in mapping forest classes (92%) than in

mapping non-forest classes 75%. An analysis of pixels

in disagreement showed confusion between spectrally

similar or transitional land cover types such as

broadleaf forest and broadleaf shrub, treed and

wetland or different coniferous sub-classes. Spectrally

distinguishable classes, for example, disturb area and

forest classes were separated well with an average

accuracy of 94%.

3.2. Coarse resolution satellite data

A post-seasonal systematic correction procedure,

described in Cihlar et al. (2004), was applied to the

AVHRR time series. It included atmospheric correc-
Fig. 4. The three band image R: NDVI, G: NIR, B: red illustrates an examp

Sands region.
tion, BRDF normalization, screening and temporal

interpolation for replacement of measurements

affected by cloud and aerosol contamination. Sig-

nificant improvements have been incorporated into the

correction procedure based on recently published

algorithms for atmospheric correction (Trishchenko

et al., 2002), bi-directional reflectance normalization

(Latifovic et al., 2001), cloud screening and temporal

interpolation (Cihlar et al., 1999) and radiometric

calibration (Fedosejevs et al., 2000). The AVHRR

time series were corrected using AVHRR Manager; a

software package developed for this purpose.

The initial AVHRR data set contains 10-day image

composites for the 1990–2002 growing seasons

acquired by the NOAA 11, 14 and 16 satellites. Each

growing season is represented by twenty 10-day

composites between 11 April and 31 October. In

addition to AVHRR, SPOT 4 VEGETATION (VGT)

composite data from 11 April to 31 October, 1998–

2002 were also used in this study as a control data set.
le of corrected AVHRR 10-days composites over the Athabasca Oil
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Differences between the spectral respond functions

of NOAA14 and NOAA16 sensors, elaborated in

Trishchenko et al. (2001), cause a significant disparity

in NDVI measurements. Thus, NDVI measurements

were normalized using VGT data, which was acquired

during the NOAA14 (1998–2000) and NOAA16

(2001, 2002) operational window. An example of

corrected and normalized AVHRR 10-day composites

are illustrated in Fig. 4.

3.3. Meteorological data

The meteorological data set over the AOS region

was extracted from the DS472.0-TDL US and Canada

surface hourly observations generated by the Data

Support Section (DSS) of the National Center of

Atmospheric Research (NCAR) in Colorado, US. The

complete data set includes measurements of about 1000

meteorological stations across the US and Canada for

the period from 1976 to 2000. In this study, measure-

ments of air temperature at the five closest stations

(Table 2) to the AOS region were extracted and ana-

lyzed. In addition to NCAR, the metrological data

collected by Air Quality Monitoring Stations of the

Wood Buffalo Environmental Association (WBEA) for

the period from 1998 to 2002 were also included and

analyzed.
4. Results and discussion

4.1. Cumulative and project specific impacts on land

cover distribution

Cumulative and project specific impacts on the

landscape are quantified using a post-classification

change detection method. This method assumes that

reference and compared images are classified to a

common legend and that the classification method
Table 2

Geographical locations of meteorological stations

Station ID Longitude [dd] Latitude [dd]

Forth McMurray YMM �111.22 56.65

High Level YOJ �117.17 58.62

Peace River YPE �117.43 56.23

Forth Chipewyan YPY �111.12 58.77

Slave Lake YZH �114.78 55.30
utilized for landscape mapping provides a high

accuracy for both images. Landscape changes are

simply detected as differences between pixels’ labels.

Changes in the landscape distribution in the AOS

region for the period 1992–2001 were quantified as the

difference between classified images from 1992 and

2001. The assessed areas spatially coincide with the

impact zones. The Zone-PAI 0.25 that incorporates the

other two zones encompasses 715,094 ha. In 1992

Zone-PAI 0.25 was dominated by native forest

vegetation, with natural forest landscape classes

occupying 75.62% of the area (Fig. 5, Table 3).

Coniferous forest covered approximately half (48%),

deciduous forest 13% and mixedwood forest covered

15% of the area. The remaining 24% of the area

consisted of broadleaf shrub, non-forested and open

wetland, water bodies, developed land (including

active surface mining, roads and built-up), barren land

and forest of anthropogenic origin (cutblocks). Two

anthropogenic classes together covered 3.81% of the

area, or 27,231 ha.

