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Abstract

An operational system was developed for mapping the leaf area index (LAI) for carbon cycle models from the moderate resolution

imaging spectroradiometer (MODIS) data. The LAI retrieval algorithm is based on Deng et al. [2006. Algorithm for global leaf area

index retrieval using satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 44, 2219–2229], which uses the 4-scale

radiative transfer model [Chen, J.M., Leblancs, 1997. A 4-scale bidirectional reflection model based on canopy architecture. IEEE

Transactions on Geoscience and Remote Sensing, 35, 1316–1337] to simulate the relationship of LAI with vegetated surface reflectance

measured from space for various spectral bands and solar and view angles. This algorithm has been integrated to the MODISofts

platform, a software system designed for processing MODIS data, to generate 250m, 500m and 1 km resolution LAI products covering

all of China from MODIS MOD02 or MOD09 products. The multi-temporal interpolation method was implemented to remove the

residual cloud and other noise in the final LAI product so that it can be directly used in carbon models without further processing. The

retrieval uncertainties from land cover data were evaluated using five different data sets available in China. The results showed that mean

LAI discrepancies can reach 27%. The current product was also compared with the NASA MODIS MOD15 LAI product to determine

the agreement and disagreement of two different product series. LAI values in the MODIS product were found to be 21% larger than

those in the new product. These LAI products were compared against ground TRAC measurements in forests in Qilian Mountain and

Changbaishan. On average, the new LAI product agrees with the field measurement in Changbaishan within 2%, but the MODIS

product is positively biased by about 20%. In Qilian Mountain, where forests are sparse, the new product is lower than field

measurements by about 38%, while the MODIS product is larger by about 65%.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The leaf area index (LAI), defined as one-half the total
green leaf area per unit ground area for both needleleaf and
broadleaf canopies (Chen and Black, 1992), is a key
parameter controlling many biological and physical pro-
cesses associated with vegetation on the earth’s surface,
such as photosynthesis, carbon and nutrient cycle, radia-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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tive balance, evapotranspiration, and rainfall interception.
Thus, LAI is widely used to drive models of ecology,
hydrology, biogeochemistry and climate (Sellers et al.,
1996). For effective use in large-scale models, this para-
meter should be collected over a long period of time and
cover large regions with different land surface types.
Remote sensing technology is the only available means to
achieve this goal. Since the LAI value affects remote
sensing signals at different wavelengths, regional and
global LAI maps can be derived from multi-spectral
remote sensing imagery.
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Estimating LAI from optical remote sensing data can
generally be carried out by two different approaches. One
is based on empirical relationships between field measure-
ments of LAI and vegetation indices (VI) from satellite
data, and another utilizes physically based canopy reflec-
tance models by applying model inversion techniques
(Liang, 2003). The VI-based models have various mathe-
matical forms for different land cover types in different
regions (Turner et al., 1999; Chen et al., 2002). It is
problematic to apply this approach to a large area because
the LAI-VI relationship would vary spatially and tempo-
rally under various conditions of observation from space,
even for the same surface cover type. The inversion of a
radiative transfer model is the only possible way to retrieve
LAI maps for large regions (Chen et al., 2002), but direct
model inversions to estimate LAI are often time consuming
and not practical for regional and global image processing.
Usually, efficient pixel-based inversions of radiative models
are made using various techniques, such as optimization
(Liang, 2003), look-up tables (Myneni et al., 2002), and the
neural networks (Fang et al., 2003).

