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Abstract

The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of

terrestrial ecosystems is important for carbon cycle research. In this study, China’s terrestrial NPP was simulated using the Boreal

Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a

national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation

database were established. Using these databases and BEPS, daily maps of NPP for the entire China’s landmass in 2001 were produced,

and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore

temporal–spatial patterns of China’s terrestrial NPP and the mechanisms of its responses to various environmental factors. The total

NPP and mean NPP of China’s landmass were 2.235GtC and 235.2 gCm�2 yr�1, respectively; the total GPP and mean GPP were

4.418GtC and 465 gCm�2 yr�1; and the total RA and mean RA were 2.227GtC and 234 gCm�2 yr�1, respectively. On average, NPP was

50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP

were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD

and AWC are evaluated and discussed.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Terrestrial carbon and water cycles are important foci in
global climate change research. A key component of the
terrestrial carbon cycle is net primary productivity (NPP),
defined as the difference between accumulated photosynth-
esis and accumulated autotrophic respiration by green
plants per unit time and space (Lieth and Whittaker, 1975).
NPP is equivalent to the net amount of carbon added to
plant biomass per unit of space and time (Chen et al.,
1999). Productivity is fundamental to ecology, and carbon
e front matter r 2006 Elsevier Ltd. All rights reserved.
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storage by land ecosystems can play an important role in
limiting the rate of atmospheric CO2 increase. NPP data
are useful in many applications (Bonan, 1995; Hunt et al.,
1996; Chen et al., 2000); and they are increasingly relevant
to land use policies. There are two challenges in using a
model to estimate NPP accurately: (1) the mechanisms for
simulating carbon cycle processes should represent our
latest understanding of ecosystem functioning and (2) the
model should have the capacity to use as many as possible
relevant datasets for input (Bunkei and Masayuki, 2002).
Ruimy suggested three types of models which are

generally used to estimate terrestrial NPP (Ruimy et al.,
1999). They are: (1) statistical models (Lieth and Whit-
taker, 1975), (2) parametric models (Potter et al., 1993;
Prince, 1995; Ruimy et al., 1999), and (3) process models
(Running et al., 1989; Foley, 1995; Mellio et al., 1993;
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Table 1

Major vegetation parameters for different land cover types

Land cover MSC (mms�1) FCI (O) SLA (m2 kgC�1)

DN forest 4.5 0.5 30

EN forest 2.2 0.5 25

DB forest 4 0.7 25

EB forest 6 0.7 20

MF (EN and DB) 4.5 0.6 20

MF (DB and EB) 5 0.7 27

Crop/natural plant 4.5 0.7 20

DS 4 0.6 10

ES 4 0.6 10

Forest/grass 3 0.7 20

Grass land 5 0.9 30

Crop land 5 0.9 30

Detail information about land cover type in Table 2.
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Bonan, 1995; Liu et al., 1997). The first- and second-type
models are simple and easy to use, but they lack the strong
theory and understanding of ecosystem function. Process
models generally incorporate mechanisms to simulate
various plant physiological processes including photo-
synthesis, autotrophic respiration and transpiration, and
therefore potentially produce more reliable results than
other types of models. However, process models’ use is
hampered by data availability and computing resources.
Another challenge is the need for temporal and spatial
scaling, because most process models have been developed
and tested at the stand level (Chen et al., 1999). Given
computing resources, modelers often have to make trade-
offs between spatial resolution and model execution time
steps. Remote sensing data provide important spatially
explicit inputs for process models. These include vegetation
indices to derive the key driving variables and land cover
types to reflect substantial physiological differences among
vegetation types (Running et al., 1989; Hunt et al., 1996;
Sellers et al., 1996; Liu et al., 1997; Bonan, 1993).

The objectives of this study were (i) to simulate China’s
terrestrial NPP using a process model based on remote
sensing data at a 1-km spatial resolution, (ii) to explore
spatiotemporal patterns of China’s terrestrial NPP, and (iii)
to investigate the sensitivity of NPP to various environ-
mental factors. For these purposes, BEPS model parameters
were adjusted to China’s diverse ecosystems, and a nation-
wide spatial database at 1 km resolution was established.

