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Abstract. Unsupervised clustering is important for regional- to national-scale forest inventories where supervised training
data are impractical or unavailable. However, labeling clusters in terms of land-cover classes can be labour intensive and
problematic, and clustering and related methods do not provide biophysical–structural information (BSI). Canopy
reflectance models such as 5-Scale are powerful forest remote sensing tools; however, 5-Scale can only be run in forward
mode and is not invertible to obtain the required forest information. This problem was solved using multiple-forward-mode
(MFM) coupled with 5-Scale to enable MFM–5-Scale inversion of land cover and BSI using a look-up table (MFM–LUT)
approach that matches satellite image reflectance values with modeled reflectance values that have associated land cover and
BSI, such as density, leaf area index (LAI), and crown dimensions, as well as subpixel-scale component fractions. MFM
requires no training data or a priori BSI and can optionally be stratified (generalized) by species, structural, hierarchical,
mixed forest, and other class definitions. In this paper, MFM–5-Scale was used with Landsat thematic mapper (TM)
imagery at the Boreal Ecosystem–Atmosphere Study (BOREAS) southern study area (SSA) modeling subarea (MSA) in
Saskatchewan, Canada. MFM–5-Scale was used to label unsupervised cluster sets (n = 17 and 97) from a previous land-
cover classification by progressive generalization (CPG), with the best results obtained from independent, stand-alone MFM
classification (87%, 76%, and 71% for the three hierarchies of 16 forest type, species, and density classes) validated against
the provincial (SERM) forest inventory map and also compared with a standard maximum likelihood (ML) classification.
Further, MFM–5-Scale estimated LAI at 24 BOREAS plots within ±0.57 LAI compared with ground-based tracing radiation
and architecture of canopies (TRAC) LAI validation data. BSI is not provided by CPG clustering or ML. Based on this and
other studies, we conclude that MFM provides an inversion modeling context for sophisticated forest radiative transfer
models to retrieve a higher level of land cover and BSI, with detailed LUTs providing a rich set of forest information
suitable for query, analysis, and follow-on simulation studies. These methods can augment existing regional- to national-
scale remote sensing based inventories by providing a robust cluster labeling and BSI capability or can provide stand-alone
capabilities over a variety of applications and scales.
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Résumé. La technique de regroupement non dirigé est importante pour les inventaires forestiers à l’échelle régionale et
nationale où les données d’entraînement dirigées ne sont pas pratiques ou non disponibles. Cependant, l’étiquetage des
regroupements en termes de classes de couvert peut être onéreux en temps et problématique, sans compter que la technique
de regroupement ainsi que les méthodes connexes ne fournissent pas d’information biophysique–structurale (BSI). Les
modèles de réflectance du couvert, tel que le modèle 5-Scale, sont des outils puissants de télédétection des forêts, quoique le
modèle 5-Scale ne puisse tourner qu’en mode avant et ne soit pas inversible pour obtenir l’information nécessaire sur la
forêt. Cette situation a été résolue en utilisant le mode MFM (multiple forward mode), couplé avec le modèle 5-Scale, pour
permettre l’inversion MFM–5-Scale du couvert et de l’information BSI en utilisant une approche basée sur la table de
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visualisation (MFM–LUT) qui établit une correspondance entre la réflectance de l’image au satellite et les valeurs de la
réflectance modélisée associant le couvert et les informations BSI telles que la densité, l’indice LAI et les dimensions des
couronnes de même que les composantes des fractions à l’échelle du sous-pixel. Le modèle MFM ne requiert aucune
donnée d’entraînement ni d’information BSI a priori et peut, de façon optionnelle, être stratifié (généralisé) en fonction des
espèces, de la structure, de la hiérarchie, des forêts mixtes et des autres définitions de classes. Dans cet article, le modèle
MFM–5-Scale a été utilisé avec des images TM de Landsat de la sous-zone de modélisation (MSA) de la zone d’étude sud
(SSA) du projet BOREAS (« Boreal Ecosystem–Atmosphere Study »), en Saskatchewan, au Canada. Le modèle MFM–5-
Scale a été utilisé pour étiqueter des ensembles de regroupements non dirigés (n = 17 et 97) provenant d’une classification
CPG (« classification by progressive generalization ») préalable du couvert. Les meilleurs résultats ont été obtenus à partir
d’une classification MFM indépendante et autonome (87 %, 76 %, 71 % pour les trois hiérarchies de seize classes de types
de forêts, d’espèces et de densité), validée par rapport à la carte provinciale d’inventaire forestier (SERM) et comparée
également avec une classification standard par maximum de vraisemblance (MV). De plus, les estimations de LAI dérivées
du modèle MFM–5-Scale sur vingt-quatre parcelles BOREAS à l’intérieur de ±0.57 de LAI étaient comparables aux
données de validation TRAC LAI au sol. Les informations BSI ne sont pas fournies par le regroupement CPG ou la
classification utilisant le MV. Basé sur cette étude ainsi que sur d’autres études, nous concluons que la classification MFM
constitue un contexte de modélisation de l’inversion permettant aux modèles de transfert radiatif sophistiqués de la forêt
d’extraire un niveau plus élevé d’information sur le couvert et les caractéristiques biophysiques–structurales, les tables de
visualisation (LUT) apportant un ensemble riche en informations sur la forêt utilisable pour les études de requêtes, d’analyse
et de simulations subséquentes. Ces méthodes peuvent complémenter les inventaires existants à l’échelle régionale ou
nationale basés sur la télédétection en fournissant une capacité robuste d’étiquetage des regroupements et d’information
biophysique-structurale, ou encore fournir des capacités autonomes pour une variété d’applications et d’échelles.
[Traduit par la Rédaction]