In 2001 Zone-PAI > 0.25 exhibited a similar

landscape class distribution as in 1992 but with a

slight decrease in the area covered by natural

vegetation. From 1992 to 2001, forest-covered area

had decreased from 75.62 to 73.78%, while the area

covered by natural non-forest vegetation decreased

from 20.57 to 19.10%. The areas occupied by the two

anthropogenic classes have increased from 3.81 to

7.12% during the same period (Table 3). Mining area

increased from 20,393 to 38,008 ha and forest cut-

blocks from 6838 to 12,920 ha.
Fig. 5. Area occupied by forest, non-forest and anthropogenic

landscape classes in Athabasca Oil Sands Region in 1992 and 2001.
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Table 3

Ahabasca Oil Sands Region landscape fraction and class distribution for baseline 1992 and current 2001 conditions

Land cover type [ha] 1992 2001

PAI > 0.25 PAI > 0.50 PAI > 0.75 PAI > 0.25 PAI > 0.50 PAI > 0.75

Broadleaf 95417 39589 12639 104410 32819 6934

Coniferous mixed 35860 14521 5325 39199 15333 6122

Broadleaf mixed 69635 27135 9475 75212 29570 9769

Coniferous HD 238475 95031 47577 212751 79730 38805

Coniferous young 58551 23193 8467 62835 26679 11383

Coniferous JP 18312 3066 1705 16912 2154 939

Coniferous JP + BS 24529 6916 4156 16295 5158 2564

Coniferous LD 84855 29111 14444 104587 38225 17752

Broadleaf shrub 24595 9609 4235 9961 2857 758

Burn 11171 481 220 3447 40 10

Open wetland 1193 357 171 231 77 47

Water 16571 8062 5034 12507 5892 3882

Barren land 8698 2495 1225 5819 2887 1294

Logging 6838 2645 431 12920 5097 709

Mining 20393 17482 14423 38008 33177 28559

Sum 715094 279693 129526 715094 279693 129526

Forest 540779 209451 89343 527613 191442 76516

Non-forest 147083 50115 25328 136552 49977 23742

Anthropogenic 27231 20127 14854 50929 38274 29268

Forest (%) 75.62 74.89 68.98 73.78 68.45 59.07

Non-forest (%) 20.57 17.92 19.55 19.10 17.87 18.33

Anthropogenic (%) 3.81 7.20 11.47 7.12 13.68 22.60

Fig. 6. Anthropogenic landscape classes spatial distribution in Athabasca Oil Sands region in 1992.
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The spatial distribution of the areas that have

undergone change are illustrated in Figs. 6 and 7.

These figures show an increase in the disturbed area

resulting mainly from new developments north and

west of the mining development that existed in 1992.

An increase in logging activities is also evident, in

most cases spatially adjacent to the existing mine site

or planned mining developments. However, the

amount of logging activity associated with the

existence of mining development cannot be evaluated

from the data used in this assessment.

An analysis of the landscape distribution as a

function of proximity to the mining development

offers additional insights into the class area changes.

Table 3 specifies the landscape class distributions in

three surrounding rings at different distances from the

mine site. Between 1992 and 2001 the landscape

distributions in the Ring-PAI 0.25, the farthest from

the mine sites, are more similar than in the Ring-PAI

0.75, which is the closest to the mining development.

This difference can be explained mainly by direct

impacts due to new surface mining developments in

the Ring-PAI 0.75 i.e. the Albian Muskeg River,

Millennium, Steepbank and the Aurora North mines,

and secondly by logging activities. Areas occupied by

the broadleaf and coniferous high-density forest
Fig. 7. Anthropogenic landscape classes spatial distri
classes have decreased in 2001 by 4 and 7%,

respectively, compared to area fractions occupied

by the same classes in 1992.

Fig. 8 shows the changes in forest, water bodies,

mining and logging classes relative to 1992 in each ring.

For example the area affected by mining in 2001 has

doubled in size since 1992. The graph (b) in Fig. 8

merits special attention since it exhibits (�25%)

decrease in the area of open water bodies. Significant

decreases are evident in the vicinity of the Mildred and

north mines, suggesting impacts on local hydrology due

to these long-term mining operations. Examination of

LANDSAT scenes from 1999 and 2002 as well as an

ASTER scene from 2000 (15 m spatial resolution)

confirmed shrinking of water bodies in the area south

west of the Mildred and north mines. These findings

need to be confirmed by more detailed analysis of in situ

hydrological measurements because the influence on

wetland and surrounding vegetation due to a lowering

water table could cause significant impacts. The other

three graphs in Fig. 8 show an overall decrease in

natural forest in 2001, an increase in area affected by

logging activities for all three rings and a significant

increase in disturbed area by surface mining.

Regardless of relatively high mapping consistency

we consider the direct impact presented here as
bution in Athabasca Oil Sands region in 2001.
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Fig. 8. Difference in class area relative to 1992: (a) mining; (b) water bodies; (c) logging; (d) forested.
approximate due to the limited capability of medium

resolution data to depict small changes less than a

pixel size (30 m), such as seismic lines and small

clearings for exploration drill holes.