2. Model and data description

China has a vast territory, a variable topography, and a
rich variety of ecosystems. The country has a north-south
gradient in temperature and an east-west gradient in
precipitation driven by the summer monsoon (Hou, 1983;
Fullen and Mitchell, 1994; Menzies, 1996). The terrestrial
ecosystems include forest, grassland, desert, wetland and
cropland. The natural ecosystems range from forest,
through grassland, to desert from the east to the west,
and forest ecosystems vary along a north- south gradient
from boreal forests, through cold- and warm-temperate
deciduous forests, to mixed evergreen and deciduous
subtropical forests, to evergreen tropical forests (Hou,
1983; Houghton and Hackler, 2003). Agricultural ecosys-
tems are interspersed among other ecosystems. This spatial
distribution of terrestrial ecosystems made the simulation
of NPP of China more difficult than for the boreal
ecosystems of Canada where the BEPS model was
originally developed.

2.1. Description of the model

Boreal ecosystem productivity simulator (BEPS) was
used to estimate NPP across China’s landmass (Liu et al.,
1997; Chen et al., 1999). The model includes an advanced
canopy radiation sub-model to quantify the effects of
canopy architecture on the radiation distribution and
photosynthesis in the canopy. The photosynthesis sub-
model is based on the Farquhar’s model scaled to the
canopy using a sunlit and shaded leaf stratification
approach (Farquhar et al., 1980; Farquhar and Sharkey,
1982). In this study, BEPS was executed at daily time steps
for each pixel and the annual NPP was obtained as the sum
of daily NPP values. BEPS model parameters were also
adjusted for the various ecosystems in China (Table 1),
using results of previous studies (Hunt et al., 1996; Liu
et al., 1997; Kimball et al., 1997; Foley, 1995).

2.2. Spatially explicit input data

The required BEPS input data, including land cover,
LAI, available soil water-holding capacity (AWC), soil
water content, DEM and daily meteorological data, were
all processed in the same coordinate system (Albers conical
equal-area projection). At 1 km resolution, the image size
was 5300� 4300 pixels.

2.2.1. LAI data

LAI is a key parameter in BEPS for simulating various
physical and biological processes including radiation
interception, precipitation interception, evaporation from
wet leaf surfaces, transpiration, photosynthesis, auto-
trophic respiration, and others. It was generated from
processing and validation of 8-day MODIS image compo-
sites derived using the NDVI-LAI algorithm (MODIS-15
product). The LAI data compared favorably against two
experimental sites in northeast and northwest China (Liu
et al., 2006). In BEPS, a forest cover is treated in two
layers, overstorey and understorey, and an empirical
relationship between the overstorey LAI (MOD 15) and
the understorey LAI was used (Liu et al., 2003).

2.2.2. Land cover data

In BEPS, land cover information is used to specify plant
physiological parameters that differ among cover types.
The land cover map of China in 2001 was derived from a
nation-wide land use map (30m resolution, interpreted
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from Landsat TM images) and a vegetation map (scale
1:2.5 million, vector format). As in the land use map
(aggregated to 1 km resolution), no forest type information
was given, the vegetation map with different forest types
was used to separate the generally forest class in the land
use map into several forest types. Table 2 shows the class
and code of the land cover data. To obtain the final land
cover distribution for use in BEPS (high spatial resolution
and fine classification), the land use and vegetation data
were fused as follows (Fig. 1):

Step 1. Each class in the vegetation map was matched
with a relevant class in land use data.

Step 2: The vegetation map was resampled with the same
spatial resolution as the land use map.