Peddle et al.Introduction
Physical models of radiative transfer and canopy reflectance

from forest stands provide a powerful tool for airborne and
satellite image analysis for obtaining detailed forest information
(Hall et al., 1995; Strahler, 1997; Schowengerdt and O’Neill,
1999; Chen et al., 2000a; Chen and Leblanc, 2001; Asner et al.,
2003; Gamon et al., 2004). These models provide the critical
linkage between remotely sensed spectral response and the
dimension, geometry, composition, density, and spectral
properties of forest canopies and stands. This provides a physical
basis to image analysis and represents a higher level of
information extraction compared to more traditional statistical–
empirical approaches that are based primarily in the spectral
domain and therefore are limited in scope. As a result, the
introduction of an explicit physical–structural basis to remote
sensing image analysis using canopy reflectance models is
potentially of greater and more direct interest to forest
management, inventory, and environmental monitoring. Further, it
can augment existing unsupervised land-cover products that often
characterize large-area regional- to national-scale studies (Cihlar,
2000; Cihlar and Jansen, 2001; Chen et al., 2002; Franklin and
Wulder, 2002; Cihlar et al., 2003; Wulder et al., 2003).

Geometric optical canopy reflectance models can generally
be used in either forward or inverse mode. In forward mode, the
model produces as output a modeled pixel reflectance value in
each spectral band, with some models also producing
associated scene component fractions. Forward-mode inputs
typically include physical and spectral descriptors of forest
stands (e.g., canopy dimension, density, and end-member
reflectances) and the view and illumination geometry. When
run in inversion mode, the model produces canopy physical
descriptors as output, based on the inputs of satellite image
pixel values, end-member spectra, and view and illumination
geometry.

Although these different types of model usage provide very
useful and diverse information, they are not without limitations.
Forward mode requires exact inputs (or estimates) of forest
structural information; however, these may be difficult to
obtain with confidence in terms of measurement practice (i.e.,
accuracy) and the spatial variability of forest stands. It is
inappropriate to assume that a single value for a given forest
attribute is representative for large areas, regions, or national-
scale studies. For inversion mode usage, a major issue is that
some models cannot be inverted, particularly ones with greater
complexity, yet that level of complexity is often required for
more sophisticated, current-day applications and (or) complex
landscapes. Further, inversion models are often
computationally very demanding with rather slow, iterative,
non-exact, or in some cases no solutions produced.

Look-up table (LUT) inversion provides an alternative and
practical approach that overcomes central issues with
traditional inversion methods (Kimes et al., 2000; Weiss et al.,
2000; Combal et al., 2002). In this paper, multiple-forward-
mode (MFM) is presented as a different model-based LUT
approach for using physical models such as 5-Scale. MFM
eliminates the need for exact model inputs in forward mode
while still achieving the goals of deriving forest biophysical–
structural information (BSI) as in model inversion. Land-cover
and BSI output are unified in one algorithm with a physical
basis, unlike most other approaches that are decoupled and
empirical. MFM is also well suited for multi-temporal
applications because it models explicitly the effect of
illumination changes due to different solar zenith angles (SZA)
and azimuth angles of images acquired on different years,
seasons, and dates (Peddle et al., 2003a). In mountainous
regions, MFM provides direct access to explicit and variable
surface geometry available in some models. It enables different
class structures, including rigorous dynamic mixed forest
specification, and, since no training or other data are required,
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MFM is particularly well suited for use in large, sparse areas
such as Canada, where input data may be limited or
nonexistent. The latter point is of particular interest since MFM
can be used without any inputs (i.e., completely blind usage)
whereby a simple two-stage iterative modeling approach is
used to identify valid structural ranges for analysis.

MFM modeling was first developed by Peddle (1999) and
has since been used in Canada by the Canada Centre for
Remote Sensing, Canadian Forest Service, Canadian Model
Forests, Alberta Ingenuity Centre for Water Research, and in
the USA by the National Aeronautics and Space
Administration (NASA) moderate-resolution imaging
spectroradiometer (MODIS) Science Team and the Landsat
Ecosystem Disturbance Adaptive Processing System
(LEDAPS) as part of the NASA contribution to the North
American Carbon Program (Cihlar et al., 2002a; NACP, 2005).
In these and other projects, MFM has been used successfully in
a variety of applications (land cover, biomass, stand and crown
volume, stem density, height, LAI, topographic correction and
validation, structural change detection and damage assessment,
crown closure, forest fires, and water–hydrology applications)
in different locations and ecosystems in Canada (six different
provinces from coast to coast, Newfoundland to British
Columbia) and the USA (MODIS and LEDAPS validation
sites) using different canopy reflectance models coupled with
MFM (e.g., GOMS, GORT, 4-Scale, 5-Scale) and with a variety
of airborne and satellite remote sensing systems (e.g., SPOT,
Landsat TM – Landsat enhanced thematic mapper (ETM),
MODIS, IKONOS, airborne multispectral video (MSV),
compact airborne spectrographic imager (casi)) as described in
Peddle et al. (2003a; 2003b; 2003c; 2004; 2005), Soenen et al.
(2005; 2007a; 2007b), and Pilger et al. (2003), with broader
perspectives on MFM provided in Cihlar et al. (2003) and
Gamon et al. (2004).

