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a b s t r a c t

Process-based terrestrial ecosystem models have been widely used to simulate carbon cycle,

climate and ecosystem interactions. Some parameters used in biological functions often

change seasonally and inter-annually. In this study, sequential data assimilation with an

ensemble Kalman filter is designed to optimize the key parameters of the Boreal Ecosystem

Producitivity Simulator (BEPS) model, taking into account the errors in the input, parameters

and observation. The parameters adjusted through data assimilation include foliage clump-

ing index (Cf), slope of stomatal conductance to the net photosynthetic rate (m), maximum

photosynthetic carboxylation rate (Vc max) and electron transport rate (Jmax) at reference

temperature of 25 ◦C, multiplier to the soil organic matter decomposition rates (Kr). The

fluxes of CO2 (separated into gross primary production (GPP) and ecosystem respiration

(RE)) and water vapor measured using the eddy covariance technique at the BOREAS/BERMS

Old Aspen site, Canada during 1997–2004 are used for the optimization. Parameters are

optimized at a daily time step and presented as 10-day averages. The results show that the

parameters varied significantly at seasonal and inter-annual scales. Photosynthetic capac-

ity (Vc max, Jmax) usually increased rapidly at the leaf expansion stage and reached a plateau

in the early summer, then followed an abrupt decrease when foliage senescence occurred.

The multiplier Kr to soil respiration coefficients were reduced to 0.5 in wintertime; however

it increased rapidly in the spring and reached about 1.0 in summertime. The intensity of

soil respiration may be related to the metabolic responses of the microbial communities

and the availability of labile substances in summer and winter. From leaf expanding in the

spring to senescing in the autumn, Cf presented declining trend from 0.88 to 0.78 with slight
variation; m increased from 5 and approached to an approximately stable value of 8 since

early summer. With optimized parameters, the estimates of GPP, RE, net ecosystem produc-
tion and water vapor fluxes were significantly improved compared with the measurements

at daily and annual time steps. With eddy covariance fluxes, data assimilation with an
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ensemble Kalman filter can successfully retrieve the seasonal and inter-annual variations

of parameters related to photosynthesis and respiration of this boreal ecosystem site.

Crow
1. Introduction

CO2, water and energy exchanges between the ecosystem and
atmosphere play an important role in the earth’s climate.
These exchanges are responsive to a range of environmental
factors, including site climate conditions. The biophysical and
biochemical processes control the water and mass transfer
in the soil–vegetation–atmosphere continuum. By integrating
the principal processes and mechanisms that relate to energy
partitioning and carbon assimilation, ecosystem models are
developed for simulating ecosystem productivity, greenhouse
gases emission and water consumption. Due to the complexity
of ecosystem processes and their spatial-temporal variabil-
ities, the parameter values in such models applied to large
areas often shift from those measured in the laboratory or in
situ field because of differences in the spatial scale. In addi-
tion, parameters in some process models are aggregated to
represent processes at various spatial and temporal scales,
which may not be directly measurable in the field. As a con-
sequence, parameters in these models need to be calibrated
to ensure consistency between model prediction and corre-
sponding observations. On the other hand, models that have
not been correctly parameterized and calibrated may propa-
gate simulating errors and biases through time (Pan and Wood,
2006).

In terms of model-data synthesis or model-data fusion,
observations are referred to as data. Model-data synthesis
encompassing both parameter estimation and data assim-
ilation is a new approach for optimizing model structure,
states and parameters (Raupach et al., 2005; Sacks et al., 2006),
although data assimilation has been studied and practiced for
decades in meteorological and oceanic applications for initial
field optimization. The traditional model parameter estima-
tion techniques are usually based on Bayesian estimation or
multi-criteria approach, assuming time-invariant parameters
(Braswell et al., 2005; Knorr and Kattge, 2005). In addition to
the requirement of a long historical dataset, these methods
neglect possible temporal variations in the model parameters
(Moradkhani et al., 2005) and treat model prediction uncer-
tainty as being primarily and explicitly due to biases in the
parameter estimates (Beven and Binley, 1992). To overcome
these shortcomings, data assimilation techniques combine
process-based models, observations, and prior estimates of
states and parameters to update the model predictions under
the constraint of time-series observations, taking into account
the uncertainties stemming from parameter biases and mea-
surement errors associated with input and output, as well as
model structure (Moradkhani et al., 2005). As one of the data
assimilation techniques, sequential data assimilation, such as

the Kalman filter, provides a general framework for optimal
merging of uncertainty in model prediction with observations.
Sequential techniques have been used for recursive estima-
tion of the states, time-varying parameters and predictive
n Copyright © 2008 Published by Elsevier B.V. All rights reserved.

uncertainty in the hydrological, climate and environmental
models, such as Bayesian recursive estimation (Thiemann et
al., 2001), Kalman filter and its extensions (Ennola et al., 1998;
Annan et al., 2005; Moradkhani et al., 2005; Jones et al., 2007;
Wang, 2007).

Kalman filter as one kind of Bayesian methodology, it is
not difficult to implement and can track the time-variant
parameters with multiple kinds of observations. It is capable
of taking into account the parameter error, structural error,
forcing error, and observational error. As a recursive proce-
dure, it does not require long-term historical measurements
and keeping all of the data in storage. It generates one-step-
ahead predictions and updates the system variables at any
time when observations are available (Pastres et al., 2003).
However, the commonly used batch calibration techniques
generally minimize long-term prediction error using a histor-
ical batch of data assuming time-invariant parameters, and
thus the information of new observations is not included.
They only address parameter uncertainty while uncertainties
in input, output and model are ignored.