The launches of MODIS twin sensors on December 18,
1999 aboard the Terra satellite and on May 04, 2002
aboard the Aqua satellite, began a new era in remote
sensing of the Earth’s surface. The 36 spectral bands and
highest spatial resolution at 250m for visible and near
infrared bands enhance MODIS ability for a systematic
monitoring of land, atmosphere and oceans. These
characteristics of high spectral resolution, high temporal
resolution and medium spatial resolution make MODIS a
powerful sensor for LAI mapping (Myneni et al., 2002). A
global LAI product (MOD15) is being routinely generated
with 1-km resolution at 8-day intervals and can be
downloaded from the National Aeronautics and Space
Administration (NASA) data center (Myneni et al., 2002).
It is derived from the red (648 nm) and near-infrared
(858 nm) bands of the surface reflectance product
(MOD09), using land cover type product (MOD12) and
ancillary information on surface characteristics as back-
ground (Wang et al., 2001). The retrievals are performed by
comparing observed and modeled surface reflectances for a
suite of canopy structures and soil patterns that covers a
range of expected natural conditions. A three-dimensional
radiative transfer model is used to derive spectral and
angular biome-specific optical signatures. Should this main
algorithm fail, a back-up algorithm is triggered to estimate
LAI using a LAI-NDVI relationship (Knyazikhin et al.,
1999). The MODIS LAI products have evolved through
four versions so far. The latest version is the Collection 4,
which has improved input data (surface reflectance data
and biome map) and algorithm physics (LUTs and
compositing) compared with Collection 3.

For regional applications, a global product may not be
most suitable, and there is still much room for improve-
ment. In particular, the MODIS LAI product was reported
to be positively biased when compared with field measure-
ments in many regions (Cohen et al., 2003). These
limitations provide reasons for exploring various alter-
native approaches.
Deng et al. (2006) developed a new global LAI mapping

algorithm to meet the requirement of the GLOBCARBON
project (Plummer et al., 2004) for generating LAI products
from different sensors. Their algorithm utilizes a geome-
trical optical and radiative transfer model to simulate the
relationship between LAI and land surface reflectance in
various illumination and observation angles under various
canopy structural conditions, thus permitting the integra-
tion of the bidirectional reflectance distribution function
(BRDF) into the LAI retrieval algorithm. This method
differs from their previous method (Chen et al., 2002)
which requires BRDF normalization to the input images.
This new algorithm has the potential to use the angular
variation as a source of information in LAI retrieval. A
new software system MODISofts was specifically devel-
oped for processing MODIS data in the Institute of
Geographical Sciences and Natural Resources Research,
Chinese Academy of Sciences. This system can process
MODIS 1B data operationally and generate various
products.
In this paper, a system which integrated Deng et al.

(2006)’s LAI algorithm into MODISofts to generate the
LAI coverages using MODIS data in support of China
carbon cycle research is presented. This includes a
description of the salient features of the Deng et al.
(2006)’s algorithm, evaluation of its performance and
initial results of validation with field data. A multi-
temporal smoothing and interpolation method of Lv et
al. (2006) was implemented to remove the residual cloud
and other noise from the LAI product so it can be used to
drive carbon cycle models.
2. Methods and data

2.1. Theoretical basis for LAI algorithms

A detailed description of the BRDF-based LAI retrieval
technique was given by Deng et al. (2006). Here we simply
describe its basic theory and procedures.
The relationship between the effective LAI (LE) and the

true LAI is defined as (Chen and Leblanc, 1997)

LAI ¼ LE=O; (1)

where O is the clumping index.
LAI can be retrieved from red and near infrared (NIR)

bands only or from shortwave infrared (SWIR), red and
NIR bands. Using SWIR information has the advantages
that (i) the algorithm is not sensitive to the vegetation
background variation and (ii) the error in LAI due to error
in input land cover information is reduced. These two
separate algorithms are used to estimate the effective LAI
independently:

