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Abstract. A new procedure for digital image classi® cation is described. The
procedure, labelled Classi ® cation by Progressive Generalization (CPG), was
developed to avoid drawbacks associated with most supervised and unsupervised
classi® cations. Using lessons from visual image interpretation and map making,
non-recursive CPG aims to identify all signi® cant spectral clusters within the
scene to be classi® ed. The basic principles are: (i ) initial data compression using
spectral and spatial techniques; ( ii ) identi® cation of all potentially signi® cant
spectral clusters in the scene to be classi® ed; ( iii ) minimum distance classi® cation;
and (iv) the use of spectral, spatial and large-scale pattern information in the
progressive merging of the increasingly dissimilar clusters. The procedure was
tested with high- (Landsat Thematic Mapper (TM)) and medium- (Advanced Very
High Resolution Radiometer (AVHRR) 1 km composites) resolution data. It was
found that the CPG yields classi® cation accuracies comparable to, or better than,
current unsupervised classi® cation methods, is less sensitive to control parameters
than a commonly used unsupervised classi® er, and works well with both TM and
AVHRR data. The CPG requires only three parameters to be speci® ed at the
outset, all specifying sizes of clusters that can be neglected at certain stages in the
process. Although the procedure can be run automatically until the desired
number of classes is reached, it has been designed to provide information to the
analyst at the last stage so that ® nal cluster merging decisions can be made with
the analyst’s input. It is concluded that the strategy on which the CPG is based
provides an e� ective approach to the classi® cation of remote sensing data. The
CPG also appears to have a considerable capacity for data compression.

1. Introduction

Image classi® cation, i.e. categorization of pixels based on their spectral (or other)
characteristics, is one of the fundamental analysis techniques for remotely sensed
data, with land cover mapping arguably being the most frequent application. Based
on the tradition of surveys and mapping by means of aerial photography, numerical
image classi® cation methods were developed when data became digital and calibrated
and as computer power increased. Currently used methods fall into two basic
categories, supervised and unsupervised (Duda and Hart 1973 ). Even recent classi-
® cation strategies such as evidential reasoning (Peddle 1993 ) and neural networks
(Benediktsson et al. 1990) are forms of supervised classi® cation, while classi® cation
trees (Hansen et al. 1996 ) represent an unsupervised classi® cation procedure.
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Supervised classi® cation assumes that the locations of some land cover classes/surface
conditions are accurately known so that they can be used to establish a pattern
through which other similar locations can be found. In the case of unsupervised
classi® cation, no knowledge of surface conditions is assumed (apart from the statist-
ical characteristics, such as the probability distributions, and not in all cases).
Unsupervised classi® cation algorithms attempt to identify the ǹatural’ groupings in
the data, under the constraints of the classi® cation process speci® ed by the analyst.

If enough is known about the surface, supervised classi® cation is likely to be the
tool of choice because it permits e� ective exploitation of the data content.
Unfortunately, ènough’ may be too demanding because the surface information
must be su� cient to decide a priori which parts of the spectral content are signi® cant
and which should be ignored. For example, there may be spectral variations within
cover type, not all of which may be known in advance. Although for limited areas
it is possible to have su� cient knowledge of ground conditions to make such
decisions, this becomes increasingly more di� cult over larger areas (e.g. 100 km2 )
because of the cost of ® eld data collection and other reasons. Furthermore, the
spectral characteristics of a cover type are likely to change with distance, as many
signature extension studies have concluded in the past. Given the current interest in
land cover classi® cation over large areas (e.g. Townshend et al. 1994) the drawbacks
of supervised classi® cation are evident.

Since unsupervised classi® cation aims to identify all important spectral clusters
without necessarily knowing at the outset which among them are thematically
signi® cant, this classi® cation procedure has an inherent advantage over supervised
classi® cationÐ that is, one need not specify a priori the classes and their spectral
expression. Another important feature is operator independence. Given that the same
result can be obtained for the same data set by various analysts or that consistent
results can be obtained by one analyst over di� erent areas, this method has inherent
advantage for scienti® c studies encompassing large areas and/or periods of time.
However, unsupervised classi® cation also has disadvantages. Since it strives for an
overall optimum spanning of the entire data set it may miss speci® c detailed, but
relevant, information. Such loss would not occur in supervised classi® cation once
the analyst knows of the existence of the classes of interest, however small they
may be.

Another important disadvantage of unsupervised classi® cation is the dependence
of the result on the parameters guiding the classi® cation process. For example,
Bryant (1978) reviewed the numerous choices an analyst must make in using unsuper-
vised classi® cation, pointing out the need to optimize the parameters for a given
data set through trials. The limitations of clustering methods have been well recog-
nized (Ball and Hall 1965, Duda and Hart 1973, VanderZee and Ehrlich 1995). In
fact, by a choice of the clustering parameters it may be possible to produce various
numbers of clusters for the same data set, ranging from one to the number of spectral
value combinations present in the input data. The spectral clusters should be themat-
ically most meaningful at some intermediate number which is almost always higher
than the number of desired thematic classes but is not known a priori.

An ideal classi® cation method should be: accurate; reproducible by others given
the same input data (failing of supervised classi® cation); robust (not sensitive to
small changes in the input data) yet able to exploit fully the information content of
the data; applicable uniformly over the whole domain of interest; and objective (not
dependent on the analyst’s decisions). This paper describes a new classi® cation
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procedure that aims to satisfy as many of these criteria as possible. The philosophy
behind the approach is outlined in the next section, followed by a description of the
steps in the classi® cation process. The performance of the new method is assessed
on various data sets and in comparison with a common unsupervised classi® cation
algorithm.

2. Principles

In examining the possible approaches to digital classi® cation it is instructive to
consider visual image interpretation, the most successful operational classi® cation
methodology to date. Starting with an image (often enhanced to make the perception
of colour di� erences easy), an interpreter uses spectral (colour) and spatial (texture,
pattern, shape, context and other) clues to identify dominant classes in the image
(Rabben 1960). He (or she) aims to detect the largest classes based on the area
represented, and the classi® cation legend will thus have no more than several dozen
classes. In other words, larger classes are `more important’. He then identi® es other
classes to make sure all the relevant conditions are captured by the analysis.
Furthermore, the ® nal map will not contain very small individual areas because of
the accepted practice, both in ® eld mapping and in cartography, of a minimum
mapping unit or equivalently, the largest contiguous area of any class to be ignored
as a separate spatial entity in the ® nal product. The strategies of ® nding the largest
clusters, using spectral as well as spatial measures, and merging classes which are
spatially highly interspersed can be usefully employed in digital analysis as well.