4.2. Time series analysis of air temperature and

global radiation

Air temperature is one of the major factors driving

vegetation productivity; therefore the trend and

variability in NDVI cannot be explained without

considering the influence of this parameter. Temporal

trends in air temperature were evaluated for the period

from 1977 to 2002 using measurements from five

meteorological stations closest to the mining devel-

opment. Hourly measurements were sequentially

averaged over progressively longer periods of time;

first over 24 h to obtain average daily temperatures,

then daily temperatures were averaged over 10 days to

coincide with satellite 10 days composite data, and

finally over spring–winter (November–March) and

summer–autumn (April–October) to evaluate the

multiyear trend.

Fig. 9 presents the time series of average seasonal

and yearly air temperatures. The multiyear trend for
the most recent 25 years was extracted using the

seasonal-trend decomposition procedure. The yearly

average temperature graph shows a slight increasing

trend from 1997 to 2001. Although, when the same

data were separated based on spring–winter and

summer–autumn periods, the trend analysis reveals a

significant increasing trend in winter–spring tempera-

tures and somewhat less prominent trend for the

summer–autumn period. To evaluate if this trend was

due to shorter winters or an actual increase in air

temperature, the average monthly means were

analyzed for the period from 1977 to 2002. A

considerable increasing trend was evident only in

November and December months (Fig. 10), while the

time series for April and May appeared to be

stationary (Fig. 11). Therefore, it is concluded that

the air temperature time series shows no evidence for

an earlier start of the growing season, but offers

evidence for warmer winter temperatures (average

increase of 5 8C in December and 3 8C in November).

The time series of the mean air temperatures in July

and August show an increasing trend (1.8 8C) for the

same 25-year period (Fig. 12).

Similar trend analysis was performed for global

radiation using hourly measurements provided by the
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Fig. 9. Time series of the air temperature in Athabasca Oil Sends region 1977–2002. Graph shows yearly and seasonal average temperature

during April–October and November–February.
WBEA air-monitoring network. The available time

series for the period from 1 January 1998 to 30 August

2002 plotted in Fig. 13 shows the stable seasonal

variations with similar annual means. These results

suggest that vegetation in the AOS region should

exhibit an increasing trend in NPP considering that the

average temperature has increased during the analyzed

period and is a major driving factor of growth in the

boreal ecosystem.

4.3. Cumulative secondary impact assessment

4.3.1. NDVI time series

It is assumed that the pattern of inter-annual NDVI

variations should match the pattern of inter-annual
Fig. 10. Time series of air temperature Athabasca Oil Sends
variations in growing conditions. Any significant

deviations between these two patterns would suggest

the influence of other factors on vegetation growth. In

the case of AOS region these factors could be related

to the mining development. To examine this assump-

tion the NDVI and air temperature time series were

prepared with the same 10-day time step and analyzed

for periodicity trends (monthly, seasonal, annual),

changes in mean (stationarity) and changes in variance

(heteroscedasticity).

As for the direct impacts, the analysis was

performed for each impact zone separately, but for

this analysis the impact zones were defined as

potential acid input rings. Anthropogenic classes

defined in the 2001-landscape classification were
region 1977–2002, March and April monthly means.
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Fig. 11. Time series of air temperature Athabasca Oil Sends region 1977–2002, November–December monthly means.
masked out i.e. only physically undisturbed vegetation

present in each ring was included. The areas disturbed

by forest fires in last 30 years were also excluded from

the analyzed area because intensive post-fire regen-

eration would cause an increasing trend in NDVI

leading to an inappropriate assessment of secondary

impacts. The areas affected by fire were identified

using forest fire provincial monitoring data.

The NDVI time series were computed from red and

near infrared corrected AVHRR and VGT surface

reflectance for each 10-day period from April to

October (Fig. 14). The same figure also shows trend,
Fig. 12. Time series of air temperature Athabasca Oil Sen
cyclical and stochastic components for Ring-PAI 0.25.

Each point in the graph represents an average NDVI

value computed from 10-day image composites of all

pixels located in the area delineated by the PAI

isopleths. The NDVI trend was extracted using the

STL algorithm.

The trend analysis showed NDVI long-term

variations around the mean value with a period of

about 6–7 years. A similar long-term pattern is also

present in the air temperature variations (Fig. 15). The

pattern in the cyclical component follows seasonal

variations of green up–peek greenness–senescence,
ds region 1977–2002, July–August monthly means.
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Fig. 13. Time series global radiation Athabasca Oil Sends region 1998–2000, 10-day means.
with a somewhat different phase indicating some

variations in the length of growing seasons. The

stochastic component exhibits random patterns

throughout entire period with average amplitude

around mean of about 0.06%.