This study builds on positive results from a different MFM–
5-Scale study (Peddle et al., 2004) that involved a
multitemporal mosaic of seven Landsat TM scenes over the
entire BOREAS region (southern study area (SSA), northern
study area (NSA), and the SSA–NSA transect), with validation
expressed as agreement between independent MFM
classifications and an existing satellite-based enhancement–
classification method (ECM) (Beaubien et al., 1999) product
and field data. In this paper, the focus is instead on
(i) unsupervised cluster labeling as a new MFM land-cover
application; (ii) consideration of hierarchical class structures;
and (iii) use of an independent forestry inventory map as a
different source of validation, together with follow-on BSI
retrieval. Accordingly, the MFM approach is described and
then evaluated for three analytical objectives: (i) labeling
unsupervised clusters produced at two levels of precision,
(ii) generating independent MFM land-cover classifications
(i.e., separate from unsupervised clustering) for comparison
with MFM cluster labeling and standard maximum likelihood
(ML) classification, and (iii) BSI retrieval of LAI to show
additional capabilities of MFM beyond classification.

Canopy reflectance modeling
5-Scale model

The 5-Scale model (Leblanc and Chen, 2000) is the merging
of 4-Scale (Chen and Leblanc, 1997) and leaf incorporating
biochemistry exhibiting reflectance and transmittance yields
(LIBERTY) (Dawson et al., 1998). 4-Scale is a geometric–
optical radiative transfer model of forest structure at four scales
of canopy architecture, namely tree groups, crowns, branches,
and shoots. The fifth and most detailed scale at the leaf level is
provided by the LIBERTY radiative transfer model, which
simulates the reflectance and transmittance of individual leaves
or leaf stacks. Tree crowns are modeled as discrete geometrical
objects using cones and cylinders for coniferous species and
spheroids for deciduous species. A non-random spatial
distribution (Neyman 1939) is used to simulate the patchiness
of forest stands, with crown size decreased for large clusters of
trees. The simulation of light competition is further enhanced
using a repulsion effect to eliminate vertical overlap of crowns.
Within-crown branch architecture is defined using a single
inclination angle (Leblanc et al. 1999). A geometrical multiple
scattering scheme with imbedded view factors is used to
compute the reflectivities (Chen and Leblanc, 2001).

Multiple-forward-mode (MFM) modeling: MFM–5-Scale

The MFM approach represents a way to achieve the
objectives of inversion modeling but without the need for an
explicit inversion model. It works by multiple application of
standard forward-mode modeling concepts. In forward mode,
the user must provide input values specifying a number of
physical descriptors of forest canopy dimension and form and
other physical, spectral, and scene-specific inputs. The model
computes a corresponding output pixel value based on these
physical inputs and the spectral component measurements. In
MFM, the model is run multiple times in forward mode over a
range of possible physical canopy parameters and other model
inputs, with each model run representing one of n possible
combinations of these different input parameters. Results are
stored in an MFM–5-Scale look-up table (MFM–LUT)
consisting of a maximum of n entries. An optional prescreening
procedure can eliminate MFM input structural combinations
that could not occur in nature, based on known BSI or species
properties. For example, given that all possible combinations of
the structural input variables are processed in sequence to
produce a modeled reflectance output that is stored in the
MFM–LUT, there may be some structural combinations in the
MFM–LUT that could be eliminated a priori based on general
or specific forest information for a given area (e.g., in a mature
forest with areas of disturbance from logging, insect
defoliation, fire, etc., very high stand densities would be
associated with younger areas of regeneration, so structural
combinations such as very high stand density with maximum
trunk and crown heights would not be plausible and thus could
be removed from the MFM–LUT; similarly, characteristic
height to width ratios can be used to exclude MFM–LUT
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entries that violate established criteria). These prescreening
capabilities are optional and designed to provide the user with
an ability to utilize a priori information to advantage, if
available. It is important, however, to emphasize that no
prescreening is required in MFM and that, in fact (as described
later in the paper), the MFM approach is designed to also work
in conditions where absolutely nothing is known about a forest
(i.e., “completely blind” mode). One of the fundamental design
criteria of MFM was to facilitate improved forest information
retrieval in situations ranging from minimal (or zero) to
extensive supporting information. This is consistent with the
diversity of information available in different countries,
regions (e.g., remote–urban forests), and applications (small
research test plots to broad expanses of forests with no
inventory or other information).

A key advantage of MFM is that specific physical dimension
and form inputs are not required; instead, only a range of values
and a model increment must be entered. For example, instead of
specifying pixel or stand-specific values for crown dimension
or tree height for a particular forest species, the user need only
specify a range of values. The set of MFM–5-Scale input and
output parameters is shown in Table 1, together with a listing of
those which may be varied within a specified range in MFM
(additional optional parameters are also available in 5-Scale).
This range may be broad, extending to theoretical minima and
maxima if required or desired, or it may be small if a focused
analysis is of interest. When dealing with larger or more diverse
areas, a range of values is more representative compared with
specifying individual canopy descriptors in standard forward
mode which invariably are based on mean values from field
samples or inventories but may not properly represent
individual occurrences, and certainly are not representative
over larger regions or at national scales.

In situations where little or no a priori information exists, a
two-stage MFM process can be used to produce an initial
MFM–LUT based on larger model ranges and coarser
increment values to first identify the general range of
appropriate physical model inputs that produce reflectance
values similar to those of the remote sensing image. In this way,
MFM can be used when nothing is known about a given area
(i.e., fully blind use). The output is used to identify smaller,
more focused input ranges where matches occurred, for which
a more detailed MFM analysis with finer increments is used to
produce the final MFM–LUT. These MFM–LUTs contain
reflectance values with associated physical–structural
information, scene fractions, and view and illumination
geometry retained from the inputs that created the forward-
modeled reflectance value. All of this information is stored in
the MFM–LUT as a digital library of rich forest information for
subsequent query, search, retrieval, and analysis. This MFM–
LUT can serve as a stand-alone tool for detailed model
simulation studies, or the MFM reflectance values can be
matched with satellite image reflectance to provide land-cover
and BSI over small or large areas.