LE ¼ f LE_SRðSR � f BRDF ðyv; ys;fÞÞ; (2)
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LE ¼ f LE_RSR SR � f BRDFðyv; ys;fÞ
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where SR is the ratio of NIR reflectance over red
reflectance; rSWIR is the band 5 reflectance for MODIS;
rSWIRmax is the maximum value of SWIR and rSWIRmin is
the minimum value of SWIR, both being determined from
1% cutoff points in the histogram of the input SWIR
image; fLE_RSR and fLE_RSR are functions defining the
relationships between LE and SR and between LE and the
reduced simple ratio (RSR) (Brown et al., 2000) at a
specific view and sun angle combination (yv,ys,fs). Func-
tions fBRDF and fSWIR_brdf, quantifying the BRDF effects,
depend on the angular reflectance behavior of the spectral
bands involved, which are described mathematically based
on a modified Roujean’s model (Chen and Leblanc, 1997;
Roujean et al., 1992):
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where the last term involving c1 and c2 is the modification
made by Chen and Cihlar (1997) to consider pronounced
hotspot effects and has importance when the view angle is
close to the sun angle, although it introduces two
additional parameters and makes the equation non-linear.
Functions f1 and f2 in Eq. (4) are defined as
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r(yv, ys,f) can be obtained from atmospherically corrected
remotely sensed land surface reflectance; and given values
of a1, a2, c1 and c2, r0(0, 0,f) can be calculated from the
above formulas. From r0(0, 0,f), r(yv, ys,f) can be
estimated at any angle combination. The BRDF kernel
coefficients a1, a2, c1, and c2 are all based on the modelling
results of the 4-scale geometrical optical model (Chen and
Leblanc, 1997) for different land cover types.

The challenge in integrating BDRF into LAI algorithms
is that the equations describing BRDF are non-linear and
the coefficients a1, a2 depend on LE. Thus, several iterations
are required in the retrieval procedure to get the best fit
between a1, a2 and LE. To speed up the convergence, a
Chebyshev polynomials-based technique was developed:
(1) a precursor effective LAI value for a pixel is first
estimated from a general cover-type dependent SR-LAI
relationship, (2) BRDF kernels are calculated using the
precursor effective LAI value, (3) final effective LAI is
calculated from the BRDF kernels and SR/RSR, and (4)
empirical clumping index for the land cover type is used to
calculate the final LAI.
The 4-scale model for LAI simulation is complex and

time-consuming. A look-up table technique was therefore
developed to mimic various relationships developed
through 4-scale. The solar zenith angle (SZA) is divided
into 6 ranges: ½0; 10�; ð10; 20�; ð20; 30�; ð30; 40�; ð40; 50�;
ð50; 80�. For each SZA range, a set of relationships
between LE and SR (fLE_SR) is provided at different view
zenith angles (VZA) at two relative azimuth angles (f) 01
and 1801. A linear interpolation is used to obtain the
relation at different f values for the first approximation of
LE. For each SZA range, a1(LE) and a2(LE) functions are
provided to calculate the relevant parameters. The para-
meters c1 and c2 are given in advance, so the SR and rSWIR

can be estimated at any angle combinations. LE is then
calculated using the relationships between LE and SR
(fLE_SR) and between LE and RSR (fLE_SR) at specific
angles. The LAI can be calculated from LE by formula (1)
using empirical clumping index (O) values for different
land cover types (Table 1).

2.2. The MODISofts software for MODIS data processing

MODIS provides the most comprehensive remote
sensing measurements from space so far, but few available
commercial remote sensing software programs can process
these data correctly to extract earth surface parameters. In
order to effectively utilize these data, NASA designed 44
standard products and established four scientist teams
covering land, atmosphere, ocean and calibration to
develop the retrieval algorithms. Several standard products
can be downloaded from the NASA data center. Although,
NASA undertook many efforts to establish the global
satellite product algorithm, its MODIS standard products
are not well suited for Chinese land cover conditions. In
addition, additional terrestrial parameters (to the designed
44 standard parameters) are needed to retrieve information
from MODIS data. These requirements motivated us to
develop the MODISofts software for an automated
processing of the large-volume, multi-temporal MODIS
data so that standard products could be generated for
terrestrial applications over China (Liu et al., 2006). The
MODISofts was developed in C code in July 2002, and the
first version was published in December 2002 with four
modules: basic, atmosphere, land and monitoring. It can
produce standard products from MODIS 1B data, grid and
composite them to remove the cloud and noise effects. A
friendly graphic user interface (GUI) was designed to assist
the operator in data input, display, product generation and
output. A powerful console command was also provided to
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Table 1