Step 3: Each forest pixel in the land use map was
assigned a forest type based on the vegetation map using
the cell-to-cell function in ArcGIS. As the locations of
forest pixels in these two maps do not often match exactly,
Table 2

The class name and code of land cover data

Code Class name

1 Deciduous needle leaf forest (DN)

2 Evergreen needle leaf forest in temperate zone (EN-N)

3 Evergreen needle leaf forest in tropic zone and subtropics zone

(EN-S)

4 Deciduous broadleaf forest (DB)

5 Evergreen broadleaf forest (EB)

6 Mixed forest: EN and DB (MF)

7 Mixed broadleaf forest :DB and EB (MF)

8 Crop/natural plant

9 Deciduous shrub (DS)

10 Evergreen shrub (ES)

11 Forest/grass

12 Grass land

13 Paddy (crop land)

14 Dry land (crop land)

15 Water

16 Ice and snow

17 Resident and built-up land

18 Barren or sparse vegetation

Fig. 1. Flow chart of fusion using land use data and vegetation data. Class

3 in the land use map in this case is forest, while classes Ai in the

vegetation map are also forest. The final locations of forests are based on

the land use map.
a nearest neighbor principle was followed, as such that a
forest pixel in the land use map based on remote sensing is
taken as accurate while the its forest type is determined by
the nearest forest of a known type in the vegetation map.
This new land cover map processed in this way was

validated based on site data, MODIS-15 data and land
cover product from VEGETATION (provided by Institute
of Remote Applications of Chinese Academy of Sciences).
In this manner, the final land cover of China in 2001 with a
resolution of 1 km was obtained (Fig. 2).
2.2.3. Soil data

The amount of available soil water is one of the most
important factors affecting plant growth. Soil available
water capacity (AWC) is determined primarily by soil
texture. An AWC map was produced based on the relation
between soil texture and AWC classes as shown in Table 3
(Jong et al., 1984; Wenzuo et al., 2005). The resulting
China-wide AWC map is shown in Fig. 3.
2.2.4. Meteorological data

Algorithm for interpolating meteorological data. Meteor-
ological data of 680 stations were interpolated to individual
1-km pixels using ANUSPLINE (Hutchinson, 1991, 1995,
1998, 2002). Daily meteorological data were interpolated
using thin plate smoothing splines based on topography.
The daily meteorological data include radiation, maximum
and minimum temperature, mean humidity and total
precipitation, and snowpack data at the beginning of a
year.
AUSPLIN is a suite of FORTRAN programs that has

been applied successfully at regional scales (Price et al.,
2000). There are three independent spline variables: long-
itude, latitude and elevation above sea-level. A general
model for a thin plate spline function f fitted to n data
values Zi at positions Xi is given by (Hutchinson, 1995)

Zi ¼ f ðxiÞ þ �i; i ¼ 1; . . . ; n, (1)

where Xi typically represents longitude, latitude, and
suitably scaled elevation; and ei are random errors with
zero means which account for measurement errors as well
as deficiencies in the spline model, such as local effects
below the resolution of the data network. Compared with
other interpolation methods such as ANSPLIN, GIDS,
Surfer and ARC GRID, ANUSPLIN was generally more
accurate in interpolating meteorological variables (Price et
al., 2000; Feng, 2004), so ANSPLIN was selected in this
study. Fig. 4 shows a DEM map of China, a critical input
to the interpolation model.
Because radiation observation stations were very

sparse (only 98 stations), the daily global radiation fields
from the National Center for Environmental Prediction
(NCEP) of the USA were used for modeling. Since the
NCEP data were found to be positively biased
compared with the existing observations, we used the
observed global radiation data from the 98 stations to



ARTICLE IN PRESS

Fig. 2. Land cover map of China derived from data fusion.

Table 3

The relationship between soil available water capacity (AWC) and soil

texture

Class AWC (mm) Texture group

0 — Soil with a high water table

1 50 Sand; loamy sand

2 100 Sandy loam; gravelly loam

3 150 Very fine sandy loam; loam; gravelly silt loam

4 200 Silt loam; sandy clay loam; clay loam

5 250 Silty clay loam; sandy clay; silty clay; clay; heavy clay

6 — Solonetzic soils
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correct the NCEP data:

Observation radiation ¼ A�NCEP, (2)

where A is the coefficient between the observed radiation
and NCEP at every station. By regression analysis, A was
found to vary between 0.5415 and 0.8514 at different
stations, the majority ranging from 0.68 to 0.75. Using the
average A of 0.718. Eq. (3) was employed to obtain the
final radiation value for each 1 km pixel.