Matching modeled and satellite reflectance

Once the MFM–LUT has been created, it can be used for
direct BSI retrieval and (or), if land cover is required, MFM
classification is invoked by stratifying the LUT according to
class definitions (e.g., by land cover based on species end-
members, physical descriptors, or both). A given satellite pixel
is then associated with one of those classes by matching the
input multispectral satellite image reflectance value with the
corresponding reflectance values produced by the model. This
can be based on exact match criteria using the reflectance
equality method (REQ), with options to specify more advanced
thresholding methods such as root mean square error (RMSE)
to determine the closest matching modeled reflectance values
based on the nearest spectral distance (NSD) and by assessing
spectral distance with respect to a spectral range domain
(SRD), as described in full by Soenen et al. (2007b). These
methods are also designed to capture any reflectance variability
or error inherent to the sensor, processing, and modeling
elements. They also provide tools to specify criteria for
heterogeneous and (or) hierarchical forest properties of
interest, such as mixed forest classes, or multiscale
assessments. Once this matching process is achieved, the
corresponding physical inputs to the 5-Scale model which gave
rise to this reflectance value in the MFM–LUT are extracted
(see Table 1B). This is the essence of the MFM–5-Scale
inversion. Satellite image values are input to MFM in the same
way as with any inversion model, with land cover and physical
canopy dimension information provided as output.

In determining matches between satellite reflectance values
and those generated by the model and stored in the MFM–LUT,
there may be no direct matches, one match, or multiple
matches. The correspondence between measured and modeled
reflectance is in part a function of MFM increment step
precision within input ranges, as well as any uncertainties,
errors, and differences in precision of the canopy reflectance
model and remote sensing instrument measurements (e.g.,
radiometric resolution, sensor noise, model assumptions, and
abstraction) and any issues with image corrections or other
postprocessing functions (e.g., atmospheric correction and
reflectance calibration). Methods to deal with multiple matches
are described fully in Soenen et al. (2007b) and therefore are
only summarized briefly here.

Matching is dealt with sequentially based on proximity
criteria developed in spectral space populated by MFM spectral
outputs and satellite image values. If there is one unique match,
the algorithm uses that MFM–LUT entry as the basis for BSI
and land-cover retrieval. Regarding multiple matches, in some
situations these represent final output, in that it is sometimes
acceptable or desired to provide ranges of output. For example,
some carbon–water–energy models are based on model input
ranges; indeed, over larger areas, preserving multiple matches
may be more representative of reality both in terms of model
precision and the spatial variability over larger regions.
However, if a unique solution is required, this is handled using
distribution analyses of multiple solution sets involving

© 2007 CASI 217

Canadian Journal of Remote Sensing / Journal canadien de télédétection



summary statistics and spatial context (Soenen et al., 2007b).
The first phase of this uses statistical measures of central
tendency and variance to describe the distribution of matching
reflectance values, with median-based processing optimal for
dampening any outlier affects. This can optionally be
supplemented based on nearest-neighbour value retrievals with
a spatial threshold tolerance limiting case, with an additional
option to incorporate ancillary information (e.g., elevation,
slope, aspect from a digital elevation model) to further
constrain matches to both reflectance and ancillary conditions
if desired and available. These methods are described in full by
Soenen et al. (2007b).

If there are no matches (and this assumes the front-end
prescreening test for appropriate model inputs was passed),
then a spectral space proximity thresholding algorithm is
invoked whereby the nearest matches are (i) assessed as a
unique class, (ii) treated as mixed forest (with dynamic, pixel-
specific outputs), or (iii) assigned as a nonforest pixel. These
thresholds can be generated automatically or defined by the
user. This results in a more rigorous, detailed, and explicit
description of mixed forest (and other) classes. Unlike typical
mixed forest classes, in MFM these are not constrained by
arbitrary, broad definitions, and they also have associated BSI
retrievals yet require no input, training, or a priori class data or

definitions. If desired, however, these can still be grouped into
classes through simple MFM–LUT postprocessing, if more
generalized output is preferred or required for compatibility
with existing map classes or other products.

Study area and datasets
Study area and satellite imagery

The study was set within the BOREAS region (Sellers et al.,
1997) in Saskatchewan and Manitoba, Canada, with a focus on
the SSA modeling subarea (MSA) in Saskatchewan for which
appropriate land-cover and biophysical validation information
was available (Newcomer et al., 2000). The MSA is centred at
53.93°N, 104.84°W and covers 1487 km2 of boreal forest
terrain comprised primarily of black spruce, jack pine, and
aspen, with occurrences of mixed forests, fen, nonproductive–
disturbed land, and water. A Landsat-5 TM satellite image
acquired over the BOREAS SSA on 30 July 1996 was
atmospherically corrected and converted to reflectance by
Newcomer et al. (2000) with reference to a 1994 BOREAS
Landsat TM scene for compatibility with field-based red and
near-infrared (NIR) end-member reflectance values (Hall et al.,
1997). Therefore, Landsat TM bands 3 (red) and 4 (NIR) were
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(A) MFM inputs and outputs

Term
MFM
input

MFM
output

Pixel size, B �a �

Density, D �b �

Trunk height, Ha �b �

Crown height, Hbc �b �

Crown radius, r �b �

Leaf area index, LAI �b �

Solar zenith angle, SZA �a �

View angle, VZA �a �

Canopy end-member reflectance, �c (per species; by �) �a �c

Background end-member reflectance, �b (by �) �a —

Modeled reflectance, �T (by �) — �d

Canopy fraction, C — �

Background fraction, B — �

Shadow fraction, S — �

(B) Example model input, MFM–LUT output, and image data (one entry shown for each)