Grouping of IGBP land cover types into six functional types used in the new LAI algorithms and their clumping index

IGBP class Class name Coefficients group Clumping index

1 Evergreen needleleaf forest Conifer 0.6

2 Evergreen broadleaf forest Tropical 0.8

3 Deciduous needleleaf forest Conifer 0.6

4 Deciduous broadleaf forest Deciduous 0.8

5 Mixed forest Mixed forest 0.7

6 Closed shrublands Shrub 0.5

7 Open shrublands Shrub 0.5

8 Woody savannas Shrub 0.5

9 Savannas Shrub 0.9

10 Grasslands Crop, grass, and others 0.9

11 Permanent wetlands Crop, grass, and others 0.9

12 Croplands Crop, grass, and others 0.9

13 Urban and built-up Crop, grass, and others 0.9

14 Cropland mosaics Crop, grass, and others 0.9

15 Snow/Ice

16 Barren or sparsely vegetated

17 Water bodies

R. Liu et al. / Journal of Environmental Management 85 (2007) 649–658652
permit users to process data in batch mode, which is
especially useful for processing voluminous data sets that
need long run-times.

Several terrestrial parameters in MODIS products have
been defined and produced by NASA, including: land
surface reflectance (MOD09), land surface temperature
(LST, MOD11), land cover classification (LCC, MOD12),
vegetation indices (VI, MOD13), thermal anomalies
(MOD14) and burned scar (MOD40), leaf area index
(LAI, MOD15), MODIS Surface Resistance and Evapo-
transpiration (ET, MOD16), Vegetation Production and
Net Primary Production (NPP, MOD17), Surface Reflec-
tance BRDF/Albedo Parameter (MOD43), Vegetation
Cover Conversion and Vegetation Continuous Fields
(MOD44). Except for MOD16, these standard products
can be downloaded from the NASA web site. However, to
avoid large bias existing in some products and thus
produce higher-quality regional products, MODISofts

has implemented several new algorithms and integrated
Chinese local environmental background data. So far,
several products (land surface reflectance (MOD09), land
cover classification (MOD12), land burned scar (MOD12 and
MOD40) and photosynthetically active radiation) have been
produced from MODIS level 1B data (MOD02) using the
new designed algorithm and local background data as input.

For the LAI product, Deng et al.’s algorithm (2006) was
integrated to MODISofts. This module uses MODIS
MOD02 or MOD09 product as input and also provides
several quality flags, including clear sky, cloud, uncertain,
and snow/ice. The input data employs HDF format and the
output data is in geotiff or HDF formats.

2.3. Input data for implementing the LAI algorithm

2.3.1. Land cover map

The LAI retrieval algorithm is land cover type-depen-
dent. Land cover is stratified into six canopy architectural
types or biomes (grasses and cereal crops, conifer, tropical,
deciduous, mixed forest, shrub) and one non-vegetation
class. These biomes represent the structural variations
along the horizontal and vertical dimensions, canopy
height, leaf type of herbaceous and woody vegetation.
The land cover map reduces the number of unknowns
in the LAI retrieval through simplifying assumptions
(e.g., model leaf normal orientation distributions) and
fixed constants (e.g., leaf, wood, litter and soil optical
properties) that are assumed to vary with biome and
soil types only (Myneni, et al., 2002). Except for the
non-vegetation class, the same biome is set the same
coefficients for LAI retrieval. The biomes classes can be
derived from the IGBP land cover classes. The 14 IGBP
vegetation types regrouped into the six functional types are
shown in Table 1.
Several land cover data sets are available for all of