It should be noted that a human interpreter does not use the spectral information
as thoroughly as a computer. While humans perceive colour di� erences very well
they can distinguish only a relatively limited number of radiometric levels (e.g. Cihlar
and Protz 1972). The success of the visual image interpretation is primarily due to
the importance of spatial clues such as shape, texture, pattern, shadows, height,
context, etc. However, these spatial clues have di� erent meanings and importance as
the sensor resolution and area coverage change. For example, coarse resolution data
imaging large areas have texture and some broad pattern information but beyond
that the major clues are spectroradiometric. In such cases, digital classi® cation should
outperform visual analysis, especially if texture and pattern can be quanti® ed through
computer calculations.

One example of a successful combination of visual and digital analysis has been
produced in recent years (Beaubien 1994, Beaubien et al. 1997, 1998 ). The essence
of Beaubien’s methodology is visual identi® cation of important colours (regarded as
t̀raining areas’) in an image which had been computer enhanced in a standardized
manner. This identi® cation is made more reproducible and consistent by a customized
transformation in which speci® c colours represent distinct, known cover types (typic-
ally needleleaf and broadleaf forest and bare ground ). The second mechanism for
increasing the consistency of the choice of training areas is the simpli® cation of the
spectral space: the original spectral channels are quantized to retain a limited number
of possible colour combinations, typically < 1024, without losing signi® cant informa-
tion (as judged by visual examination of the original and quantized data). Pixels
representative of individual colours/training areas are selected in the quantized image
based on visual analysis and the analyst’s judgement; one or more pixels (adjacent
or not) may be selected to represent a colour/create a training area. The quantized
image is thus treated as a classi® cation with a very large number of classes and the
subsequent steps are designed to identify the key spectral classes which account for
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most of the imaged area. This methodology was proven to be signi® cantly more
powerful than a standard supervised classi® cation because it allows the selection of
all the training areas which are important for the scene of interest and the objectives
of the classi® cation (Beaubien et al. 1997, 1998 ). The principal disadvantage of this
methodology is operator dependence, albeit more limited that in a supervised classi-
® cation, in the selection of areas for radiometric normalization and in selecting pixels
to represent individual colours/training areas.

The crux of the spectral classi® cation problem is to determine the location and
size of the clusters in multi-dimensional spectral space, or for simplicity their means
and standard deviations in each of the input data channels. This is the major challenge
in using the unsupervised classi® cation method which would otherwise be the preferred
method for applications where ground data are unavailable or limited (except for cases
where subtle distinctions are important). The method development discussed below
thus includes an objective way of identifying meaningful and spectrally representative
cluster centroids, in both number and location in the spectral space.

The procedure developed in this study is based on the following assumptions.

1. In classifying an image, one should consider all the spectral combinations in
the input data ( c̀lusters’) as entities and, using appropriate criteria, combine
these to ® t the desired classi® cation legend.

2. Larger spectral clusters in the data set are more important. Small clusters do
not `matter’, i.e. they will not be retained in the ® nal classi® cation, regardless
of their spectral uniqueness.

3. Histogram quantization helps identify signi® cant spectral clusters/regions in
the data set without loss of signi® cant information.

4. Adequate seed clusters can be established by combining small, pure, spectrally
adjacent clusters (i.e. by spectrally broadening the cluster in the spectral space).

5. Two clusters should be combined if they are close together spatially and/or
spectrally; which of these measures are used and how should depend on the
number of clusters remaining.

6. By allowing only cluster merging and by limiting the number of clusters
through the minimum size of cluster that can be ignored (smallest number of
pixels) one avoids important disadvantages of the unsupervised classi® cation,
i.e. how many clusters should be retained and when to split or to merge clusters.

7. Since classi® cation is a human construct it is not generally feasible to devise
a fully automated computer algorithm and the process must allow for human
judgement to in¯ uence/con® rm the ® nal results.

The procedure developed on the basis of these assumptions has been dubbed
Classi® cation by Progressive Generalization, or CPG. Using a combination of image
enhancement, unsupervised classi® cation and visual analysis, CPG aims to identify
all potentially signi® cant spectral clusters in the data and to group these until a
reasonable number of thematically meaningful clusters is obtained for labelling. The
new procedure has the following features.

(i ) Use of histogram quantization to reduce the maximum possible number of
spectral clusters.

( ii ) Use of spatial ® ltering to identify spatially dominant spectral clusters.
(iii ) Use of the largest pure clusters (i.e. one level in each of the quantized input

channels) as seed clusters.
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(iv) Use of progressive decrease of radiometric resolution to merge (thus redu-
cing the number of ) initially small clusters to be used as additional seed
clusters.

(v) Use of the minimum pixel-to-cluster centroid distance to assign pixels
to clusters.

(vi ) Use of a combination of spectral and spatial cluster measures to aid cluster
merging decisions.

(vii ) No interference with the cluster merging process until the large-scale pat-
terns become important (the penultimate step, i.e. the procedure is auto-
matic until that step).

(viii ) No need for ground information until the ® nal step ( labelling of clusters).

3. CPG procedure

In principle, the CPG procedure is very simple: ® nd means for representative
spectral clusters in the data set, assign every pixel to a cluster and combine similar
clusters until the remaining clusters can be assigned thematic labels.

The procedure consists of the following steps ( ® gure 1).

Figure 1. Flowchart of the CPG steps.
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Step 1: Contrast stretch. The range of values in each input channel is stretched to
encompass the entire range of values permissible (typically 8 bits).

Step 2: Quantization. This step reduces the number of grey levels in each input
channel. The number of retained grey levels is as low as possible without losing
signi® cant information. In practice, this can be derived by decreasing the number of
levels until a visually observable di� erence appears in a side-by-side comparison
with the original, contrast-stretched data. For example, we have found that for boreal
environments, ten or eleven levels are su� cient to capture the information contained
in Landsat Thematic Mapper (TM) data (Beaubien et al. 1997, 1998 ). As a safety
margin, a larger number of levels can be used than is implied by the visual assessment.
The number of levels varies with the spectral band and scene type, less with sensor
type. After the quantization, each unique combination of the spectral values repres-
ents a pure spectral cluster with only one possible digital level in each input channel.