Observation radiation ¼ 0:718�NCEP. (3)

2.2.5. Forest biomass data

Biomass is a critical parameter for calculating auto-
trophic respiration. In this study, forest biomass data were
generated using non-linear relationships between biomass
and LAI (Bonan, 1995; Hunt et al., 1996; Liu et al., 1999;
Feng, 2000):

B ¼ AX þ BX 2, (4)
where B is aboveground biomass in kgm�2 and A and B

are cover-type dependent parameters. The root biomass
was estimated through correlation with the aboveground
biomass according to the R/T of each forest type (R/T
means root top ratio). After validation against ground data
(Luo, 1996; Feng et al., 1999), a total forest biomass map
of China in 2001 was produced (Fig. 5). This total biomass
is separated into root, leaf and stem components in
calculating autotrophic respiration. Table 4 shows some
validation results, just for example boreal/alpine picea-

abies forest. As a whole, the bias of simulating biomass was
found to vary between +18.3% and �24.2% at different
sites and plots, the majority ranging from +10.7% to
�14.8%. This biomass simulation can be improved
through considering tree age in the empirical biomass
equations and separating mixed pixels into areal fractions
of deciduous and conifer cover types.

3. Results and discussion

3.1. Validation of the NPP map

The NPP map was compared with simulated high
resolution NPP values based on the field data from four
sites (Changbaishan, Heihe, Xingguo, Liping). Table 5
shows the comparison of MODIS-NPP (modeled NPP
using LAI data derived from the MODIS product, pixel
size 1 km� 1 km) with TM-NPP (modeled NPP using LAI
derived from TM data based on the measured data, pixel
size 30m� 30m) at the Changbaishan site.
Modeled MODIS-NPP for four cover types (MF, EN-N,

tundra, cropland) was compared with modeled TM-NPP.
Because the spatial resolution was very different between
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Fig. 3. Available water-holding capacity map of China.

Fig. 4. Digital elevation model (DEM) map of China.
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modeled MODIS-NPP and TM-NPP, the comparison
based on land cover type was more reasonable than that
based on pixels. For deciduous broadleaf forest, the
modeled MODIS-NPP is somewhat higher than the
modeled TM-NPP. The differences in spatial scales and
in LAI are the major factors contributing to differences in
NPP. Then the MODIS-NPP was compared with existing
ground data in different periods in various locations in
China (including every forest type, more than 1000 sites,
from 1970 to 1999) (Luo, 1996; Feng et al., 1999). Table 6
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Fig. 5. Forest biomass map of China.

Table 4

Comparison of ground data of biomass and simulated biomass for boreal/

alpine Picea abies forest (Unit: tDM/hm2)

Plot no. Alt. (m) Lon. (1) Lat. (1) Biomass

(tDMha�1)

Simulated biomass

3397 3280 103.50 34.60 174.29 150.50

4308 1536 117.20 42.40 80.94 75.80

2368 508 131.80 46.50 104.50 112.40

3314 1017 129.40 44.30 164.32 155.70

2392 950 124.20 52.60 109.88 122.30

4807 2384 105.90 38.77 78.97 75.80

1075 2415 111.83 38.73 134.77 144.50

1067 2276 111.93 38.79 60.54 54.60

1063 2243 112.03 38.89 60.40 58.40

1892 3075 103.00 28.80 562.53 465.30

3335 3500 102.20 31.80 359.56 423.50

Table 5

Comparison of MODIS-NPP with TM-NPP at the Changbaishan site

(unit: gCm�2 yr�1)

Land cover TM-NPP Land cover MODIS-NPP

MF 532 MF 579

DB-1a 481 DB 631

DB-2a 375

DB(1+2) 467.7

EN-N 469 EN-N 450

Sparse veg.a 138 Sparse veg. 152

Crop 205 Crop 230

Average 462.5 Average 538.4

aDB-1 ¼ general DB; DB-2 ¼ mountain birch; Sparse vegetation ¼

Tundra.
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shows validation results for subtropical evergreen broad-
leaf forests. Overall, the modeled MODIS-NPP is very
close to the measured data, as many factors (tree age,
climate, topography, modeling scale) could have influenced
the accuracy of the simulated NPP.