China, such as the GLC 2000 and the MODIS MOD12
product. In this study, a regional land cover classification
data set NLCD LCC from the year 2000 was used because
it has been validated extensively in China (Liu et al., 2003).
NLCD LCC was produced from the classification of one
year of AVHRR composite data and other geophysical
data sets. Prior to classification, China was divided into
nine climatic regions using the mean climatic conditions
over 10 years. For each region, the training data were
selected from Landsat Thematic Mapper (TM) and survey
maps. The 1-year 10-day composite AVHRR band 1, band
2 and the derived NDVI, plus mean annual temperature,
mean annual precipitation, and elevation were classified by
a supervised classification algorithm to generate land cover
maps for individual regions. The nine land-cover maps
were then assembled into one contiguous coverage (Liu et
al., 2003). The NLCD LCC data set consisted of eighteen
land cover classes: evergreen needleleaf forest, deciduous
needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, mixed forest, alpine forest, shrub, dense
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grassland, moderate dense grassland, sparse grassland,
cropland, wetland, city, water body, ice and snow, harsh
desert, sandy desert, and bare rock. To correspond with the
biomass type for LAI retrieval, the NLCD LCC data set is
regrouped to six functional biomes according to Table 1.

2.3.2. MODIS data

The remote sensing data used to drive the LAI algorithm
include land surface reflectance of MODIS bands 1, 2, and
5 and three angles (solar zenith, sensor zenith and the
relative azimuth angle between the sun and the sensor).
Two types MODIS data can be used as input, MODIS 1B
data from the receiving station or MOD09 product
downloaded from the NASA data center (either containing
angular information which is used by the LAI estimation
algorithm). The procedure is described below, separately
for each case.

Scheme 1 (MODIS 1B data as input): The MODIS 1B
data include 36 bands data and the geometric information
on solar zenith, sensor zenith, solar azimuth, sensor
azimuth, and geographical position. First, these reflectance
data were atmospherically corrected by a dark object
method (Kaufman et al., 1997). Although this approach is
only suitable for vegetated regions, it is adequate for LAI
retrieval. Next, all the input data were resampled to a new
coordinate system. To minimize the influence of cloud and
shadows, image compositing procedures are required to
create ‘representative’ land surface reflectance data sets for
periods when the surface conditions can be considered
static. Various compositing approaches, such as maximum
brightness temperature, minimum visible reflectance, max-
imum vegetation index or their combination, have been
proposed to fulfill different objectives in order to minimize
the clouds, shadow and aerosol contamination (Cihlar et
al., 1994), among which the most common two methods
are the selection data with the maximum NDVI (MNDVI)
or selection of minimum blue band. Although it has been
shown that the MNDVI can result in selection of off-nadir
data (Cihlar et al., 1994) and cloud retention over certain
land cover types, it is believed to minimize cloud cover,
thus enhancing the vegetation signal. We used the MNDVI
compositing method to produce 8-days clear land surface
reflectance data sets.

Scheme 2 (MODIS land surface reflectance product

(MOD09) as input): The MOD09 product is computed
from the MODIS Level 1B land bands 1, 2, 3, 4, 5, 6, and 7
(centered at 648, 858, 470, 555, 1240, 1640, and 2130 nm,
respectively; Vermote et al., 2002). The product is an
estimate of the surface spectral reflectance for each band as
it would have been measured at ground level if there were
no atmospheric scattering or absorption. The correction
scheme includes corrections for the effect of atmospheric
gases, aerosols, and thin cirrus clouds. The input data for
driving atmospheric correction are MODIS band 26 for
cirrus, MOD05 for vapor, MOD04 for aerosol and
MOD07 for ozone. If these data are unavailable in some
regions, the accessory climatology may be used. Current
land surface reflectance products do not correct the aerosol
effect over bright regions because no aerosol data in these
regions are contained in the MOD04 product. The single
scene MOD09 data were composited over 8-day periods
using the minimum blue channel method.
2.4. LAI data output