MFM model inpute B D Ha Hbc r LAI SZA VZA �c �b

MFM–LUT output B D Ha Hbc r LAI SZA VZA �c �b �T C B S
Satellite image reflectance �r

Note: MFM–LUT analysis involves matching remotely sensed pixel reflectance (� r by �) with modeled reflectance
values (�T by �). MFM outputs contain the land-cover class label (based on species of canopy end-member �s) and the
associated biophysical–structural information.

aInputs kept constant here but could be varied.
bInputs varied within a specified or automatic range in this study.
cSpecies identification (used for land-cover class).
dModeled reflectance (for matching).
eUser-specified or automatically generated ranges for some or all inputs; exact values not required.

Table 1. Primary MFM–5-Scale model inputs and outputs.



used in this study; however, we note the following: (i) MFM
can process any number of bands (e.g., hyperspectral);
(ii) although commonly used reflectance data are not required
in MFM as long as the end-member spectra and image data are
in common (e.g., raw digital numbers, image end-member
DNs, calibrated radiance, or other units); (iii) end-member
spectra can be varied using a range and increment, as with any
other MFM input; and (iv) in addition to field measurement,
end-member spectra can be obtained in a variety of ways (e.g.,
spectral libraries, image end-members, canopy reflectance
models; see Peddle et al. (1999) where field, image, and
modeled end-members were used), but these other options were
not explored in this study.

Land-cover validation data

Land-cover information for SSA MSA from independent
forest inventory maps was used for validation and accuracy
assessment of all classifications in this study. These forest
inventory maps were produced in vector format by the
Inventory Unit of the Saskatchewan Environment and Resource
Management (SERM) Forestry Branch as maps interpreted
from 1 : 12 500 scale aerial photography acquired prior to
1989. These data were processed and gridded to a 30 m raster
format by Newcomer et al. (2000). All validation data used in
this study (including the SERM data) are available in the public
domain online from the BOREAS Information System (see
Newcomer et al., 2000). The major classes from these raster
SERM maps were used in this study, including black spruce,
jack pine, and aspen species for which end-member spectral
model inputs were available, as well as mixed forest classes.
The SERM map was used to establish three sets of classes
within a hierarchical class structure at three different levels of
precision with respect to class descriptions (Table 2). The three
levels are (1) forest cover (conifer, deciduous, mixed), (2) 10
cover–density classes, and (3) 16 species–density classes.
Levels 2 and 3 included four density strata in all cases except
mixed classes (two density strata) as defined in the SERM
inventory map, with forest cover and species classes designated
based on >80% composition. The classification analyses in this
study were based on a sample of over 3 × 105 pixels in the SSA
MSA, with pixels corresponding to classes such as roads,
water, crops, and other forest species excluded. Although these
SERM data are independent and considered to be a reasonable
representation of land-cover and density information
(Newcomer et al., 2000), issues such as possible human
photointerpretation bias and timing (assessing 1996 satellite
imagery against aerial photography acquired prior to 1989)
may introduce external error leading to underestimation of
actual land-cover accuracy as reported here.

Although the focus of this work is MFM cluster labeling and
MFM independent classifications, it was also useful to place
these in context through comparison with a conventional
classification approach. Accordingly, a supervised ML
classification was performed with training and test data
obtained from the SERM map (for larger areas, this typically

would not be possible). A stratified random sample of
independent, mutually exclusive training and test pixels was
derived from the SERM map (10% per class) with a ratio of
70% to 30% used for separating training and test data,
respectively, with the latter used to estimate ML accuracy for
comparison with that of the various MFM products.

Unsupervised clustering

In the cluster labeling component of this study, two
unsupervised cluster sets were produced from the 1996 Landsat
TM image using the classification by progressive
generalization (CPG) method (Cihlar et al., 1998). CPG
involves initial image enhancement, quantization, and filtering;
the identification of a larger number of spectral combinations
that serve as seed clusters; assigning input pixels to seed
clusters based on minimum Euclidean distance; and

© 2007 CASI 219

Canadian Journal of Remote Sensing / Journal canadien de télédétection

Class Forest type or species Density (%)

Level 1
1 Conifer
2 Deciduous
3 Mixed forest

Level 2
1 Coniferous (>80%) 10–30
2 Coniferous (>80%) 30–55
3 Coniferous (>80%) 55–80
4 Coniferous (>80%) >80
5 Deciduous (>80%) 10–30
6 Deciduous (>80%) 30–55
7 Deciduous (>80%) 55–80
8 Deciduous (>80%) >80
9 Mixed forest >55
10 Mixed forest <55

Level 3
1 Black spruce (>80%) 10–30
2 Black spruce (>80%) 30–55
3 Black spruce (>80%) 55–80
4 Black spruce (>80%) >80
5 Jack pine (>80%) 10–30
6 Jack pine (>80%) 30–55
7 Jack pine (>80%) 55–80
8 Jack pine (>80%) >80
9 Aspen (>80%) 10–30
10 Aspen (>80%) 30–55
11 Aspen (>80%) 55–80
12 Aspen (>80%) >80
13 Mixed coniferous forest

(spruce and pine 50%–80%)
>55

14 Mixed coniferous forest
(spruce and pine 50%–80%)

<55

15 Mixed deciduous forest
(aspen 50%–80%)

>55

16 Mixed deciduous forest
(aspen 50%–80%)

<55

Table 2. Hierarchical class structure based on
SERM forest inventory map classes.



progressive grouping of clusters based on spectral and spatial
proximity (Cihlar et al., 1998). Two levels of cluster grouping
were applied, resulting in sets of 17 and 97 clusters. This was
done to test the MFM–5-Scale cluster labeling process for
different levels of cluster groupings.