3.2. Annual NPP

The NPP map of China in 2001 is shown in Fig. 6 (pixel
size 1 km� 1 km), and the corresponding gross primary
productivity (GPP) and autotrophic respiration (AR) maps
are shown in Fig. 7 and Fig. 8, respectively. Excluding open
water bodies (the NPP of these areas is set to 0 according to
the land cover map), the average NPP and total NPP over
China in 2001 were 235.2 gCm�2 yr�1 and 2.235GtC,
respectively. The mean GPP and total GPP were
465 gCm�2 yr�1 and 4.418GtC respectively. The mean
AR and total AR were 234 gCm�2 yr�1 and 2.227GtC,
respectively. On average, NPP was 50.6% of GPP.

3.3. Spatial pattern of China’s terrestrial NPP

The spatial distribution of NPP was associated with the
land cover and climate factors. Statistical analysis for NPP
by land cover shows that high NPP values occurred in
forested areas, especially in the tropical and subtropical
forest areas with warm climate and sufficient precipitation
and radiation. The highest NPP (over 1000 gCm�2 yr�1)
appeared in southern forested areas, such as Yunan
province and Hainan province. Low NPP values were
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Table 6

Comparison of simulation NPP with measured NPP at each sample for subtropical evergreen broadleaved forest

Sample accounts Province Longitude (1, E) Latitude (1, N) Measured NPP (gCm�2 yr�1) Simulation NPP (gCm�2 yr�1)

16 Fujian 116.30–119.30 24.70–27.60 897–1621.5 696.3–1224.6

5 Guangdong 110.00–115.60 20.70–24.90 1050.5–1566 984.7–1301.0

21 Guangxi 104.41–110.82 21.85–26.00 503–1464 481.9–1235.3

83 Guizhou 104.57–109.40 24.75–29.22 403.5–1562.5 376.9–1369.0

46 Hunan 109.51–114.15 24.70–29.78 728–1614.5 673.0–1184.2

6 Jiangxi 114.40–114.70 26.50–28.40 966–1659.5 620.1–1273.4

3 Sichuan 103.40–106.39 28.30–28.80 642–1088.5 579.8–943.7

5 Xizang 85.20–97.40 27.90–30.20 644–808 532.1–694.5

31 Yunan 98.78–101.19 23.20–28.75 364–1660.5 286.4–1425.3

2 Zheiang 119.27–120.17 29.48–30.25 728.5–954.5 436.0–891.8

Fig. 6. Net primary productivity (NPP) map of China in 2001.
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associated with areas partially covered by snow, ice, bare
soil and rock that were located mainly in the northwest
China under cold climate with low precipitation and/or low
radiation. The lowest NPP values with sparse vegetation
appeared in Qinghai province and Gansu province.
Statistical results showed the following spatial patterns of
China’s terrestrial NPP:
1.
 NPP by land cover per unit area: The simulated NPP
values varied greatly with vegetation type and
vegetation density (Table 7). Averaged for China,
evergreen broadleaf forests (740.1 gCm�2 yr�1) and
mixed broadleaf forests (718.5 gCm�2 yr�1) absorbed
the most carbon per unit area, followed by mixed
forests (broadleaf and needleleaf, 559.5 gCm�2 yr�1),
needleleaf forests (456.8 gCm�2 yr�1), shrubs
(363.1 gCm�2 yr�1), crops (341.9 gCm�2 yr�1), and
grasses (122.6 gCm�2 yr�1). Mean NPP values in barren
or sparsely covered areas were much smaller
(14.3 gCm�2 yr�1).
2.
 NPP by climate zone per unit area: The simulated NPP
values varied with climate zones, because vegetation
type and vegetation density are closely related to
climate. Averaged for China, the dependence is as
follows: tropical forests (648.5gCm�2 yr�1)4subtropical
forests (637.0gCm�2 yr�1)4temperate forests (436.3gC
m�2 yr�1)4warm temperate forests (407.4gCm�2 yr�1)4
cold temperate forests (315.2gCm�2 yr�1).