Step 3: Spatial image ® ltering. The purpose of this step is to identify spatially
dominant spectral clusters in the scene, based on the number as well as the spatial
arrangement of the pixels from various clusters. In principle, a smaller cluster could
be distributed in such a way that it becomes spatially dominant over a larger but
more compact one. Mode ® ltering is used, typically within a 5 Ö 5 or 7 Ö 7 window.
This ® lter ® nds the most abundant cluster within the window and places it in the
centre pixel.

Step 4: Identi® cation of large seed clusters. Large clusters are considered to be all
those containing more than a pre-de® ned minimum fraction of all pixels (MinLSC=
Minimum Large Seed Cluster) to be classi® ed. For example, 0 1́% can be used as a
conservative value, assuming that no single spectral value could form the basis of a
thematic class unless it had at least 0 0́01 pixels to start with. MinLSC should be
smaller than the minimum mapping unit. After Step 3, the size of all clusters is
determined. They are then sorted in decreasing size and the large seed clusters are
identi® ed as those larger than MinLSC; their number is not otherwise restricted.

Step 5: Merge medium-sized pure clusters. It is possible that the large seed clusters
may not contain all the thematically relevant classes (or subclasses). For example,
when many di� erent values of pixels (and therefore many clusters of similar size) are
present the large clusters might represent only a portion of the spectral space. For
this reason, CPG provides for the creation of additional seed clusters, using medium-
sized pure clusters as input. Medium-sized clusters are those containing between
MaxNC and MinLSC pixels, where MaxNC (=Maximum Neglected Cluster) is the
number of pixels in the largest cluster to be neglected in identifying seed clusters
(e.g. 0 0́02% as a conservative value). However, the medium-sized clusters are com-
bined before being considered for candidate seed clusters, i.e. their radiometric
resolution is further reduced. The rule is simple: the smallest remaining cluster above
MaxNC is added to the closest and largest medium-sized medium cluster which
di� ers by only one quantized level in one spectral dimension. Since this operation
is performed iteratively and sequentially for each spectral dimension, the pixels
eventually combined in such a seed cluster could di� er by as many quantized levels
as twice the number of input channels. Note that the order of spectral dimensions
in the merging operation matters, so the sequence should start with the channel that,
overall, o� ers the least amount of important information. All pixels merged into one
seed cluster are given the same label. Once this process is completed, only combined
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clusters which contain more than MinLSC pixels are selected to be seed clusters.
Pure clusters smaller than MaxNC are ignored in constructing the seed clusters.

Steps 1± 5 yield a set of seed clusters with the quantization and ® ltering (Steps
2, 3) used as aids in this process. Steps 6± 10 are based on the original, full-
resolution data.

Step 6: Classi® cation. Using seed clusters from Steps 4 and 5 above, the means are
computed for each cluster using the original input channels from Step 1. All pixels
in the image are assigned to one of the seed clusters based on the minimum Euclidean
distance. This algorithm is used because of its conceptual simplicity and computa-
tional speed. Note that the number of resulting clusters could be less than the number
of seed clusters, depending on the distribution of the large and medium seed clusters
in the spectral space.

Step 7: Merging clusters using spectral similarity. The spectral similarity SS ij is
computed between all pairwise combinations of the clusters from Step 6. SS ij is
de® ned as

SS ij=
S ij + S ji

SD ij
(1 )

S ij=
�

n

k=1
(cosijk S ik )

�
n

k=1
cosijk

(2 )

cosijk=
|M ik Õ M jk |

SD ij
(3 )

SD ij=A �
n

k=1
(M ik Õ M jk)

2B1/2

(4 )

where i Þ j and M =arithmetic cluster mean, S ij= standard deviation of cluster i in
the direction of the cluster j centroid, S ik= standard deviation of cluster i in spectral
channel k, SD = spectral distance between clusters, cos=cosine of the angle between
clusters, i, j =cluster number, k = spectral channel, and n = total number of spectral
channels.

SS ij is thus computed as the sum of the standard deviations of the two clusters
i, j along the vector (of length SD ij ) connecting the centroids of the two clusters
( ® gure 2). It is a measure of the spectral proximity of the two clusters, both in terms
of their mean values and at the margins. Equations (1)± (4 ) are based on the simple
concept that clusters which overlap in the spectral space should be combined ® rst,
before non-overlapping clusters are considered for merging.

All the clusters from Step 6 are sorted according to decreasing size. Starting with
the smallest cluster i, the cluster j which has the lowest SD ij is found. Next, all
clusters r with SD ir < 1´1SD ij are found. Cluster i is then identi® ed to be merged with
cluster p provided that SS ip>SS iq for p, q×r. That is, if several clusters have a similar
distance in the multispectral space to i, the one spectrally closest overall is merged
in preference to those that are more distant. Note that the size of the larger cluster
is not changed at this stage. This process continues until the smallest remaining
cluster contains MinCM pixels, where MinCM is the Minimum Cluster size for
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Figure 2. The parameters considered in Step 7 (automatic merging of clusters) . The initial
choice is based on SD. If several clusters have similar SD values, the standard deviation
S of the smaller cluster in the direction of the larger one (and vice versa) are also
considered. See text for detailed explanation.

Merging. Then the identi® ed candidates are merged and assigned to the identi® ed
clusters p (or j ) .

Step 8: Identifying candidates for merging using spectral and spatial similarity. The
means, standard deviations, SD ij and SS ij are recomputed for clusters resulting from
Step 7. In addition, spatial adjacency SA ij is computed as a measure of the intermixing
of pixels from clusters i and j. The assumption is made that two clusters that are
mutually highly interspersed should be combined in preference to clusters that are
spatially distinct or clumped. The spatial adjacency is de® ned as

SA ij=
NA ij

Min(NPi, NPj )
(5 )

where NA ij=number of cases where pairs of pixels from clusters i and j are adjacent
(including diagonals) in a 3 Ö 3 window and NP =number of pixels in the cluster.