All image and map products (TM image, raster SERM map,
and the various classifications) were geometrically coregistered
using 25 spatially distributed ground-control points input to a
nearest neighbour resampling algorithm, with an RMSE of 3 m
tolerated for the 30 m grid.

Field LAI validation data

LAI field validation data were obtained for the SSA MSA
area for 24 plots (15 jack pine, 9 black spruce) from the
BOREAS CD-ROM set. These data are also available from the
Earth Observing System Data and Information System
(EOSDIS) Distributed Archive Center (DAC) (Newcomer et
al., 2000). There were no aspen plots with available LAI data
within this area. The ground-based LAI data were collected by
BOREAS project RSS-07 (Chen et al., 2000b) using a tracing
radiation and architecture of canopies (TRAC) instrument
(Chen and Cihlar 1995; 1996) that accounts for canopy gap
fraction and gap size distribution (clumping index). All plots
had associated global positioning system (GPS) positions from
which they were located in the TM image.

Analysis and results
MFM–LUT production

MFM–5-Scale was used to produce one MFM–LUT for use
with the unsupervised CPG cluster labeling analyses and the
independent MFM classifications. In each case, all three levels
in the hierarchical class structure were classified (Table 2).
Level 2 is of most interest, since conifer species discrimination
(introduced at level 3) is less critical for ecological process and
carbon models and can also be more difficult in some cases
because of spectral similarity of pine and spruce stands for the
Landsat bands used here. However, all three levels were
classified by stratifying the MFM–LUT according to each set
of class definitions to test the ability of CPG clusters and
MFM–5-Scale for various levels of species and density
discrimination.

The MFM–5-Scale model inputs used in this study are shown
in Table 3 and are based on a 30 m Landsat TM pixel.

Physical–structural input ranges and model increments were
specified with reference to BOREAS forest data (Halliwell and
Apps, 1997; Newcomer et al., 2000) and chosen to ensure
comprehensive coverage for all species considered (LUT size:
n = 7 × 106), although this is not a requirement. MFM does not
need any training data or do any iterative learning, nor does it
require any SERM data on input. Other inputs were held
constant for MFM–5-Scale model runs and included spectral
end-member component reflectance values (from Hall et al.,
1997), the solar position at the time of Landsat TM image
acquisition (17:00 GMT), and the satellite sensor view angle
(nadir). Each model execution in MFM was specific to a
species as defined by the given end-member set.

Cluster labeling and classification results

Cluster labeling
In unsupervised image classification, cluster labeling is the

most labour intensive step (Cihlar et al., 2003). Through the
development of advanced radiative transfer models and
approaches such as MFM–5-Scale, it is possible to use model
outputs to label unsupervised spectral clusters efficiently and
objectively. This was achieved in MFM–5-Scale by computing
measures of central tendency for each cluster and using those
measures as the search criteria to locate appropriate modeled
reflectance values. Two unsupervised cluster sets from CPG
were labeled: a 97 cluster set, and a 17 cluster set (MFM-CGP-
97 and MFM-CGP-17, respectively). The TM reflectance
values that made up each cluster were extracted from the image,
from which mean, median, mode, standard deviation, and range
were computed for each cluster. Figure 1 shows the
distribution of clusters in spectral space for the 17 cluster set,
where the centre and radius of each cluster were determined as
the mean and one standard deviation, respectively, and plotted
as spectral ellipses. Some of the clusters appear to be closely
grouped, with the remaining clusters more spectrally distinct.
The mean reflectance value in each band for each cluster was
used as the search key for identifying matching MFM–LUT
reflectance values. The corresponding land-cover class for that
MFM–LUT entry as defined by the species end-member set
used on MFM input was identified and applied at each of the
three levels in the classification hierarchy, with all associated
physical–structural parameters for that entry also assigned to
that cluster. The TM image spectral and MFM–5-Scale
modeled physical attributes for each cluster were compiled for
the entire 97 and 17 cluster sets. The end result was a set of
attributes for each cluster that contain not only the land-cover
label (over different levels in the hierarchy), but also a full set
of physical canopy and stand descriptors together with scene
fractions, which themselves can be useful descriptors or
predictors of forest structural–biophysical parameters (Peddle
et al., 1999).

MFM cluster labeling classification results
The classification accuracies obtained at each hierarchical

level are shown in Table 4, expressed as percent agreement
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Model input Min. Max. Step

Trunk height, Ha (m) 1 10 0.5
Crown height, Hbc (m) 1 10 0.5
Crown radius, r (m) 0.50 10.00 0.25
Density, D (%) 0 100 10
LAI 0.25 10.00 0.25

Table 3. MFM–5-Scale model input ranges
and increment steps.