The output data include the LAI and effective LAI,
ranging from 0 to 10. These values were scaled from 0 to
100 and saved as 8-bit integers. Sinusoidal projection was
used for the product (the same as for the MODIS standard
product, and Albers equal area projection, which is usually
employed in other Chinese data, is optional). The LAI
output resolution can be 250, 500 or 1000m. The outputs
were stored by tile in HDF or geotiff formats, each
title covering 1200 km� 1200 km. The output files also
include the quality status of the pixel from input land
reflectance data, such as snow, cloud, shadow, clear and
uncertainty.
2.5. Multi-temporal LAI interpolation

The retrieved LAI product is usually degraded by
exterior noise, such as cloud screening, poor atmospheric
condition, heavy aerosol or missing data. Such undesirable
noise conceals the true vegetation condition and limits the
LAI utility. Many methods have been developed to reduce
that noise. The multi-day compositing method can remove
most noise from atmosphere conditions. However, it is very
difficult to get high quality LAI data in every pixel,
especially in cloudy regions. In order to drive ecosystem
models to get consistent results, input data in every
pixel with a realistic season variation are required. In
previous research, several time series interpolation methods
were used to remove the noise pixel from multi-temporal
data, such as BISE method (Viovy et al., 1992), Fourier-
based fitting method (Roerink et al., 2000), and the
locally adjusted cubic-spline capping method (Chen et al.,
2006). In this paper, a wavelet transform method of Lv
et al. (2006) was used to remove noise from the multi-
temporal data. This method first removes the contami-
nated dates using the pixel quality status flag, and then
fills these dates with high quality data from other dates
in the same pixel through linear interpolation. The wave-
let transform was applied to the interpolation time-series
data. The high frequency data was smoothed using
the method proposed by Pan et al. (1999). The smoothed
wavelet coefficients were inversely transformed to obtain
smoothed time-series data. The interpolation results
are shown in Fig. 1. The cloud effect can be found in
northeast and southwest China from Fig. 1(a). After
interpolation, LAI increased in these regions. With the
residual noise removed from LAI products, these inter-
polated LAI values can be used to drive ecosystem models
directly.
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Fig. 1. Time-series interpolation to remove atmospherically contaminated pixels from multi-temporal data: (a) before interpolation and (b) after

interpolation. Data day is 2003193, 16-days composite.

R. Liu et al. / Journal of Environmental Management 85 (2007) 649–658654
3. Results and validation

3.1. Uncertainty of LAI estimates

As stated above, the LAI retrieval results depend on land
cover types, and thus the uncertainties of land cover
classification could contribute to errors in LAI. To
determine the uncertainties of LAI retrieval derived from
land cover data sets in China, we evaluated the effects of
five available land cover data sets on the LAI retrieval and
compared them with the NASA MOD15 product. These
data sets are: The Land Cover Map for Central Asia for the
Year 2000 produced by Chiba University for GLC2000
database, European Commission Joint Research Centre
(available: http://www.gvm.jrc.it/glc2000, 2003; thereafter
referred to as Chiba); China Window data of GLC2000
produced by the Institute of Remote Sensing Applications,
Chinese Academy of Sciences (available: http://
www.gvm.jrc.it/glc2000, 2003; thereafter referred to as
IRSA); The Chinese National Land cover data sets
produced by the Institute of Geographical Sciences and
Natural Resources Research, Chinese Academy of Sciences
(Liu et al., 2003; thereafter referred to as NLCD); The
MODIS enhanced land cover data sets produced by the
University of Maryland (Zhan et al., 1999; thereafter
referred to as UMD) and the global land cover data sets
produced by the Boston University (Strahler et al., 1999;
thereafter referred to as MOD12). The land cover classes of
these data sets were aggregated to six vegetation classes
and one non-vegetation class which correspond with the six
functional types for LAI algorithms (Table 1). The input
reflectances are 500m MOD09 data, which cover all of
China and date, is Julian day 209, 2003.