3.4. Temporal pattern of China’s terrestrial NPP

The temporal pattern of NPP is evident in the seasonal
variation, especially monthly and ten-day NPP distributions.
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Fig. 7. Gross primary productivity (GPP) map of China in 2001.

Fig. 8. Autotrophic respiration map of China in 2001.
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The monthly NPP distributions in China in 2001 are
illustrated in Fig. 9. Modeled results show that the largest
NPP occurred between April and October, and especially
May to September in 2001. Because of the various climatic
zones and vegetation distributions, the NPP temporal
patterns varied greatly on a regional basis, from east to
west as well as from north to south. The positive NPP
values were found during spring, summer and autumn.
In some areas, NPP appeared to be slightly negative in the
first and last 3 months of the year, indicating that the
autotrophic respiration exceeded GPP during these peri-
ods. Fig. 10 shows the seasonal variation of average NPP
in 10-day intervals in 2001, with a bimodal pattern because
of the contribution of double cropping areas as well as mid-
summer droughts in some cases. The seasonal distribution
patterns also differed significantly among land cover types.
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3.5. Sensitivity analysis

Although the BEPS model successfully captured major
characteristics of the NPP distribution across China, there
are uncertainties arising from various sources. Since the
simulated NPP depended greatly on the quality of input
Table 7

Area, average NPP, and annual NPP of different land cover type

Land cover type Area (km2) Avg. NPP

(gCm�2 yr�1)

Total NPP

(106 tC)

Forest land 1,672,625 551.7 922

Needle-leaf 475,331 456.8 215

Deciduous 123,626 421.9 52

Evergreen 351,705 469 165

Broad-leaf 670,393 613.1 410

Deciduous 338,443 499.1 169

Evergreen 173,415 740.1 127

Mixed 158,535 718.5 114

Mixed 526,901 559.5 295

Shrub land 617,514 363.1 224

Deciduous 337,019 252.8 85

Evergreen 280,495 495.5 139

Grass land 2,915,546 122.6 357

Crop land 1,825,517 341.9 624

Dry-land 1,382,429 295.6 409

Paddy 443,088 421.9 215

Mosaic 195,846 356.1 70

Forest/grass 156,845 336.2 53

Crop/natural

plant

39,001 436.2 17

Barren 2,044,530 14.3 26

Water 108,356 — —

Snow and Ice 67,199 — —

Urban and built-

up

55,719 — —

Other 87,008 — —

Total 9,589,860 235.2 2235

Fig. 9. Monthly variation o
data, deficiencies in input data will affect the accuracy of
the NPP results. Using sensitivity tests, the influence of
uncertainties in the input variables on NPP were identified
(Table 8); in each test, one variable was changed while all
other variables were kept unchanged. It is evident that the
accuracy of LAI has a considerable impact on NPP
estimation. On the other hand, the impact of meteorolo-
gical variables varies depending on the region, season and
other conditions.
3.6. Limitations and further work

There are two major limitations of the NPP results
presented here in addition to input data limitations. First,
the Farquhar’s leaf-level photosynthesis model is applied to
the canopy in conjunction with improved spatial and
temporal scaling schemes. However the model is not
adequate for C4 plants, which include some grasses and
crops. Second, management effects on plant growth such as
f NPP in China, 2001.
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Fig. 10. Seasonal variation of net primary productivity (NPP) in China’s

terrestrial ecosystems in 2001 (Unit: gCm�2 in 10 days).
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Table 8

Sensitivity analysis on input data and parameters in the model

Variable Test range Effect on National NPP (%)

High Low High Low

AWC 20mm 20mm 2.856 �2.299

LAI 20% 20% 8.445 �5.100

Precipitation 20% 20% 5.503 �9.043

Radiation 20% 20% �4.33 3.53

Temperature 1 1C 1 1C �3.673 2.147

VPD 20% 20% 5.124 �6.112

X. Feng et al. / Journal of Environmental Management 85 (2007) 563–573572
irrigation, insect control, and fertilizer application, have
not been considered in the modeling. These limitations can
be overcome, once more spatially explicit data become
available.
4. Conclusion