with the SERM inventory map. The results from MFM-CPG-
17 (17 cluster set) and MFM-CPG-97 (97 cluster set) were
similar within each level, with maximum accuracies of 87%,
69%, and 61% obtained for levels 1, 2, and 3, respectively. The
MFM–5-Scale labeling results were constrained by any errors
that exist in the original cluster sets. For example, a pixel
assigned to a given cluster that has a different land cover from
that of other pixels in the same cluster will nonetheless
contribute to the statistics which define that cluster and are used
to determine the search criteria in the MFM–LUT used as the
basis for cluster labeling. As a result, given the ability to label
individual clusters using MFM, the rationale and need for
merging clusters a priori may be substantially reduced, since
merging may introduce unwanted error and generalization into
cluster–class associations. Cluster merging is often a focal
point of unsupervised classification labeling; however, this step
can be avoided in MFM, and in fact it may be preferable not to
perform merging at all. Instead, a larger number of smaller
clusters can be processed using MFM–5-Scale and
subsequently merged based on matching class labels (i.e.,
postclassification, if desired). This avoids excessive merging at
the clustering stage, and the resulting overgeneralization and

additional error. In this study, the 97 cluster results were
essentially equivalent to the merged 17 cluster results,
suggesting that the merging performed prior to MFM–5-Scale
labeling was appropriate and not overgeneralized. However,
the overall levels of agreement with the SERM inventory map
for the level 2 and level 3 products were somewhat lower
(60%–69%), suggesting the degree of land-cover separation
provided by both sets of clusters was not optimal.

Independent MFM–5-Scale classifications

Although the MFM–5-Scale approach was originally
pursued as a method for unsupervised cluster labeling in this
study, we also used it as a stand-alone, independent approach
for full classification. The main difference between the
unsupervised cluster labeling and the independent MFM–5-
Scale classifications is that the latter approach is performed in
an unconstrained, per-pixel environment in which individual
pixels are classified independently, whereas the cluster labeling
process is necessarily constrained by each cluster group (a
“per-cluster” approach). The same MFM–LUT that was used
with the unsupervised cluster labeling was also used for the
independent MFM–5-Scale classifications.
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Figure 1. Red (x axis) versus near infrared (y axis) plot illustrating the relative position and
spectral extent of 17 clusters in spectral space.

Level
No. of
classes

MFM-CPG-17
(%)

MFM-CPG-97
(%)

MFM–IND
(%)

ML
(%)

1 3 87 87 87 82
2 10 69 68 76 73
3 16 60 61 71 71

Table 4. Classification accuracies for MFM–5-Scale analysis of 17 clusters (MFM-CPG-17),
97 clusters (MFM-CPG-97), independent MFM–5-Scale (MFM–IND), and separate maximum
likelihood (ML) classifications, expressed as percent agreement with SERM forest inventory
map data processed to three levels of hierarchical classes (see Table 2).



The MFM–5-Scale independent (MFM–IND) classifications
yielded the highest accuracy of all methods tested at each
hierarchical level (Table 4), except for level 1 (MFM–IND and
both MFM–CPG results were 87%) and level 3 (MFM–IND
and ML were 71%). For the level 2 case, the overall accuracy
obtained was 76% for 10 classes defined by forest type and
density, followed by ML (73%) and the two cluster approaches.
In the 16 class level 3 classification, the MFM–IND accuracy
(71%) was 10% higher than the best unsupervised cluster
accuracy. These results, particularly the level 2 product, are
regarded as acceptable and significant for this application of
MFM–5-Scale.

The full contingency matrix for the MFM–IND level 2
product (Table 5) shows individual class accuracies were
consistently good, with eight of 10 classes �70% and three
classes �90%. Further, classification error was confined
primarily to within coniferous or deciduous forest types and
was usually manifested as errors with adjacent density classes,
thus the error severity was generally low. It is possible that
some of these nonsevere errors were due to the SERM forest
inventory map. That map was produced by subjective
interpretation of aerial photography and thus may have some
internal error or inconsistencies. Further, the aerial photographs
were acquired prior to 1989 and over different years, thus there
was a minimum of 8 years difference from the 1996 satellite
image. During the intervening periods, normal forest growth
and changes in forest density may change some stands to the
next higher density class by 1996, which would then be shown
incorrectly as classification error in Tables 4 and 5 (i.e., SERM
map outdated; MFM correct). More substantive post-1989
changes such as disturbance by fire, logging, defoliation, or
other activities would show up (incorrectly) as more severe
errors in this analysis of 1996 imagery with respect to the
earlier SERM map.

BSI retrieval: MFM LAI results

LAI is one of the direct outputs from MFM–5-Scale and was
tested using Landsat TM image pixel reflectance values at
field-validated BOREAS plots. The LAI associated with LUT
entries whose reflectance matched satellite image pixels was
the basis for BSI retrieval, with multiple matches resolved by
average LAI. These LAI values were produced completely
independent of any field information or land-cover reference.
As a result, the full set of field LAI was available for validation
purposes (i.e., no field LAI data were required or input to
MFM). For larger areas (e.g., Chen et al., 2002; Cihlar et al.,
2002b) and with sparse or no field validation, MFM can still
produce LAI and other BSI, since no training or other field
inputs are needed.

The MFM LAI retrieval results (Table 6) show the range,
average, and standard deviation of LAI from MFM and ground-
measured TRAC LAI and summary statistics from the
differences (absolute value) by plot. The results for all SSA
MSA plots (n = 24) and by species (jack pine, black spruce)
indicated that the MFM LAI values covered a greater LAI range
than that of the measured values. The smallest and largest
differences between measured and modeled LAI for all plots
were �LAI = ±0.07 and ±0.97, with an average difference of
�LAI = ±0.57. The largest error by species was �LAI = ±0.97
for jack pine (n = 15) and �LAI = ±0.68 for black spruce (n =
9), with closest correspondences of �LAI = ±0.20 and ±0.07,
respectively. This is considered to be a good set of results for
these two conifer species, given the reasonable sample size and
high quality of independently field measured LAI that spans a
reasonable range of LAI values (TRAC LAI: 2.17–5.33).