The LAI distributions in China derived with the different
land cover data sets and MODIS LAI product are shown
in Fig. 2, where we can find the IRSA-based LAI have the
largest values in southern China. Other land cover data sets
resulted in similar LAI distributions. The mean LAI values
for all land surfaces with non-zero LAI values are shown in
Table 2 for the various land cover data sets. The IRSA-
based LAI had the highest mean value and the UMD-
based LAI had the lowest one, with a relative difference of
27%. The pixel counts for each LAI increment are shown
in Fig. 3. It is found that the pixel numbers for the five land
cover data sets are similar for LAI below 4.0. Generally,
the IRSA-based and the Chiba-based LAI products have
more pixels with LAI above 5.0. The MOD12 LAI values
were far higher than those based on the other land cover
data sets.
Comparisons of the new LAI algorithm with the NASA

MOD15 product were made using the same input land
cover data sets. The new LAI product was produced using
these MOD09 and MOD12 data sets as input to the new
retrieval algorithm. Because MOD15 LAI also uses the
MOD12 and MOD09 as input, the differences of two
products are from the retrieval algorithm. A comparison of
Fig. 2(a) and 2(e) shows that the MOD15 product has
higher LAI values than the new LAI product. The mean
value of MOD15 is 2.47, while the mean value for the new
product is 1.95, resulting in a relative difference of 21%.

3.2. LAI validation

To validate the new LAI product, two sites with ground
LAI measurements were selected. LAI measurements at
these sites were made using an optical instrument TRAC
(Tracing Radiation and Architecture of Canopies; Chen
and Cihlar, 1995). TRAC measurements permit derivation
of LAI as well as the clumping index. One experimental site
is on the Qilian Mountain in Gansu Province at 38.71N and
99.551E with an elevation range from 2200 to 4800m. The
vegetation types are mountainous pasture and forest,
which includes Picea crassifolia, and Sabina przewalski.
The second experimental site is located on the north slope
of the Changbaishan Natural Reserve in Jilin province
(410420N–420100N, 1270380–1280100E), and the elevation
varies in the range from 720 to 2691m. Vegetation is
vertically stratified at this site and includes Korean pine
and broadleaf mixed forest at elevations from 720 to
1100m, spruce and fir forests from 1100 to 1800m, Betula

ermanii forest in the sub-alpine zone from 1800 to 2100m,
and alpine tundra above 2100m. The Korean pine and
broadleaf mixed forest are the dominant vegetation types.
On Qilian Mountain, 16 forest stands were chosen for

the LAI measurement. The Picea crassifolia stands were
distributed evenly in the research area. The ASTER image

http://www.gvm.jrc.it/glc2000
http://www.gvm.jrc.it/glc2000
http://www.gvm.jrc.it/glc2000
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Fig. 2. The LAI distributions in China produced from using different land cover classifications (LCC): (a) MODIS MOD15 LAI product; (b) IRSA LCC-

based LAI; (c) Chiba LCC-based LAI; (d) NLCD LCC-based LAI; (e) MODIS MOD12 LCC-based LAI (f) UMD LCC-based LAI. A is no data; B is

water body and C is non-vegetation.

Table 2

Mean LAI values for land areas with non-zero LAI

IRSA Chiba NLCD MOD12 UMD MOD15

2.25 2.03 1.91 1.95 1.65 2.47

R. Liu et al. / Journal of Environmental Management 85 (2007) 649–658 655
used for mapping LAI for this site was acquired on July 12,
2001. The image was corrected for atmospheric effects
using 6S with the parameters acquired from the NASA
MODIS products, and its geometry was corrected using
ground control points. For the sample sites, the vegetation
index NDVI was computed from the image, thus establish-
ing the relationship between measured LAI and NDVI.
The NDVI–LAI relationship for crop and grass was
derived from other measurements in the same region, and
an ASTER LAI map was produced using these relation-
ships. The relationship for TRAC LAI and ASTER SR is
SR ¼ 1.803� ln(LAI)+1.6275, R2