Ensemble Kalman filter (EnKF) as an extension of the
traditional Kalman filter is Monte Carlo-based and recur-
sive data processing, which results in optimal estimation of
strongly non-linear dynamic systems with Gaussian probabil-
ities (Burgers et al., 1998; Reichle et al., 2002; Evenson, 2003).
Data assimilation can improve the treatment of uncertainty in
environmental modeling by recursively updating model states
and parameters, in which all sources of uncertainties are
explicitly taken into account (Moradkhani et al., 2004; Vrugt et
al., 2005; Peters et al., 2005). Several studies have applied EnKF
to assimilate field measured or remotely sensed soil moisture
and surface temperature data, as well as leaf area index (LAI)
or NDVI data into crop growth models for improving crop yield
forecasts and soil moisture estimation (Walker et al., 2001;
Pellenq and Boulet, 2004; Zhang et al., 2006; Pauwels et al.,
2007; De Wit and van Diepen, 2007). These methods have also
been used to assimilate the measured eddy fluxes and carbon
pools in carbon cycle models (Jones et al., 2007; Williams et al.,
2005), or to assimilate microwave soil brightness temperature
and surface flux measurements in land surface process mod-
els for soil moisture and water balance estimation at basin or
regional scales (Crow and Wood, 2003; Pan and Wood, 2006).

Long-term dataset of eddy covariance fluxes of CO2, water
and energy over a wide range of ecosystem types, which is
accessible from the global FLUXNET database, are now broadly
used to calibrate and validate carbon cycle and ecosystem
models. These data contain specific insight on the carbon fix-
ation, respiration and evapotranspiration in the ecosystem.
Hence, parameters which are tightly related to the processes
of photosynthesis, transpiration and soil respiration at diur-

nal to seasonal to inter-annual time scales can be potentially
constrained and retrieved through the flux dataset. Since
there are a lot of parameters in a complex ecosystem model
and some parameters are compensating with each other, the
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arameters may be over-fitted or under-fitted with the eddy
ovariance flux measurements. Continuous eddy covariance
uxes offer a unique opportunity to examine the magnitude
nd dynamics of seasonal changes in some key parameters
n ecosystem models related to the carbon cycle (Santaren
t al., 2007; Wang et al., 2007). Wang et al. (2001) concluded
hat three to five parameters in an ecosystem model could
e independently estimated using eddy covariance flux mea-
urements of sensible heat, water vapor and CO2. Braswell et
l. (2005) estimated Harvard forest carbon cycle parameters
ith the Metropolis algorithm and found that most parame-

ers are highly constrained and the estimated parameters can
t both the diurnal and seasonal variability patterns simul-
aneously. Knorr and Kattge (2005) reported that half-hourly
ddy covariance measurements of CO2 and water fluxes could
ubstantially reduce the uncertainty of about five parameters
n an ecosystem model with given a prior uncertainties. While
ptimizing the parameters in the simplified PnET model, Sacks
t al. (2006) deduced that metabolic processes of soil microbes
ere quite different between summer and winter. However,
ll the above reports of parameter estimation, assuming time-
nvariant parameters, are based on batch calibration with eddy
ovariance fluxes rather than with sequential data assimila-
ion.

To account for seasonal variations of parameters, an eddy
ovariance flux data were assimilated into an ecosystem
odel with an EnKF in this study. The EnKF data assimilation

echnique is characterized as a stochastic-dynamic system in
hich the state variables are modeled as random variables
ith a Gaussian distribution and evolve with the second-
rder moment. It directly calculates the state error covariance
atrix by propagating an ensemble of states and updating
ith observations, in which the correction (updating) proce-
ure is linear. As adapted from the traditional Kalman filter
or strongly non-linear systems, in some conditions EnKF
oes not allow for a relatively complete representation of the
osterior distribution to handle the system non-linearities
asily and compute readily the statistical characteristics of
he distributions (e.g., mean, mode, kurtosis, variance, etc.)
Moradkhani et al., 2005). In the application of an EnKF, it is
herefore typical to presume that the parameters are specified
n advance and the state variables are sequentially updated.
he model behavior may change over time due to the evolu-

ion of vegetation photosynthetic properties and soil microbial
ctivities that depend directly on soil moisture and tem-
erature. Hence it is necessary to recursively estimate the
arameters for improving model performance so that param-
ter variation can be discerned as the model is run forward in
ime.

The Boreal Ecosystem Productivity Simulator (BEPS) model
Chen et al., 1999) was recently updated and modified to
imulate the net ecosystem productivity (NEP) with detailed
escription of photosynthesis, energy partitioning, hydrolog-

cal and soil biogeochemical processes (Ju et al., 2006). In this
tudy, eddy covariance fluxes for a boreal aspen forest in the
luxnet Canada Research Network (FCRN) were assimilated

nto the BEPS model with an EnKF. Five parameters related to
hotosynthesis, transpiration, and soil respiration processes
ere optimized recursively using the filter. By this way, the

easonal and inter-annual variabilities of these parameters
7 ( 2 0 0 8 ) 157–173 159

were then estimated, and the improved performance of the
model were also evaluated.

2. Assimilation method

The general objective of data assimilation is to create the best
analysis of the system states/parameters and find the model
representation that is most consistent with observations, by
combining incomplete and inaccurate measurements with
output from an imperfect model. In sequential data assim-
ilation, information on the state vector and its covariance
structure derived from previous observations are propagated
into the next estimate. When new observations are avail-
able, the prediction of the dynamical model is compared
and updated, weighted according to the prediction and mea-
surement error covariance. The assimilation process must
conserve the information provided by the model itself and by
previous observations.