NA ij is computed by counting, for each pixel in cluster i, the number of instances
when a pixel from cluster j is adjacent ( located within a 3 Ö 3 window centred on
the pixel i ) . The denominator represents the smaller cluster because the goal of this
step is to facilitate merging smaller clusters with the larger ones.

Step 9: Merge clusters using spectral, spatial and pattern similarity. The values of
SD ij and SA ij from Step 8, together with the cluster size, provide the information
needed to decide on further cluster merging. Although such merging could also be
accomplished by automated decision rules, such an approach might produce undesir-
able results. This is because the distinctions retained in the ® nal classi® cation do not
necessarily correspond to the magnitude of the spectral and spatial di� erences among
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the clusters. Therefore, the computer only suggests the clusters to be merged and
the decision is left to the analyst as follows.

For clusters from Step 8 the cluster pair i, j which has the lowest SD ij is found.
Next, all clusters r with SD ir < 1´1SD ij are found. Cluster i is then identi® ed to be
merged with cluster p provided that SA ip > SA iq for p, q×r. That is, if several clusters
are spectrally similar to i, the one closest spatially overall is merged in preference to
those that are spatially separate. The identities of clusters i and j (or p) , their sizes,
SD ij , and SA ij are provided as inputs to the analyst. This search for candidate pairs
for merging is repeated as long as desired, nominally until the number of remaining
clusters (not identi® ed for further merging) equals the number of classes in the
classi® cation legend.

The pairs of clusters suggested for merging are then reviewed on the computer
screen after displaying them in contrasting colours. Besides SD and SA values, the
similarity of patterns of the two clusters over the entire classi® ed area is considered.
The proposed merge is accepted only if, in the judgement of the analyst, the two
patterns are very similar, in both spatial extent and in local pixel density variations.
The rationale is that if the two clusters follow each other that closely, they should
be combined, even if they are less spectrally similar than clusters combined earlier
(Step 7). No knowledge of ground conditions is required for this decision because
the decision is based on a visual assessment of the similarity between two patterns.
However, it is possible that the analyst may have other independent information
which may lead him to override the proposed merging. The primary reason for using
visual assessment is that a comparison of the two patterns over larger distances in
the image is not feasible with current computer technology, especially for areas of
some size and an appreciable number of clusters.

Step 10: Labelling. Knowledge of surface conditions is required to put thematic class
labels on the clusters from Step 9. This is no di� erent from using other unsupervised
classi® cation methods. Means and standard deviations computed for the ® nal clusters
can e� ectively aid the labelling process, provided spectral characteristics of various
expected classes are known. Another very e� ective aid consists of displaying the
resulting clusters using their mean values in selected spectral channels. The selection
is based on the ease of visual interpretation or the familiarity of the analyst with
that particular presentation of the data.

4. CPG evaluation

We have evaluated the performance of the CPG methodology in several ways:

1. assessment of the Advanced Very High Resolution Radiometer (AVHRR)
classi® cation accuracy, using classi® cation derived from Landsat Thematic
Mapper (TM) data as the surface t̀ruth’;

2. assessment of the sensitivity of the classi® cation results to the control para-
meters, including a comparison with the ISOCLASS method;

3. applicability to data from various sources, by using AVHRR and TM input
data.

In all the CPG tests below which are based on AVHRR data we used four channels
(AVHRR channels 1 (C1) and 2 (C2), normalized di� erence vegetation index NDVI
(Nm ) and area under the NDVI curve (Na )) representing the growing season means
(the ® rst three parameters) or totals (Na ). These measures are similar to those used
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by DeFries et al. (1995) but di� er in the de® nitions, mainly to avoid the periods
with snow on the ground. The data were based on 10-day composites assembled
over the 1993 growing season. AVHRR channels 1 and 2 were corrected for atmo-
spheric and bidirectional e� ects, and the NDVI was corrected for solar zenith angle
e� ects. More detail on these corrections is provided by Cihlar et al. (1997 b) and
Cihlar et al. (1997 c). The length of growing season was established using AVHRR
channel 4 data corrected for atmospheric and surface emissivity e� ects, as the period
during which surface temperature was above 10 ß C. Since a water mask was used to
eliminate water bodies from the AVHRR classi® cation process (the original composite
images contain many cloud-contaminated pixels over water), only land pixels were
used in the tests involving AVHRR data.

4.1. Classi® cation accuracy
The assessment of the accuracy of the CPG was performed using the 1993

AVHRR data over Ontario and Quebec (NW corner at Õ 77 ß 58 ¾ 57 5́ ² , 50 ß 57 ¾ 31 2́ ² ;
SE corner at Õ 73 ß 29 ¾ 24 3́ ² , 45 ß 12 ¾ 34 3́ ² ) presented in the Lambert Conformal Conic
projection. The control parameters used were MinLSC=0 1́%, MaxNC=0 0́02%,
MinCM=0 5́%. This procedure resulted in 81 spectral clusters.

The accuracy assessment was carried out using TM-derived classi® cation over
the Matagami, Quebec. This classi® cation was prepared using an image from
20 August 1991 (Royer et al. 1994 ); no signi® cant changes in land cover occurred
in the area between 1991 and 1993. Supervised classi® cation was used, together with
substantial site information obtained from air photographs and limited ® eld observa-
tions (including aircraft over¯ ights). The procedure has been used extensively in
similar environments in di� erent parts of Quebec and has been shown to produce
accurate results from the thematic classes employed (Beaubien 1994 ).

The AVHRR and TM data sets were co-registered as follows. Using ground
control points, the classi® ed TM image was registered to the same map projection
as the AVHRR. Next, the AVHRR classi® cation was re-sampled to the TM pixel
spacing using nearest neighbour re-sampling algorithm. The 81 AVHRR clusters
were labelled on the basis of the highest correspondence with TM-derived classes.
This approach avoids the potential optimistic bias in accuracy assessment (Hammond
and Verbyla 1996 ), although conservative bias underestimating the actual accuracy
(e.g. due to image mis-registration and errors in reference data (Verbyla and
Hammond 1995)) is di� cult to avoid because it is embedded in the TM classi® cation.
Cihlar et al. (1996) provide more information on the classi® ed TM data set used.