¼ 0.6309. To compare
with the 1 km resolution LAI images from MODIS, this
ASTER image at 20m resolution was averaged to 1 km
resolution by a resampling technique and then transformed
the projection to Sinusoidal with same as MODIS LAI
products.
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Fig. 3. Pixel counts in each LAI increment based on different land cover data sets.

Fig. 4. Validation of LAI. (a) New product in Changbaishan; (b) Landsat TM LAI based on field measurements in Changbaishan; (c) NASA MODIS

MOD15 product in Changbaishan; (d) New product in Qilian Mountain; (e) Landsat TM LAI based on field measurement in Qilian Mountain; (f) NASA

MODIS MOD15 product in Qilian Mountain.

R. Liu et al. / Journal of Environmental Management 85 (2007) 649–658656
In the Changbaishan Natural Reserve, the LAI values
were measured in 34 stands distributed evenly within each
vertical zone. The LAI sampling area was 30m� 30m. In
each stand, the canopy gap fraction and gap size
distribution of four 30m-long lines were measured using
TRAC and the longitude and latitude were obtained by
GPS. The field measurements were carried out on 5–9
September, 2002 and the Landsat TM data were acquired
on August 25, 2002. The field LAI values were registered to
the Landsat TM image and resampled to 1 km resolution
for a comparison with MODIS products. The relationship
for mapping LAI in Changbaishan was: RSR ¼ 14.57–
14.57 exp(�0.13LAI).
The validation results are shown in Fig. 4. In the

Changbaishan region, the forests are dense as also
indicated by the mean LAI values 5.08 for the new LAI
product (Fig. 4(a)), 4.98 for the TM LAI map (Fig. 4(b))
and 5.97 for the NASA MOD15 product (Fig. 4(c)). The
relative difference from Landsat TM LAI for the new LAI
products and MODIS LAI products are 2% and 20%.
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Both the magnitude and the spatial pattern of the new
product matches the Landsat TM LAI map more closely
than MOD15 (note the high LAI areas near the Tianchi
Lake). The LAIs of MODIS products are generally larger
than those of Landsat TM and their spatial distribution are
more uniform than those derived from Landsat TM.
MOD15 shows slightly lower LAI values near the Tianchi
Lake than the other two products but rather high values in
other forest regions.

In the Qilian Mountain region, forests are sparse with
mean LAI values of 0.61 for the new LAI product (Fig.
4(d)), 0.99 for the ASTER LAI (Fig. 4(e)), and 1.64 for
MOD15 (Fig. 4(f)). The new product is lower than field
measurements by about 38%, while the MODIS product is
larger by about 65%. Many similar spatial patterns of the
LAI distribution can be identified among these products,
but both the new product and MOD15 suffered from
positive biases compared to the ASTER LAI image in
terms of the magnitude and the area coverage, although
these biases are much smaller in the new product than in
MOD15.
4. Conclusions

This paper presents an integration of a BRDF-based
LAI retrieval algorithm developed by Deng et al. (2006)
into a MODIS data processing software MODISofts to
generate a new LAI product from MODIS 1B or MOD09
data. This LAI product has been validated against two
forest sites in China. The results showed that the new LAI
product compares more favorably with high-resolution
LAI images produced with in situ measurements than the
NASA MODIS LAI product MOD15. Uncertainties in
LAI products resulting from different land cover data were
also evaluated. The maximum mean LAI difference derived
from different land cover maps reached 27% when
averaged over the entire China’s landmass. A time-series
smoothing method was implemented to remove residual
atmospheric contamination. The smoothed time series of
LAI images can be used directly as input to ecosystem
models without further processing.
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