The basis of the traditional Kalman filter is that a previous
measurement can provide prior information about the state
at the current time, provided that the evolution of the state
in time can be modeled. It is an optimal, variance-minimizing
analysis. The basic assumptions in Kalman filter techniques
are that the system and measurement noises are both white
and Gaussian, and the output of the Kalman filter is an analy-
sis or estimate of the states/parameters that synthesize prior
knowledge about the system and new observations by statis-
tical minimization of estimated errors. For the above purpose,
the general “cost” function of a system (Eq. (1)), J is used to
find the maximum likelihood solution of the variables x as a
balance between observations yo with covariance R and a pri-
ori knowledge contained in the background variables xb with
covariance P (Tarantola, 1987).

J = (yo − H(x))TR−1(yo − H(x)) + (x − xb)
T
P−1(x − xb) (1)

where H is the observation operator which samples the state
vector x and returns a vector to be compared to the observa-
tions.

The solution of Eq. (1) can be expressed as

xa
t = xb

t + K(yo
t − H(xb

t )) (2)

Pa
t = (I − KH)Pb

t (3)

in which t is a subscript for time, superscript b refers to back-
ground quantities and a to analyzed ones, H is the linear
matrix form of the observation operator(H), K is the Kalman
gain matrix, expressed as

K = (Pb
t HT)(HPb

t HT + R)
−1

(4)

In the EnKF, the covariance matrix can be represented
approximately using an approximate ensemble of model
states and the time evolution of the probability density of

the model state is realized with a Markov Chain Monte Carlo
method (Evenson, 2003). By this way, non-linear approxima-
tion is involved. The mean of the ensemble is considered to be
the most probable assimilated state and the dispersion of the
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ensemble will be an approximation of second moment of the
model potential trajectory distribution (Evenson, 1994). The
EnKF propagates an ensemble of state vectors in parallel so
that each state vector represents one realization of generated
model replicates.

In this study, it is implicated that the updates of out-
put fluxes in EnKF data assimilation are relatively small and
will not significantly affect the unbiased model prediction,
since the soil water and ecosystem carbon storage, as well
as climate forcing are the main determinants. However, some
parameters in the model which are not easily obtained from
field measurements may be sensitive and quite uncertain to
model predictions. In case parameters are time-variant, EnKF
is applied to track the parameters with observation data series.
Following, data assimilation with such an EnKF is designed
to estimate time-variant parameters related to photosynthe-
sis, transpiration and soil respiration. It is assumed that the
temporal evolution of model parameters is propagated with a
random white noise error, �, at each time step (Moradkhani et
al., 2004). Parameter samples are obtained as

�i−
t+1 = �i+

t + �i
t (5)

Then the Kalman gain matrix is calculated from the ensem-
ble of parameter vectors as

Pb ≈ 1
N − 1

(�1 − �̄, . . . , �N − �̄) · (�1 − �̄, . . . , �N − �̄)
T

(6)

Being analogy with Eq. (4), the parameter ensemble mem-
bers are updated as

�i+
t+1 = �i−

t+1 + K�
t+1(yo

t+1 − Hyi−
t+1 + �i

t+1) (7)

where K�
t+1 is the Kalman gain for parameter correction; �i

t+1, is
a random realization of the measurement error. In this case H
is a unit matrix. To mitigate the over-dispersion of parameter
samples and conserve information between time steps, the
perturbations are added to the ensemble means in each time
step in our case.

3. Model description

The ecosystem model, BEPS, was mainly developed to simu-
lated forest ecosystem carbon budget and water consumption
(Chen et al., 1999; Liu et al., 2002, 2003; Ju et al., 2006). It is
a process-based ecosystem model that includes energy parti-
tioning, photosynthesis, autotrophic respiration, soil organic
matter (SOM) decomposition, hydrological processes and soil
thermal transfer modules. In the model framework, the
canopy is stratified into overstory and understory layers, each
of which is separated into sunlit and shaded leaf groups. In
the hydrological processes module, snow packing and melting,
rainfall infiltration and runoff, as well as soil vertical per-
colation are simulated. To estimate the vertical distribution
of soil moisture and temperature, the soil profile is divided

into five layers with different depths. Ecosystem respiration
(RE) includes plant autotrophic and soil heterotrophic res-
piration. Plant autotrophic respiration is separated into two
components, namely growth respiration and maintenance
2 1 7 ( 2 0 0 8 ) 157–173

respiration. Soil heterotrophic respiration results from the
decomposition of nine SOM pools, which is similar to the
CENTURY model (Parton et al., 1993; Ju and Chen, 2005). The
processes regulated by the parameters to be retrieved here are
briefly described as follows.

Photosynthetic rates of plant leaves are simulated with the
photosynthesis–transpiration coupling scheme, in which leaf
photosynthetic rates are estimated with Farquhar’s biochem-
ical model (Farquhar et al., 1980; Baldocchi, 1994). The carbon
assimilation process is coupled to leaf stomatal conductance
by the empirical relationship of Ball–Woodrow–Berry (Ball et
al., 1987). The photosynthetic rate and stomatal conductance
are calculated as

A = min(Ac, Aj) − Rd (8)

Ac = Vc maxfV(T)
Ci − �

Ci + Kc(1 + Oi/Ko)
(9)

Aj = JmaxfJ(T)
Ci − �

4(Ci − 2� )
(10)

and

gs = m
Ahr

Cs
+ go (11)

where A, Ac and Aj are the net photosynthetic, Rubisco-limited
and light-limited gross photosynthetic rates (�mol m−2 s−1),
respectively; Rd is the daytime leaf dark respiration; Vc max is
the maximum carboxylation rate; Jmax is the electron trans-
port rate; Ci and Oi are the intercellular CO2 and oxygen
concentration, respectively; � is the CO2 compensation point
without dark respiration; Kc and Ko are the Michaelis–Menten
constants for CO2 and O2 respectively; fV(T) and fJ(T) are the air
temperature (T) response functions for Vc max and Jmax, respec-
tively; gs is the bulk stomatal conductance (�mol m−2 s−1); go

is the residual conductance; hr and Cs are the leaf surface rel-
ative humidity and CO2 concentration, respectively; m is an
empirical coefficient.