Table 1 shows the confusion matrix for the two data sets for all land pixels. It
shows that only the most ubiquitous coniferous class was estimated with good
accuracy. The accuracy for the remaining classes was quite poor, and the diagonal
accuracy DiAc (see equation (7)) was also low, with only 51% of pixels correctly
identi® ed relative to the TM classi® cation.

AVHRR classi® cation accuracy is in¯ uenced by the mixed land cover in most
AVHRR pixels (Penner 1995, Cihlar et al. 1996). The accuracy tests were thus
repeated by considering only AVHRR pixels with more than a threshold percentage
of TM pixels from one cover type. As the AVHRR pixels become more homogeneous
the classi® cation accuracy increases correspondingly (table 2). Cihlar et al. (1997 a)
obtained similar results with CPG for the southern and northern BOREAS study
areas, with diagonal accuracies of 84± 89% for pixel purities above 80%.

Tables 1 and 2 show that if the AVHRR pixels are relatively homogeneous the
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Table 1. Confusion matrix for AVHRR (rows) and TM (columns) for the Matagami test
site*.

TM TM TM TM TM TM TM

AVHRR Conifers 1 Decid. 2 Mixed 3 Disturb. 4 Fen 5 Water 6 Regen. 7
1 83´6 50 3́ 60 7́ 17 0́ 47 4́ 71 6́ 24 5́
2 0 0 0 0 0 0 0
3 1 4́ 3 9́ 7´9 0 5́ 1 2́ 0 9́ 2 1́
4 0 1́ 0 0́ 0 1́ 4´6 0 2́ 0 0́ 0 8́
5 6 7́ 4 0́ 4 1́ 35 9́ 30´3 6 6́ 13 6́
6 0 1́ 0 2́ 0 1́ 0 0́ 0 1́ 10´3 0 0́
7 8 2́ 41 6́ 27 1́ 42 0́ 20 8́ 10 6́ 59´0

* Note: the classi® cation accuracies were computed using equations (6 ) and (7). The
original 20 classes were grouped into seven: 1=coniferous (including density classes >60%,
40± 60%, 25± 40%); 2=deciduous (density >40%, with or without coniferous understorey) ;
3=mixed (>55% coniferous, >55% deciduous) ; 4=disturbed (recent cuts, recent cuts more
or less covered by vegetation) ; 5= fen (wetland with 10± 25% conifers, wetland with <10%
conifers, grass-dominated wetland); 6=water (note that pixel assignment to water in the
AVHRR classi® cation was based on the U.S. Department of Commerce (1977) database); 7=
regeneration (various stages after disturbances) .

Table 2. CPG accuracy at various pixel purity thresholds for the Matagami test site. DiAc

and Khat were computed using equations (6 ) ± (8 ).

Purity threshold (%) DiAc (%) Khat (unitless)

None 51 1́ 0 3́04
50 56 8́ 0 3́71
60 63 9́ 0 4́56
80 80 1́ 0 7́04

CPG accuracy can be high. The values in tables 1 and 2 are also similar to those
achieved for several areas in Canada using AVHRR data and the unsupervised
classi® er ISOCLASS (Cihlar et al. 1996).

4.2. Sensitivity to control parameters
Ideally, the ® nal results should be completely independent of the parameters

guiding the classi® cation process. The sensitivity of the results to the (usually arbitrar-
ily chosen) control parameter is of critical importance. The sensitivity can be low if
the classes are spectrally distinct but in practice many classes overlap and the results
can thus depend strongly on the controlling parameters. The requirement is then
that these parameters be few and their impact on the ® nal classi® cation results be
minimal.

To perform an assessment of the CPG sensitivity we used AVHRR data for an
area in Ontario and Quebec (NW corner at Õ 77 ß 58 ¾ 57 5́ ² , 50 ß 57 ¾ 31 2́ ² and SE
corner at Õ 73 ß 29 ¾ 24 3́ ² , 45 ß 12 ¾ 34 3́ ² ) . The CPG method was applied with various
combinations of the control parameters (Steps 4, 5, 7). The accuracy tests used CPG
clusters after Step 7; this was done to eliminate the analyst’s in¯ uence which enters
in Step 9. In all the tests, the spectral clusters resulting from each classi® cation were
labelled as belonging to a land cover class speci® ed in a reference classi® cation. The
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labelling was based on the largest overlap between the CPG cluster and the land
cover class in the reference classi® cation.

An independent classi® cation was used to test the sensitivity of the CPG to
control parameters and to allow comparisons of CPG (and of ISOCLASS, as
discussed below). The reference classi® cation was produced from a similar AVHRR
data set (1993 growing season; channels 1, 2, NDVI for Canada). This classi® cation
was prepared using an interactive procedure named the Enhancement-Classi® cation
Method (ECM, Beaubien 1994, Beaubien et al. 1997, 1998) and labelled based on a
visual comparison with about 100 Landsat scenes. When tested against Landsat
classi® cation the absolute accuracy of the ECM classi® cation was found similar to
that of the CPG (Beaubien et al. 1997). It should be noted that the absolute accuracy
of the reference classi® cation is less important since only relative changes are of
interest here. The accuracies were computed as follows:

DiAc (i, i ) =
100 �

q

i=j
P ( test) i

P (ECM ) i
(6 )

where P ( test) i is the number of 1 km pixels in the test classi® cation labelled as class
i ( i.e. column total ) in the CPG or ISOCLASS classi® cation, P (ECM ) i is the number
of 1 km pixels in the reference classi® cation labelled as class i, and j to q are the
spectral clusters in the test classi® cation labelled as class i.

DiAc thus measures the proportion of ground cover that was p̀ositively identi® ed’
as that cover in the test classi® cation, assuming that the reference classi® cation is
correct. The overall classi® cation accuracy for a given data set is then computed as

DiAc =
100 �

n

i=j
P (i, i )

NP
(7 )

where P (i, i ) is the diagonal entry in the confusion matrix (number of pixels) and NP

is the total number of pixels in the matrix. DiAc is thus the most stringent measure,
counting only positive matches as correctly classi® ed.