A model for simulating NPP of China’s terrestrial
ecosystems has been adapted, tested, and used to simulate
NPP distribution over China’s landmass at 1 km resolution
using input data derived from remote sensing and other
sources at 8-day intervals for the year 2001. The total NPP
and mean NPP of China’s landmass in 2001 were
2.235GtC and 235.2 gCm�2 yr�1, respectively. Through
model sensitivity tests, LAI was found to have the largest
effect on NPP estimation. Meteorological variables had
highly variable effects on NPP estimation depending on
region, season and vegetation type.
Acknowledgements

The authors are grateful to NASA for MODIS data and
NCEP/NCAR CDC for radiation data. This study is part
of a Sino-Canada cooperation project supported by the
Canadian International Development Agency and the
Chinese Academy of Sciences.
References

Bonan, G.B., 1993. Importance of leaf area index and forest type when

estimating photosynthesis in boreal forests. Remote Sensing of

Environment 43, 303–314.

Bonan, G.B., 1995. Land-atmosphere CO2 exchange simulated by a land

surface process model coupled to an atmospheric general circulation

model. Journal of Geographysical Research 100 (D2), 2817–2831.

Bunkei, M., Masayuki, T., 2002. Integrating remotely sensed data with an

ecosystem model to estimate net primary productivity in East Asia.

Remote Sensing of Environment 81, 58–66.

Chen, J.M., Liu, J., Cihlar, J., et al., 1999. Daily canopy photosynthesis

model through temporal and spatial scaling for remote sensing

alications. Ecological Modelling 124, 99–199.

Chen, J.M., Chen, W., Liu, J., Cihlar, J., 2000. Carbon budget of boreal

forests estimated from the change in disturbance, climate, nitrogen and
CO2: results for Canada in 1985–1996. Global Biogeochemical Cycle

14, 839–850.

Farquhar, G.D., Sharkey, T.D., 1982. Stomatal conductance and

photosynthesis. Annual Review of Plant Physiology 33, 317–345.

Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical

model of photosynthetic CO2 assimilation in leaves of C3 species.

Planta 149, 78–90.

Feng, X., 2000. Study on Dynamic Monitoring of Terrestrial Biomass

Using Remote Sensing in China Based on GIS, Master D. dissertation,

Shaanxi Normal University, Xi’an.

Feng, X., 2004. Simulating net primary productivity and evaportranspira-

tion of terrestrial ecosystems in China using a process model driven by

remote sensing. Ph.D. Disseration, Institue of geographical science and

Natural Resource Research of CAS, Beijing.

Feng, Z., Wang, X., Wu, G., 1999. Biomass and productivity offorest

ecosystems in China. Science Press, Beijing.

Foley, J.A., 1995. An equilibrium model of the terrestrial carbon budget.

Tellus 47B, 310–319.

Fullen, M.A., Mitchell, D.J., 1994. Desertification and reclamation in

northcentral China. AMBIO 23, 131–135.

Hou, X.Y., 1983. Vegetation of China with reference to its geographical

distribution. Annals of the Missouri Botanical Garden 70,

508–548.

Houghton, R.A., Hackler, J.L., 2003. Sources and sinks of carbon from

land-use change in China. Global Biogeochemical Cycles 17 (2),

1034.

Hunt, J.E.R., Piper, S.C., Nemani, R., et al., 1996. Global net carbon

exchange and intra-annual atmospheric CO2 concentrations predicted

by and ecosystem process model and three-dimensional atmospheric

transport model. Global Biogeochemical Cycles 10, 431–456.

Hutchinson, M.F., 1991. The alication of thin-plate smoothing splines to

continent-wide data assimilation. In: Jasper, J.D. (Ed.), Data

assimilation systems. BMRC Res. Report No. 27, Bureau of

Meteorology, Molbourne, pp. 104–113.

Hutchinson, M.F., 1995. Interpolating mean rainfall using thin plate

smoothing splines. International Journal of GIS 9, 305–403.