Plant growth respiration is set as 20% of A. The main-
tenance respiration, which is dependent on temperature, is
expressed as

Rm =
4∑

i=1

riMifm(T) (12)

where r is the reference respiration rate at a base temperature;
M is the biomass (kg m−2), subscript i = 1,. . .,4, refers to leaf,
sapwood, coarse root and fine root, separately; fm(T) is the air
temperature response function of r. Heterotrophic respiration,
Rh, stems from five litter pools and four soil carbon pools, i.e.

Rh =
9∑

�j�jCj (13)
j=1

where � is the respiration coefficient equal to the percent-
age of decomposed carbon release to the atmosphere; � is the
decomposition rate of a soil carbon pool, affected by several



e c o l o g i c a l m o d e l l i n g 2 1

Fig. 1 – Annual precipitation, maximum leaf area indexes
of overstory and understory during 1997–2004 at
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OREAS/BERMS old aspen site.

nvironmental and biochemical factors, such as temperature,
oisture, lignin fraction, soil texture; C is the carbon pool size.
The time step of the simulation is set as 30 min and forc-

ng data include atmospheric variables (temperature, relative
umidity, wind speed, precipitation, solar irradiance, and sky

ong-wave irradiance), vegetation type and stand age, canopy
lumping index, soil texture and physical properties, initial
arbon pool values. The model outputs include gross primary
roduction (GPP), autotrophic respiration, heterotrophic res-
iration, net radiation, latent and sensible heat fluxes, soil
oisture and temperature profiles, etc.

. The FCRN dataset

he FCRN dataset used in this study are eddy covariance
easurements made at the BOREAS (Boreal Ecosystem-
tmosphere Study) SOA (Southern Old Aspen)/BERMS (Boreal
cosystem Research and Monitoring Sites) site, located in
rince Albert National Park, Saskatchewan, Canada (53.629◦N,
06.200◦W), at an altitude of ∼600 m and slope of ∼1%. Flux
easurements have continued since 1994. The mean annual

ir temperature is 0.4 ◦C and annual precipitation is 467 mm,
ecorded at the nearest climate station (Gower et al., 1997). Soil
exture varies from loam to sandy loam with a 2–10 cm litter
nd surface organic layer on the top-soil layer. The dominant
ree is trembling aspen, Populus tremuloides Michx, which was
3 years old (year 2000) and 22 m tall. The forest canopy has
wo distinct canopy layers, aspen as the overstory and hazel-
ut (Corylus cornuta Marsh) as the understory. Stand density

s 980 stems ha−1 and soil carbon content is about 6.7 kg m−2

Gower et al., 1997). The annual precipitation amounts and
aximum leaf area index values from 1997 to 2004 are shown

n Fig. 1. This period included three drought years (2001–2003).
Wind velocity and temperature fluctuations were mea-

ured with a three-dimensional sonic anemometer–thermo-
eter (Model R3, Gill instrument Ltd., Lymington, UK)

ounted above the forest canopy at a height of 39 m on a

caffold tower; CO2 and water vapor fluctuations were mea-
ured with a closed path infrared gas analyzer (Model 6262,
I-COR Inc., Lincoln, NE) within 3 m of the sonic anemometer
7 ( 2 0 0 8 ) 157–173 161

(Griffis et al., 2003; Krishnan et al., 2006). The analogue eddy
covariance signals were recorded at a sampling rate of 125 Hz
by a data acquisition system, then digitally filtered and down-
sampled at 20.8 Hz for flux calculations (Chen et al., 1999).

Climate variables (temperature, humidity and wind speed)
at 37 m above the ground and radiation fluxes (global radia-
tion, downward sky long-wave radiation, net radiation) were
also measured. Measurements of leaf area index in different
phenological stages were carried out with the LAI-2000 plant
canopy analyzer (Chen et al., 1997a,b, 2006; Barr et al., 2004)
in each year, which were interpolated as daily values over the
entire leaf expectation here.

The measured CO2 fluxes have been gap-filled and storage-
corrected for the underestimation of respiratory rates at stable
atmospheric conditions using an 8-level CO2 concentration
profile, and the missing CO2 flux measurements account for
18% of the total flux observations (Barr et al., 2004). The CO2

flux is split into GPP and RE based on the methods described by
documents (Griffis et al., 2003; Reichstein et al., 2005; Krishnan
et al., 2006), in which RE estimated from nighttime and winter
CO2 flux data was used to fit an annual empirical relationship
between RE and soil temperature at a shallow depth for esti-
mation of daytime RE and GPP, and gaps in GPP are filled by
using Michaelis–Menten light-response equation.

5. Parameter selection and ensemble
generation

To identify the sensitive parameters, responses of the param-
eters to prediction on GEP, respiration and evapotranspiration
fluxes are analyzed by randomly sampling the parameters
in their possible ranges. The five most sensitive parameters
are selected, which directly relate to photosynthesis, energy
balance and soil respiration, namely, Cf (clumping index), m
(coefficient of Ball–Woodrow–Berry relation linking stomatal
conductance and net photosynthetic rate), Vc max (maximum
carboxylation rate), Jmax (electron transport rate), and an
adjustment multiplier (referred to as Kr) to respiratory rates of
soil organic carbon pools. Among the above five parameters,
clumping index describes the degree of non-random spatial
distribution of foliage, in which unity means random distri-
bution, and a decrease from unity represents the increase of
clumping. Clumping alters the way that foliage interacts with
solar radiation, resulting in changes in total light absorption
by the canopy and the fractions of sunlit and shaded leaves.
Vc max and Jmax are found to be strongly correlated with a factor
around 2.1 (Wullschleger, 1993; Leuning, 2002), as both depend
on the leaf nitrogen content. In this paper, different perturba-
tions were independently given, in order to further explore the
essential relationship between these two parameters. Since
there are nine litter and soil carbon pools and nine decom-
position rates, it is hard to trace the variation of every pool
with time. Therefore, as an alternative, it is assumed that the
decomposition rates of all the carbon pools change with the
same proportion, so a multiplier K is adopted to account for

their variations.