The Khat distance was also computed for each confusion matrix (Congalton
1991), as follows:

Khat =
N �

r

i=1
x ii Õ �

r

i=1
(x i x+i)

N
2 Õ �

r

i=1
(x i+ x+i)

(8 )

where x ii is the total number of pixels in row i, column i, N is the total number of
pixels, r is the number of rows (columns) and x i+ and x+i are row and column totals
respectively.

As seen from equation (8) Khat measures the dispersion outside of the diagonal
in the confusion matrix in relation to the concentration along the diagonal axis. For
a perfect classi® cation, Khat =1 0́.

Table 3 shows the results of the tests for various combinations of control para-
meters. CL COR is de® ned as the proportion of CPG clusters in which >67% of the
pixels corresponded to only one reference class. PICOR represents the percentage of
the pixels in CL COR clusters relative to all land pixels in the image. Considering
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Table 3. Sensitivity of the CPG to control parameters.

CPG test Parameters* DiAc (%) Khat CLCOR (%) PICOR (>67%)

1 0 1́/0 1́ 76 6́ 0 7́43 68 9́ 57 7́
2 0 0́5/0 1́ 78 9́ 0 7́68 75 2́ 64 2́
3 0 0́5/0 5́ 76 8́ 0 7́46 71 7́ 58 7́
4 0 1́/0 5́ 72 6́ 0 7́00 61 7́ 51 7́
5 0 2́/0 5́ 71 7́ 0 6́89 60 3́ 48 7́
6 0 4́/0 5́ 65 1́ 0 6́13 45 4́ 29 1́

* Parameters: values x/y refer to threshold values (in per cent of the number of land pixels)
of MinLSC used in Steps 4/5 and Step 7 of the CPG. MaxNC was 0 0́02% in all cases.
DiAc and Khat were computed using equations (6 ) ± (8 ).

CL COR indicates the proportion of CPG clusters in which >67% of the pixels corre-
sponded to only one reference cover type.

PICOR is the percentage of pixels in CL COR clusters relative to all land pixels.

the MinLSC=0 1́% combination as the baseline ( test 1), it is evident that changes
in control parameters had relatively small e� ect on the results. Changing the seed
cluster threshold (Steps 4, 5) by a factor of four (tests 2, 5, 6) changed the accuracy
by <5% absolute and that Khat by <0 0́8, and much smaller changes occurred for
a narrower range (tests 1, 2 and 4, 5). Changes in MaxNC had a minimal e� ect on
DiAc and Khat (compare tests 2 and 3). CL COR and PICOR generally mirrored
DiAc and Khat but were more pronounced. The proportion of well matched clusters
changed by up to 15 2́% and PICOR by up to 15 5́% due to variations in the seed
cluster thresholds. Step 7 threshold had somewhat stronger e� ect here as well, a
® vefold change leading to a change in CL COR (PICOR ) of 3 5́% (5 5́%). Considering
the extreme combinations (tests 2 versus 5), the parameters changed by a factor of
40 while the DiAc decreased by 17 5́%. Overall, it is evident that CPG is able to
tolerate an appreciable range of control variables.

The sensitivity of CPG was also assessed in comparison to that of ISOCLASS
(Tou and Gonzales 1974), a commonly used unsupervised classi® cation algorithm.
The same Ontario ± Quebec data as for the above CPG tests (table 1) were used.
ISOCLASS requires ® ve parameters to be speci® ed (Loveland et al. 1991), and only
some combinations were tested here (table 4). Tests 1 ± 4 are variations on the com-
bination employed by Cihlar et al. (1996), while test 5 is the combination used by

Table 4. Sensitivity of ISOCLASS to control parameters.

Larger PICOR

ISOCLASS DiAc (%) CL COR All CL COR (>67%)
test Parameters* Khat (%) (%) (%)

1 81/12/3 2́/4 5́/250 72 2́ 0 6́95 56 3́ 58 8́ 48 9́
2 81/12/1 6́/4 5́/250 72 2́ 0 6́95 54 3́ 59 3́ 48 9́
3 81/12/3 2́/2 3́/250 69 2́ 0 6́61 45 46 3́ 40 3́
4 40/12/3 2́/4 5́/250 60 9́ 0 6́53 40 45 32 5́
5 70/15/2 6́/3 5́/30 67 2́ 0 6́40 44 3́ 52 9́ 40 8́

* Values a/b/c/d/e represent: a=maximum number of clusters; b =maximum number of
iterations; c =cluster-combining distance; d = cluster splitting distance; e=minimum number
of pixels in a cluster.

Other measurements are as described in table 3.
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Loveland et al. (1991) for classifying NDVI monthly composites over North America.
An additional accuracy measure has been introduced to re¯ ect the fact that some
® nal clusters had very few pixels and were therefore clearly noise etc.; thus the
distinction between l̀arger CL COR ’ and àll CL COR ’ clusters. In all cases, the results
have been compared with the reference classi® cation, using the same approach as
for the CPG.

Results of the comparisons show that in most cases, the performance of
ISOCLASS was signi® cantly more sensitive to the degree of change of the control
parameters than the CPG. The results were not sensitive to changes in the ISOCLASS
cluster combining distance but responded substantially to reduced cluster splitting
distance (tests 1 versus 3 ). They were highly sensitive to the maximum number of
clusters (tests 1 versus 4) when all the accuracy measures decreased. Comparing the
various tests to test 1, it is evident that change in the control parameters by a factor
of two resulted in reducing the ISOCLASS accuracy by 0± 15 7́%, depending on the
parameter involved.

4.3. Robustness
The CPG was initially developed for large-area applications, with AVHRR data

as the primary data source. However, the principles should apply to other data as
well. A detailed assessment of the CPG performance should be carried out using the
reference data set with 100% accuracy which does not su� er from the mixed-pixels
problem in the way AVHRR data do. High-resolution satellite image data would
thus be appropriate for this purpose. Unfortunately most classi® cations of such data
are erroneous to various degrees, and cannot thus be used as a rigorous standard.
Consequently, we are left with an imperfect but plausible testÐ does the classi® ed
image retain most, or all, of the information visible in the input data?