The comparison of NDVI and air temperature time

series (Figs. 14 and 15) confirmed the expected strong

correlation. Measurements obtained by AVHRR and

VGT for the overlap period 1998–2002 show good

agreement. A good general agreement in the long and

short-term variations in the patterns of NDVI

measured and air temperature over AOS region

increases confidence in NDVI as an indicator of

vegetation productivity and its sensitivity to local

conditions.
Fig. 14. NDVI time series 1990–2002 derived from 10-days AVHRR co

random components extracted using seasonal-trend decomposition algori
4.3.2. KRI ring analysis

To evaluate the pattern in vegetation growth over

the entire AOS Region, the KRI was analyzed for each

PAI ring during the period from 1990 to 2002. The

analysis only included the same physically undis-

turbed vegetation as in the previous NDVI analysis.

The KRI was computed only for June and August to

minimize differences due to the longevity of the

growing season and noise caused by increased cloud

cover during the spring season. The KRI time series

normalized to 1990 are illustrated in Fig. 16, all rings

show the same general pattern in inter-annual

variations. A decrease of 15% for the period 1990–

1992 suggesting that the northern biosphere suffered

an abrupt decline in vegetation productivity followed
mposites for impact ring 0.25 > PAI < 0.50. Trend, seasonal and

thm.
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Fig. 15. Ten days average air temperature time series 1990–2002. Trend, seasonal and random components were extracted using seasonal-trend

decomposition algorithm.
by an increasing greening trend in 1993. Lucht et al.

(2002) also reported the same anomaly in their study

of the northern biosphere. They suggested that the

anomaly was caused by the Mount Pinatubo volcano

eruption in 1991, which expelled dust particles into the

atmosphere blocking incoming solar radiation leading

to cooler temperatures and a shorter growing season.

The ring analysis showed a light decline in vegetation

productivity since 1997 for all rings, but more

pronounced in the ring closest to the mining

development. This declining trend is opposite to the

expected trend estimated by the KRI model simula-
Fig. 16. Surface mining impacts on the surrounding vegetation in function

Difference in KRI estimated from the remote sensing measurements and
tion, which takes into account only climate conditions.

It is also opposite to the general finding that there has

been a greening trend in the high northern latitudes

associated with a slight warming of boreal forest. The

observed decline in ring PAI 0.75 in vegetation

productivity is still small and within range of natural

variations; therefore, it cannot be attributed with high

certainty only to the secondary impacts due to

emissions from the mining development. It is possible

that the ring closest to the mining development

contains more small disturbances, for example,

seismic lines and roads that were not excluded from
of mine proximity in Athabasca Oil Sends region relative to 1990.

KRI predicted by the model simulation are attributed to impact.
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the analyzed area due to the coarse spatial resolution

(1 km) of satellite data. However, the decreasing trend

is evident and proportional to the increase in oil sands

production quantified by the amount of CO2 equiva-

lent emissions (Fig. 16). Continued monitoring in

incoming years when mining development is going to

be intensified will provide more opportunity to

evaluate this remote sensing based initial assessment

procedure.
5. Conclusions

A remote sensing based approach for quantifying

primary and secondary impacts of surface mining is

presented and applied for the assessment of the mining

development in Athabasca Oil Sands region. Affected

areas were identified as the difference between land

cover maps derived from LANDSAT data (30 m

resolution) acquired in 1992 and 2001. Maps produced

from remote sensing data provide information for

subsequent impact assessments from surface mining

development on land cover, as well as forming the

basis for reclamation planning and monitoring.

A procedure based on AVHRR data with �1 km

spatial resolution provides information on vegetation

multi-year condition over large areas for assessing

secondary impacts. The analysis of NDVI time series

(1990–2002), air temperature and global radiation

over the AOS region, shows that inter-annual

variations in greenness and growing season length

were quantitatively consistent with independent

expectations on the basis of climate variability. It

was found that air temperature alone accounted for

most of the inter-annual variations, but also a slight

decrease in vegetation greenness was apparent in close

proximity to the mining development.

Understanding the cause of variability in vegetation

conditions allows for distinguishing natural from

human-induced perturbations of ecosystems; an

important pre-requisite in quantifying environmental

impacts caused by mining and other developments.

However, it is important to point out that the procedure

presented here requires a somewhat complicated

procedure for correction and normalization of remote

sensing data, including across sensor calibration,

atmospheric correction, normalization for surface

anisotropy-BRDF effects, screening for cloud and
other contaminants often present on remote sensing

observations. In addition to high quality remote

sensing data, a comprehensive knowledge of condi-

tions that a study area was subject to in the past and

present is essential for appropriate interpretation

leading to higher confidence in obtained results.

The same can be concluded for secondary impact

assessment: that remote sensing observations are not

always sufficient to fully understand cause–effect

relationships between industrial development and

environmental response, thus they may need to be

combined with other field-based measurements.
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