The values of the above five parameters are given in Table 1.
In this study the generation of ensemble members is real-
ized by disturbing vegetation leaf area index and the above
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Table 1 – Standard deviations and ranges of model
parameters optimized

Symbol Unit Standard deviation Range

Cf Dimensionless 0.1 0.6–1.0
m Dimensionless 0.4 4–14

−2 −1
Vc max �mol m s 4 5–80
Jmax �mol m−2 s−1 8 10–170
Kr Dimensionless 0.1 0.3–5

five parameters. The observation identified that these param-
eters show significant seasonal and inter-annual variations,
resulting from changes of environmental and biochemical
conditions, such as temperature, soil moisture, leaf age and
leaf nitrogen content, etc. (Wilson et al., 2001; Grassi et al.,
2005; Wang et al., 2007). It is assumed that the biological prop-
erties of aspen and hazelnut are identical (Grant et al., 1999),
even though the leaf nitrogen content is shown to be higher
in the overstory (Middleton et al., 1997). The parameter stan-
dard deviation is set about 10% of its default values here. The
very important variable for eddy flux simulation is the canopy
LAI, which usually has quite noticeable measurement uncer-
tainty. Hence, LAI is also perturbed with a standard deviation
of 0.4 to account for its observational error. At the local scale,
it is assumed that the atmospheric forcing measurements are
recorded with enough accuracy compared to the ecosystem
parameter uncertainties, so atmospheric forcing is not per-
turbed.

Estimation of observational errors is crucial to EnKF data
assimilation as the errors determine the extent to which the
simulated fields are to be corrected to match the observa-
tions. The mean errors of the eddy covariance observation
are usually assumed to be zero and the Gaussian distribu-
tion, although there are reports that flux measurement errors
are more close to a double exponential distribution (Hollinger
and Richardson, 2005). Flux measurement is often affected
by systematic errors including lack of energy balance closure
and incomplete measurement of nocturnal CO2 exchange due
to inadequate turbulent mixing, vertical advection, extended
flux footprints, interference of rainy periods, etc. (Lee, 1998;
Massman and Lee, 2002; Wilson et al., 2002). The flux mea-
surement uncertainty can be deduced from simultaneous
measurement at two nearby towers. Hollinger and Richardson
(2005) reported the uncertainty of eddy covariance latent heat
flux (LE) as about 30%, sensible flux 20%, and CO2 flux 10% in
daytime. However, the uncertainty of eddy covariance at night
is four times greater than the above values, reported from
a study in Howland Forest AmericaFlux site with red spruce
(Picea rubens Sarg.) and eastern hemlock (Tsuga canadensis (L.)
Carr.). Williams et al. (2005) set the uncertainty of GPP as 30%
and RE as 20% in his EnKF scheme. Typically, the overall accu-
racy of eddy covariance fluxes is in the range of 10–20% (Wesely
and Hart, 1985; Santaren et al., 2007). In this study, the uncer-
tainties of GPP, RE and LE are set as 15% of their daily average
values and assumed to be independent of each other.

The ensemble size is an important parameter in EnKF,

which represents the number of model states predicted and
analyzed concurrently. The size should be large enough to
ensure the correct estimate of the error variance in the pre-
dicted model state (Williams et al., 2005). The very large
2 1 7 ( 2 0 0 8 ) 157–173

ensemble size may bring heavy computation burden. In this
study, the ensemble size is set to 200. Data assimilation is
conducted at daily steps, so that the model parameters are
updated at the end of each day based on the predicted daily
average and observed fluxes.

6. Results

6.1. Seasonal variability of the parameters

In the EnKF data assimilating process, the parameters are
updated daily by adding up the corrections. Then the new
parameters are applied to calculating the fluxes on the next
day. For these five parameters, Kr is retrieved for the whole year
round, whereas the other four parameters are only retrieved
during the growing season corresponding with the foliage
duration. Since there is a certain fluctuation of the retrieved
parameters at daily steps, the seasonal variations of the
parameters are illustrated with 10-day averages.