A trial classi® cation was therefore carried out for TM data of part of the BOREAS
Northern Study Area (scene centre at Õ 99 ß 34 ¾ 8 8́ ² , 55 ß 53 ¾ 35 5́ ² with 58 5́ km in EW
and 49 5́ km in SN directions). TM channels 3, 4 and 5 were employed, and no
radiometric corrections were made to the data. As before, the procedure was carried
out automatically, with the following control variables: MinLSC=0 3́%, MaxNC=
0 0́02%. This reduced the 2679 clusters (after Step 2) to 71. The TM image was
re-created from the CPG classi® cation by replacing each of the 71 clusters with the
cluster mean in each spectral channel. The re-created three-channel image was then
visually compared with the original TM image (prior to quantization). Only one
substantial di� erence could be found between the two images, namely bright bare
rock and gravel road (covered with locally dug material ) were combined into one
cluster. Figure 3 shows a part of the two images in which a noticeable di� erence
occurred along the road. The small di� erence between the original and the classi® ed
TM data accompanied by a reduction of the number of clusters from 2679 to 71
shows that the CPG is an e� ective classi® cation procedure.

5. Discussion

5.1. Comparison with supervised and unsupervised classi ® cations
Compared to supervised classi® cation, the CPG has the advantages of an unsu-

pervised classi® cation, i.e. it does not require knowledge of surface conditions and
thematic classes involved until the labelling step (Step 10). This is important for
classi® cations over areas greater than the analyst’s personal knowledge encompasses.
Because of the potentially changing signatures with distance, the analyst would need
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(a) (b)

Figure 3. Comparison of the original and classi® ed TM data for part of the BOREAS
Northern Study Area west of Thompson, Manitoba, Canada. (a) Original TM image
( band 5=red, 4=green, 3=blue). (b) Classi ® ed image into 71 clusters, each cluster
displayed using mean values derived from the original image.

to know the distribution of all classes across most of the area of interest, at least as
samples for each class. When the area is su� ciently small, this knowledge can be
obtained with con® dence but the task becomes di� cult for larger (e.g. >100 km) or
unfamiliar areas, and impossible at the continental scale. Importantly, with a fairly
low sensitivity to only three control parameters, CPG is much less subject to the
analyst’s in¯ uence than supervised classi® cation.

In comparison to the various unsupervised classi® cation algorithms, CPG does
not require prior knowledge of the number of distinct spectral clusters (which is
typically higher than the number of desired thematic classes). This is a fundamental
advantage because the number of distinct clusters is very di� cult to know for a
speci® c data set and because classi® cation results are sensitive to it (table 4). When
clouds are present, some of the distinct clusters are mixtures of surface and cloud
signatures and the number of clusters may thus be highly variable, even for the same
area. The choice of the number of clusters for a particular unsupervised classi® cation
task thus becomes arbitrary, although statistically optimal numbers can be de® ned
through trial runs (e.g. Masselli et al. 1996). A high number of clusters is not
necessarily advantageous (Loveland 1996, personal communication) because the
smaller clusters may be thematically meaningless. CPG avoids these problems by
® nding the maximum number of natural clusters in the initial data set.

Since the CPG needs fewer control parameters than a typical unsupervised
classi® er, it introduces less analyst bias. On the other hand, it allows the analyst to
in¯ uence the classi® cation process in the last stage when small spectral or spatial
di� erences may be thematically signi® cant. A comparison with ISOCLASS (tables 3
and 4) shows the CPG accuracies to be higher and overall less sensitive to variations
in the control parameters, consistently with the above expectations. The various
tests, albeit limited, thus indicate the overall accuracies achieved are comparable or
superior to other present unsupervised classi® cation methods.

While unsupervised classi® ers typically employ only spectral information, CPG



J. Cihlar et al.2700

uses a combination of spectral and spatial measures. This is preferable because not
all the relevant information is in the spectral domain. It is also consistent with the
rich history of photointerpretation where spatial clues are very important (Rabben
1960). The same logic applies to involving the analyst in the last cluster merging
phase (Step 9). Strictly speaking, the results of Step 8 (suggested merging of clusters)
could be applied automatically. However, the present measures of spatial adjacency
are inadequate to capture the similarity of patterns at various spatial scales. The
spatial adjacency (equation (5)) quanti® es the relation only for the immediate neigh-
bourhood of the cluster. Although a larger window could be used, it would remain
a ® xed-size one while the di� erences in spatial patterns can occur at di� erent spatial
scales for various clusters. At present, the human eye± brain combination is most
e� cient at evaluating these di� erences. The subjectivity of the analyst’s in¯ uence is
minimized in CPG by accepting or rejecting choices for pairwise grouping proposed
by the algorithm. The recommendation of the algorithm can be overridden by the
analyst but presumably only in cases where it improves the ® nal result.

Unlike some unsupervised classi® ers, CPG is not recursive. This is an advantage
because at every step, a qualitatively di� erent process takes place and its results can
be analysed and assessed. Furthermore, di� erent characteristics of the data space are
exploited so that the maximum possible information is extracted before the subjective
element enters the process. While a s̀afe’ number of iterations in a recursive classi® ca-
tion can be readily de® ned as `many’, it is more di� cult to specify a minimum required
number of iterations; usually, preliminary data runs are needed to ® nd it for a part-
icular data set. CPG avoids the need to pre-determine the number of iterations. At
the same time, it can be implemented as a continuous process in which the three
parameters are speci® ed at the outset and the program halts at the end of Step 8.

5.2. CPG performance
Comparisons of CPG results for AVHRR and TM data sets described above

indicate that the method e� ectively reduces the dimensionality of the original data,
yet retains the signi® cant spectral information. The tests indicate that the CPG
procedure meets many of the requirements for an ideal classi® cation algorithm stated
at the outset, provided that the desired classes can be identi® ed primarily using
radiometric information. The CPG result resembles the original image, especially
when the classes are colour coded appropriately (e.g. ® gure 3 (b)) . They do not have
a salt-and-pepper appearance, indicating noise in the classi® cation, as results of
unsupervised classi® cations tend to have. This is because, by design, the classes are
based on generalizations of the digital levels in the original images to retain most of
the original pixel information.

Ideally, a classi® cation scheme would be completely independent of the analyst’s
in¯ uence and would yield results with 100% accuracy. These are fairly contradictory
requirements and thus to achieve high accuracy, some guidance to the classi® er is
clearly necessary. CPG requires only one type of information at the various stages
preceding the labelling step, namely the smallest spectral cluster that should be
ignored. This is probably the minimum that must be speci® ed in a digital classi® cation
process, otherwise the classi® cation is not likely to produce practical results. It is
also consistent with the minimum mapping unit concept.