Conclusion
Multiple-forward-mode (MFM) provides an inversion

modeling context for the powerful but non-invertible 5-Scale

222 © 2007 CASI

Vol. 33, No. 3, June/juin 2007

Class

Class 1 2 3 4 5 6 7 8 9 10

1 70 0 0 0 0 0 0 12 0 0
2 20 96 4 0 0 0 0 0 0 2
3 0 0 90 15 0 0 0 0 0 0
4 0 0 0 69 0 0 0 0 14 0
5 2 4 6 6 78 5 5 3 0 1
6 0 0 0 0 12 70 0 0 0 1
7 0 0 0 0 6 24 65 0 0 0
8 0 0 0 0 0 1 30 77 2 0
9 0 0 0 10 0 0 0 8 74 5
10 8 0 0 0 4 0 0 0 10 91
Total 100 100 100 100 100 100 100 100 100 100

Note: All entries expressed as percent agreement with SERM forest inventory map. Diagonal entries
represent individual class accuracy (shown in bold), and columns total 100%. Overall accuracy is 76%.
Classes 1–4, conifer density; classes 5–8, deciduous density; classes 9–10, mixed forest (see Table 2 for
detailed class description).

Table 5. Contingency matrix showing MFM classification accuracy for 10 classes at level 2
(see Table 2).



canopy reflectance model. MFM–5-Scale was tested for two
unsupervised cluster labeling products and an independent
MFM classification for three sets of hierarchical land-cover
classes and compared to standard maximum likelihood (ML)
classification. The independent MFM–5-Scale was
additionally used for biophysical–structural information (BSI)
retrieval of leaf area index (LAI).

MFM has a number of important advantages over other
classification and modeling strategies:

(1) MFM eliminates the need for exact model input
parameters such as canopy structural dimensions, since
only a range and model increment are needed. These are
easily obtained, are insensitive to error, are more
appropriate and spatially representative over large areas,
and can be generated automatically if no information is
available (i.e., completely “blind” usage) using a simple
two-stage procedure. The appropriate values are instead
selected through the MFM per-pixel matching process.
The blind usage capability is a key advance of potential
interest to programs at the large-area, regional, and
national levels.

(2) MFM provides extensive physically based information on
canopy dimension and forest structure, in addition to
land-cover labels. Information such as subpixel-scale
fractions is also provided, which is useful in predicting
biophysical variables.

(3) No training data are required for input to MFM.

(4) For classes with limited validation data, there is no need
to divide a sample into training and test sets, and thus all
available data can be used for validation and any sample
size constraints are eased.

(5) MFM creates an inversion model capability for models
that cannot be used in regular inverse mode. Also, MFM
is compatible with any forward mode radiative transfer
model, thus enhancing their utility.

(6) MFM is less complex in terms of both computational
efficiency and mathematical approximation for dealing
with inversion problems because of the rapid speed of
individual forward-mode runs and efficient database
search technology.

(7) MFM–LUTs provide a rich library of forest information as
a basis for mapping, query assessment, or analysing
spectral–biophysical relationships (e.g., model simulation,
intercomparisons, statistical or graphical evaluations).

(8) In terms of land-cover classification, the approach is
flexible and amenable to different class structures and
definitions (including multiple and hierarchical class
structures) without requiring additional model runs (the
existing MFM–LUT is simply restratified). Mixed forest
classes can be dynamically described without needing
any a priori class definition.

(9) Models such as GOMS (Li and Strahler, 1992) include
terrain information (e.g., slope, aspect) and have
considerable utility for both montane forest and other
mountain applications and for topographic correction
(Soenen et al., 2007a; 2005; Peddle et al., 2003a).

MFM–5-Scale yielded good results in this BOREAS study in
terms of land-cover classification accuracy, with additional
biophysical–structural information (BSI) provided. A
capability was shown for effective MFM labeling of existing
unsupervised clusters generated separately from MFM. The
MFM independent classification provided the best results over
three hierarchical class structures compared with cluster
labeling and ML. MFM is well suited for satellite image
mosaics encompassing different dates and seasons, variable
solar zenith, and view angles and from different sensors and
spectral bands. MFM may thus have potential to augment
regional- to national-level programs for mapping land cover
(e.g., Cihlar et al., 2003; Wulder et al., 2003), LAI (e.g., Chen
et al., 2002; Cihlar et al., 2002a; 2002b) and other forest
attributes (e.g., provincial–territorial inventories, National
Forest Inventory (NFI)), or as a stand-alone, primary
processing engine (e.g., MODIS Science Team, LEDAPS).

Acknowledgements
We gratefully acknowledge the Forestry Branch of

Saskatchewan Environment and Resource Management for
providing digital forest inventory maps to the BOREAS

© 2007 CASI 223

Canadian Journal of Remote Sensing / Journal canadien de télédétection

TRAC
LAI

MFM-5-Scale
LAI

LAI
difference
(per plot)

All SSA MSA (n = 24)
Min. 2.17 0.63 0.07
Max. 5.33 5.94 0.97
Avg. 3.47 2.95 0.57
SD 0.93 1.90 0.25
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Min. 2.17 0.63 0.20
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Avg. 2.85 2.00 0.67
SD 0.36 1.44 0.24

Black spruce (n = 9)
Min. 3.67 2.64 0.07
Max. 5.33 5.94 0.68
Avg. 4.51 4.54 0.42
SD 0.58 1.49 0.20

Note: Absolute values of differences shown by plot,
with mean difference shown in bold. n, number of
plots; SD, standard deviation.

Table 6. MFM LAI retrieval results and
BOREAS project RSS-07 ground-based LAI
(TRAC) data for jack pine, black spruce, and
all SSA MSA plots.
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