As shown in Fig. 2, the retrieved clumping index value
varies during the growing season, but the seasonal pattern
appears to be different in the studied period. The patterns
only in 1998, 2000, 2002 and 2004 are illustrated as exam-
ple. In 1998, its value is estimated to be around 0.9 during
the leaf developmental stage between DOY120 and DOY170,
and then it decreases to around 0.75 during the fully foliaged
period. In 2000, it is about 0.86 in the leaf expansion period,
and then it declines down to 0.75 when the foliage is fully
developed. In September, however, due to the senescence of
leaves leading to lower leaf area index, the leaf spatial dis-
tribution becomes more homogeneous and less clumped (i.e.
the clumping index value is more close to unity). In 2002,
the clumping index is about 0.95 at the early period of leaf
elongation and expansion, and then it decreases to about 0.8.
In 2004, the clumping index shows pattern with the values
of 0.75–0.8 in the full canopy period. The clumping index is
a parameter adopted to describe the canopy spatial struc-
ture, corresponding to the solar radiation interception and
turbulent flux transfer. The retrieved values of clumping index
with EnKF from eddy covariance fluxes are reasonable com-
pared with the empirical value, about 0.7 for deciduous forest
as used in the literature (Chen, 1996; Chen et al., 1997a,b,
1999; Ju et al., 2006). It is seen here that eddy covariance
fluxes can be used to constrain significantly the parameter
of foliage structure. Clumping index is inherent to the canopy
structure, describing the aggregation of individual leaves into
shoots, braches and tree crowns. It is confirmed by remote
sensing and field measurement that clumping index will
decline (meaning more clumped) with increase of LAI, because
higher LAI usually increases foliage overlap and foliage self-
shading, thus reducing light capture efficiency and foliage
carbon assimilation (Nikolov and Zeller, 2006; Chen et al.,
2005; Sampson and Smith, 1993). Corresponding to the cli-
matic variability, leaf budburst date and peak LAI date are
changing, which cause the inter-annual variation of clumping

index.

The slope of the stomatal conductance–photosynthesis
relationship in Eq. (11), m, varies seasonally and shows
remarkable inter-annual differences (Fig. 3). This parameter
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elates to the degree of leaf stomatal opening. In 1998, it
ncreased rapidly from 4.6 to 8.0 in July and August, and then
ecreased slightly while foliage senescence started in Septem-

er. In 2000, m was about 6 in the early growing season, and
hen it increased to 8.0 in the mid summer. It decreased
lightly in the middle of August, but increased steadily and
eached 9 at the end of the growing season. It was a drought

Fig. 3 – Seasonal variations of parameter m
(Cf) in 1998, 2000, 2002, 2004, respectively.

year in 2002 with annual precipitation of 286 mm. Due to soil
moisture stress, stomata opening was obviously less than that
in the previous years (see Krishnan et al., 2006). Under such

unfavorable conditions, plants may have adapted by improv-
ing the water use efficiency. In most part of the growing
season, m was around 5, except July when it reached 6.5. Lower
m value means lower stomatal conductance and higher water

in 1998, 2000, 2002, 2004, respectively.
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Fig. 4 – Seasonal variations of photosynthetic capacit

use efficiency at a certain carbon assimilation rate. Photo-
synthesis was not significantly reduced in 2002, partly owing
to the rich soil moisture storage from high precipitation in
the previous years. In contrast, 2004 was cool and quite wet
with an annual precipitation of 667 mm. At the early grow-
ing stage, m value was about 6, and then increased slowly
and continuously till the end of the growing season, when
it reached 11. During this cool and wet year, although late
leaf emergence and diminished leaf area index, leaf senes-
cence started late. Consequently, leaf stomatal opening was
more extended in summer with favorable transpiration and
photosynthesis conditions. After drought in the previous 3
years, surface conductance for water vapor recovered to the
means, but photosynthesis was still less than the means
(Krishnan et al., 2006). The positive trend of m during the grow-
ing season is possibly related to compensation of declining
photosynthesis capacity while leaves are ageing to preserve a
relatively high stomatal conductance for active transpiration.
Since transpiration takes place in the stomatal cuvette, but
CO2 exchanging must pass through the mesophyll cell. Under
drought and leaf ageing conditions, the photosynthetic rate
decreases due to both stomatal guard cells and non-stomatal
inhibition at the chloroplast level linking electron transport
and phosphorylation. However, the Ball–Berry empirical stom-
atal conductance–photosynthesis relationship only accounts
for the stomatal regulation, therefore, it should be improved
to include the non-stomatal control on the transpiration and
photosynthesis coupling.
Parameters of Vc max and Jmax are representing the foliage
photosynthetic capacities at reference temperature (25 ◦C),
which are broadly assumed to be linear with leaf Rubisco-N
(Nitrogen) or N concentration (Williams et al., 1996; Dickinson
max and Jmax) in 1998, 2000, 2002, 2004, respectively.

et al., 2002; Arain et al., 2006). Measurements of nitrogen
content in mature aspen leaves showed that leaf chlorophyll
content increased since leaf emerged and reached steady
high values during late July to early August, and decreased
rapidly when the senescence began in September (Middleton
et al., 1997), but the N concentration might decrease slightly in
response to unfavorable environmental conditions, such as a
long drought in the summer. In Fig. 4, the values of Vc max and
Jmax retrieved in 1998, 2000, 2002 and 2004 showed consider-
able intra- and inter-seasonal variations. The two parameters
increased rapidly at the beginning of leaf emergence, and usu-
ally reached their peaks in late June and July, when the leaf
chlorophyll reached its peak. Following that, the parameters
declined to low values when the leaves began senescence. In
wet years, such as 2000 and 2004, the Vc max and Jmax val-
ues kept increasing until the leaves began to senescence with
abrupt declines of Vc max and Jmax. Arain et al. (2006) pre-
sented a similar trend for leaf Rubisco-N concentration with
a carbon–nitrogen coupled model. The temporal process of
foliage N concentration is highly related with phenological
variation, which is principally regulated by air temperature.
The seasonal variations of Vc max and Jmax are mainly caused
by changes in photosynthetic enzyme capacities and foliage
N concentration status, acclimation to seasonal environmen-
tal conditions and ageing. Soil water stress, leaf mass per area
and leaf age also imposed variability on Vc max (Wilson et al.,
2000). The seasonal variation of Vc max was confirmed in many
studies (Reich et al., 1991; Wilson et al., 2001; Wang et al., 2007),

but the patterns were different in their cases. The reports show
that there are different seasonal variation patterns for decid-
uous forest. For example, Wilson et al. (2001) reported that
Vc max increased rapidly during leaf expansion and reached an
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ig. 5 – Seasonal variations of the multiplier of heterotrophi

arly maximum, followed by a slow decline during late sum-
er and a rapid decline in autumn while senescence occurred.
owever Reich et al. (1991) found photosynthetic capacity

emained constant until the period close to senescence. The
easonality of photosynthetic capacity parameters signifi-
antly influences the estimation of total annual ecosystem
xchange. Generally, the retrieved photosynthetic capacity
arameters show marked seasonality and inter-annual vari-
tions resulting from seasonal and inter-annual fluctuations
n the environment. The derived patterns are in consensus

ith the reported values and trends in temperate deciduous
orests, such as Wilson et al. (2001) and Grassi et al. (2005).