Since CPG is designed to detect the larger spectral clusters it may suppress small
but signi® cant ones. For example, urban areas (AVHRR) or roads (TM) may disap-
pear in the clustering process. Similarly, classes of interest that are spectrally similar
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to others may be grouped. If any of these are important, they can be identi® ed
through post-classi® cation steps, e.g. by splitting clusters or using supervised classi® er
(applied to the original data) for these classes.

The algorithm used in the quantization process (Step 2) in¯ uences the results of
the clustering, especially for the large seed clusters. Various options exist, e.g. quant-
ization of the original image, quantization of an equalized image, etc. For example,
equalized quantization provides higher resolution in spectrally similar areas, while
d̀irect’ quantization is preferable when small clusters (in the wings of the histograms)
are likely to be important. The decision regarding the type of quantization procedure
can be made from these considerations, from prior experience, or based on the
absence of a signi® cant di� erence between the original and the quantized image. The
fact that the original multispectral image can be reduced to relatively few digital
levels without visible loss of land cover type information suggests that the more
detailed data represent di� erences within land cover types, not among them. This
and contextual information appear to allow interpreters to classify successfully land
cover from hard copy images (e.g. de Boissezon et al. 1993 ), even though the
radiometric content is reduced compared to the digital data.

The merging of medium sized clusters (Step 5) is intended to ensure that smaller
but potentially signi® cant clusters are not omitted from the classi® cation; the large
clusters will be selected in any case. Since it a� ects only the selection of the smallest
seed clusters there is a relationship between MinLSC threshold and these two steps.
In particular, if MinLSC is su� ciently low Step 5 may not be required. The need
for it can be readily ascertained by comparing the means of large and medium seed
clusters. For example, we found for a 4-channel AVHRR data set of all Canada that
the large seed clusters with MinLSC=0 1́% spanned the entire spectral space. It
should be noted that spatial image ® ltering (Step 3) also a� ects only the small seed
clusters but its e� ectiveness is probably less predictable as it will vary with the
heterogeneity of the scene being classi® ed.

The computer implementation of CPG consists of various image processing and
set ordering/searching operations. When the number of initial clusters is high, the
searches can be time consuming. The number of initial clusters depends on the
number of input channels and the number of digital levels in each channel after
quantization (Step 2). The overall process thus is more computer-demanding than
for other algorithms such as supervised classi® cation. This could be reduced by
optimizing the software used, and it should become of less concern as computing
speeds increase. For the same reason CPG would not be a practical classi® cation
approach for imaging spectrometer data, unless a dimensionality reduction scheme
(such as principal component analysis) is applied ® rst. The computational demand
may not be a big disadvantage since the number of independent channels in remote
sensing data of natural scenes tends to be limited, even for hyperspectral data (Price
1994). Conversely, CPG is less sensitive to the spatial resolution/area size of the
input data set. This is because most of the operations handle clusters, and the pixel
classi® cation algorithm itself (Step 6) is fast.

Since CPG assigns each pixel to one cover class it is a h̀ard’ classi® er. Various
operations are possible that improve the ® nal result of an unsupervised classi® cation,
e.g. an adjustment of the map legend in relation to the identi® ed spectral classes
(Lark 1995 ), fuzzy techniques (Foody 1996), contextual correction (Groom et al.
1996), additional cluster splitting based on ancillary information (Loveland et al.
1991), etc. These could be applied to the CPG results as well, provided that the
requisite ground data are available.
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CPG appears to have considerable capacity for data compression. For example,
in the TM classi® cation for NSA the number of spectral clusters was reduced by
97 5́% (from &2679 to 71), yet the vast majority of the visible spectral information
was retained ( ® gure 3).

6. Summary and conclusions

Land cover type classi® cation is arguably the most widespread application of
remote sensing data for terrestrial environments. Although many di� erent classi® ca-
tion approaches have been developed to date, they have substantial disadvantages
in practical use. Speci® c drawbacks vary with the methodology but may include one
or more of the following: prior knowledge of the number of distinct spectral clusters;
prior knowledge of the approximate spatial distribution and the spectral variability
of the land cover classes of interest; knowledge of the statistical properties of spectral
clusters and their distribution in the multi-dimensional spectral space; prior speci® ca-
tion of parameters controlling the classi® cation process; and others. Most of these
are not known exactly, and some are unknowable in practice. Thus, in many cases
where existing supervised or unsupervised classi® ers are used, digital land cover
classi® cation becomes a trial-and-error procedure with several runs and modi® cations
of the intermediate results.

In this study, we have attempted to develop a methodology that would represent
the spectral information content of the data accurately, would facilitate obtaining
an accurate classi® cation, would not require knowledge of the data distribution in
the spectral space, and could run automatically with minimum input from the
analyst. The resulting procedure, Classi® cation by Progressive Generalization (CPG),
meets these criteria. CPG is based on the identi® cation of all s̀igni® cant’ clusters in
the data, followed by classi® cation of all pixels and a guided merging of the resulting
clusters. It can be run automatically until the desired number of classes is reached.
However, it gives an analyst the option of optimizing the results by introducing
independent information in the last stages when the merging of large clusters (based
on spectral similarity) might be undesirable. It does not require knowledge of spectral
space such as the number and proximity of clusters. It needs only three parameters
to be speci® ed a priori, all of which refer to the size of clusters that can be ignored
at a given stage of the analysis and are therefore relatively easy to estimate by a
user of the classi® cation product.

Several tests have been carried out to evaluate the CPG accuracy (absolute and
in comparison with ISOCLASS, a typical unsupervised classi® er), sensitivity to
control parameters, and usefulness with various input data. Results of these tests
can be summarized as follows.

E The accuracy achievable by the CPG is comparable or superior to other
existing unsupervised classi® cation methods (represented by ISOCLASS).

E The CPG is less sensitive to control parameters that is ISOCLASS.
E CPG performs well with AVHRR and TM data.

It is concluded that the classi® cation strategy embodied in CPG represents a
viable and e� ective approach to the digital classi® cation of remote sensing data.
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