Hutchinson, M.F., 1998. Interpolation of rainfall data with thin plate

smoothing splines—I: two dimensional smoothing of data with short

range correlation. Journal of Geographic Information and Decision

Analysis 2, 152–167.

Hutchinson, M.F., 2002. ANUSPLIN Version 4.2 User Guide.

Jong, R.De., Shields, J.A., Sly, W.K., 1984. Estimated soil water reserves

applicable to a wheat-fallow rotation for generalized soil areas mapped

in southern Saskatchewan. Canadian Journal of Soil Science 64,

667–680.

Kimball, J.S., Thornton, P.E., White, M.A., et al., 1997. Simulation forest

productivity and surface-atmosphere carbon exchange in the BOREAS

study region. Tree Physiology 17, 589–599.

Lieth, H., Whittaker, R.H. (Eds.), 1975. Primary Productivity of the

Biosphere. Speinger, New York.

Liu, J., Chen, J.M., Cihlar, J., Park, W.M., 1997. A process-based boreal

ecosystem productivity simulator using remote sensing inputs. Remote

Sensing of Environment 62, 158–175.

Liu, J., Chen, J.M., Cihlar, et al., 1999. Net primary productivity

distribution in the BOREAS region from a process model using

satellite and surface data. Journal of Geophysical Research 104 (22),

27735–27754.

Liu, J., Chen, J.M., Cihlar, J., 2003. Mapping evapotranspiration based

on remote sensing: an application to canada’s landmass. Water

Resources Research 39, 1189–1200.

Liu, R., Chen, J.M., Liu, J., Deng, F., Sun, R. Application of a new leaf

area index algorithm to China’s landmass using MODIS data for

carbon cycle research. Journal of Environmental Management (this

issue).

Luo, T., 1996. Patterns of net primary productivity for Chinese

majorforest types and its mathematical models. Ph.D. Dissertation.

Commission for Instegrated Survey of Natural Resources, Chinese

Academy of Sciences.



ARTICLE IN PRESS
X. Feng et al. / Journal of Environmental Management 85 (2007) 563–573 573
Menzies, N.K., 1996. Forestry, in science and civilization in China. In:

Needham, J. (Ed.), Biology and Biological Technology, vol. 6.

Cambridge University Press, New York, pp. 547–565.

Potter, C.S., Randerson, J.T., et al., 1993. Terrestrial ecosystem

production: a process model based global satellite and surface data.

Global Biogeochemistry Cycles 7, 811–841.

Price, D.T., McKenney, D.W., Nalderc, I.A., et al., 2000. A comparison of

two statistical methods for spatial interpolation of Canadian Monthly

Mean Climate Data Agricultural and Forest Meteorology. Agri-

cultural and Forest Meteorology 101, 81–94.

Prince, S.D., Goward, S.N., 1995. Global primary production: a remote

sensing approach. Journal of Biogeography 22, 815–835.
Ruimy, A., Saugier, B., Dedieu, G., 1999. Methodology for the estimation

of terrestrial net primary production from remotely sensed data.

Journal of Geophysics Research 99D3, 5263–5383.

Running, S.W., Nemani, R.R., Peterson, D.L., et al., 1989. Mapping

regional forest evapotranspiration and photosynthesis by coupling

satellite data with ecosystem simulation. Ecology 70, 1090–1101.

Sellers, P.J., Randall, D.A., Collatz, G.J., et al., 1996. A revised land

surface parameterization (SiB2) for atmospheric GCMs. Part I: model

formulation. Journal of Climate 9, 676–705.

Zhou, W., Liu, G., Pan, J., Feng, X., 2005. Distribution of available

soil water capacity in China. Journal of Geographical Science 15,

3–12.


	Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing
	Introduction
	Model and data description
	Description of the model
	Spatially explicit input data
	LAI data
	Land cover data
	Soil data
	Meteorological data
	Forest biomass data


	Results and discussion
	Validation of the NPP map
	Annual NPP
	Spatial pattern of China’s terrestrial NPP
	Temporal pattern of China’s terrestrial NPP
	Sensitivity analysis
	Limitations and further work

	Conclusion
	Acknowledgements
	References