The seasonal variation of RE is predominantly controlled
y temperature, and soil moisture explains only a small por-
ion (Flanagan et al., 2002). The multiplier to the reference
ecomposition rates shows strong seasonal variations (Fig. 5).

n these 4 years, the multiplier was about 0.5 in the winter,
hereas it increased with the air temperature arising early in

he growing season and reached 1–2 in the growing period with
emarkable damping periods, which were very possibly caused
y the annual rainfall patterns. It declined rapidly in the late
utumn, as weather was turning chill. In 1998, Kr was only a bit
bove 0.5 during DOY 110-170 when the total rainfall amount
as only 20 mm. In the midsummer, Kr reached around 1. In

000, Kr was about 1.2 in the growing period. In 2002, which
as a dry year, Kr decreased to around 0.6 in July–September.
n 2004, which was the wettest year, Kr increased to about 2
n June and then declined to 1.5 in the summer. It should be
oticed that this is only the adjusting amplitude for the het-
rotrophic respiration, which may have been overestimated
piration rates (Kr) in 1998, 2000, 2002, 2004, respectively.

or underestimated with these reference parameters. In the
scheme of soil organic decomposition, the dependence of SOM
decomposition rates on temperature and soil moisture has
been taken into account (Ju et al., 2006). There are three pos-
sible reasons that the default model was not able to trace
the seasonal variation of RE. Firstly, in the growing season,
photosynthesis and root exudates provide a primary source
of organic carbon for rapid utilization by microbes (Griffis et
al., 2004). The mechanism and process of root exudates are
not considered in the current model that may lead to a lower
estimate of soil respiration in the summer. Secondly, the tem-
perature sensitivity of heterotrophic respiration may change
seasonally and annually, and is generally larger in the growing
season than in non-growing seasons (Ryan et al., 1997; Griffis
et al., 2004). The prediction of soil moisture and the stress
exerting on the soil respiration may contain biases that lead
to the simulated deviations. The parameterization of mois-
ture stress and temperature sensitivity needs to be calibrated
with more available datasets in the further study. Thirdly, the
microbial communities that are active in summer may be
different from those in winter, leading to changed response
functions of temperature. Finally, the snow pack and frozen
soil may inhibit the microbe activity and reduce the respira-
tion in winter.

Averaged over the 8 years, clear seasonal variation pat-
terns of the five parameters are obtained (Fig. 6). It is shown

that from leaf expanding in the spring to senescing in the
autumn, Cf presented declining trend from 0.88 to 0.78 with
slight variation, the measured value of 0.87 in 2003–2005 by
Chen et al. (2006) is fell in this range; m increased from 5 and
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Fig. 6 – The averaged seasonal pattern of the five p

approached to an approximately stable value of 8 since early
summer. Vc max and Jmax increased rapidly in the spring and
reached stable values of 60 and 128 �mol m−2 s−1 respectively
in summer and early autumn, then went down rapidly at the
end of September. For respiration, from DOY100 to DOY 330 in
summer period, Kr values are in the range of 0.9–1.3, most of
which are within 0.9–1.1, whereas in the winter Kr is about 0.5.
Hence, the soil respiration may be significantly overestimated
with default parameter values in winter which are fitted under
temperate conditions. Overall for the five parameters shown in
Fig. 6, their relative steady values in the growing season means
that the assumption of time-invariant parameter is reason-
able for general condition, keeping in mind that relative larger
standard deviation of the parameters also occurs in the grow-
ing season. Fluctuations of climate variables at seasonal or
annual scale, especially precipitation and temperature, cause
the inter-annual variations of ecosystem productivity and car-
bon turnover processes. But the ecosystem is approaching
to equilibrium in the long-term. From this point, long-term
prediction using parameter values optimized with short-term
measurement dataset is prone to errors.

6.2. Inter-annual variability of the parameters

Optimized parameters values averaged over growing seasons
are shown in Fig. 7. Parameter values exhibit noticeable vari-
ations between years. During these 8 years, the mean value
of Cf was about 0.8 with a maximum of 0.85, agreeing to the
value in Ju et al. (2006). The parameter of m varied from 5.3 to
9.2 with a mean of 7.8, close to the values given by Wilson et
al. (2000). Vc max varied from 44 to 60 �mol CO2 m−2 s−1 with a
mean of 50 �mol CO m−2 s−1, and J fell in the range from 93
2 max

to 126 �mol CO2 m−2 s−1 with a mean of 106 �mol CO2 m−2 s−1.
The mean of Vc max agrees with that used by Grant et al.
(1999). In Wang et al. (2007), Vc max and Jmax vary significantly
at annual scale, and their means are 58 �mol CO2 m−2 s−1
eters (Cf, m, Vc max, Jmax and Kr) from 1997 to 2004.

and 121 �mol CO2 m−2 s−1 over the broadleaf deciduous forest
sites, respectively. The inter-annual variability of these photo-
synthetic parameters was much smaller than their seasonal
variability, which depended on the availability of soil nitrogen,
phenological process, rainfall pattern, etc. Other simulation
results in the literature showed similar inter-annual variabil-
ity of the photosynthetic parameters (Arain et al., 2006; Wang
et al., 2007). The multiplier, Kr, of soil respiration also showed
inter-annual variability which ranged from 0.8 to 1.7 with an
average of 1.1 during the growing season, and varied from 0.6
to 1.1 with an average of 0.8 in the winter time. It is seen that Kr

in summer is higher than other years. The respiration in 2004
recovered from previous drought in 2003, and higher than the
pre-drought mean, due to the buildup of residual organic mat-
ter and adequate moisture which may be the main reason of
high Kr in this year. The two lower values of Vc max in 2002
and 2003 seem to relate with the drought and cooler climate
conditions, in which the annual precipitation amounts were
less than 300 mm. The drought and low temperature in spring
and autumn significantly reduced the foliage period (Barr et
al., 2004), resulting in low microbe activities and low nitrogen
availability in the root zone, which may be the cause of low
foliage nitrogen and low photosynthetic capability. The high
values of Vc max in 2001 were related to early warming and late
cooling which extended the growing season, allowing for more
photosynthetic production than other years. As mentioned
above, although 2001 was a dry year, it had relatively rich soil
moisture storage in deep soil layer from the precipitation in
the previous years (Kljun et al., 2007). This made the photo-
synthesis in this dry year relative higher than other years.

6.3. Performance of EnKF in flux simulation
Since fluxes of GPP, RE and LE are predicted with the updated
parameters on the previous day, the efficiency of EnKF in
model improvement can then be evaluated. Fig. 8 illustrates



e c o l o g i c a l m o d e l l i n g 2 1 7 ( 2 0 0 8 ) 157–173 167

Fig. 7 – Inter-annual variations of the five parameter

Fig. 8 – Ensemble predicted daily GPP, RE and LE fluxes with
one standard deviation, and observations during
1997–2004.
s (Cf, m, Vc max, Jmax and Kr) from 1997 to 2004.

the daily GPP, RE and LE fluxes with one standard deviation
from 1997 to 2004. The standard deviations are estimated from
ensemble predictions, most of which are less than 0.75 �mol
CO2 m−2 s−1 for GPP, less than 1 �mol CO2 m−2 s−1 for RE, and
less than 10 W m−2 for LE. For the whole simulated period,
EnKF DA can interpret 95, 96, 85 and 83% of the measure-
ment variance of GPP, RE, NEP (=GPP − RE) and LE, respectively
(Fig. 9). These results have significantly improved the simula-
tion accuracy compared with results using manually adjusted
optimal parameter set (Cf = 0.85, m = 6, Vc max = 54, Jmax = 100,
Kr = 1) which can interpret 91% of GPP, 91% of RE, 72% of NEP
and 81% of LE, respectively. The RMSE (root mean square error)
of NEP with DA is 0.99 �mol CO2 m−2 s−1, whereas the RMSE of
NEP is 1.36 �mol CO2 m−2 s−1 for the manually adjusted opti-
mal parameter set. The significant deviations of GPP mainly
occurred in spring. At daily scale, the GPP quickly increased
even during the days in the leaf expansion period in spring,
and the DA at the daily time step could not catch up with this
rapid change adequately in some years, because the model
parameter updates were a bit slower than the plant photo-
synthetic capacity enhancement. In the early summer, the
GPP reaches its plateau, and keeps a high rate under favor-
able weather condition, whereas the rate may be reduced in
the mid and late summer due to water stress, then it decreases
rapidly in the autumn while senescence is initiated. Generally,
DA is capable of simulating the photosynthesis process quite
satisfactorily.

DA can also simulate the seasonal variation of RE quite
well, especially in winter. In summer, the variation ampli-
tudes of simulated RE rates were sometimes larger than that
of observations. Considering that R rates predicted by the
E

model are sensitive to environmental conditions such as soil
moisture and temperature, the large variations are caused
by the climate fluctuations. However, the measured rates
may be influenced by much complex mechanisms resulting
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the seasonal variations of the parameters. However, due to
the parameter interactions and their mutual compensation
effects, there are a lot of parameter sets that can fit the model
prediction with similar performance efficiency under a cer-
Fig. 9 – Comparison between ensemble predicted an

in less variation amplitudes. With parameter optimization
through data assimilation, the estimates of vapor flux are also
improved. However the simulation efficiency did not reach as
high as that of GPP and RE.

Since the parameters optimized at t step are used to pre-
dict the fluxes at t + 1 step, the prediction shown here is not
updated with the observations yet. Hence, the prediction and
measurements should be considered to be independent from
each other. The improvement of prediction stems from imbed-
ding the seasonal trends of the key parameters. One advantage
of DA comparing with other parameter optimization method-
ology is that EnKF DA traces more exactly and timely the
parameter trends resulted from physiology, drought, climate
variation, etc. Neglecting the parameter seasonal variation
may significantly over- or under-estimate the total annual
net ecosystem exchange, especially in some abnormal climate
years (Wilson et al., 2001).

6.4. Estimation of NEP

During 1997–2004, only in 2004 the Fluxnet site acted as a
small carbon source. At annual time steps, the EnKF can give
reasonable carbon budget estimation in high agreement with
the observation, as shown in Fig. 10. The absolute annual
differences between the DA simulated and measured NEP

are ranged from −6 to 68 g C m−2 year−1 and the cumula-
tive difference of NEP is 76 g C m−2 year−1 (8.5%) from 1997
to 2004. Krishnan et al. (2006) found that the observed NEP
was about zero in 2004, a little higher than our observed value
served daily GPP, RE, NEP and LE from 1997 to 2004.

of −40 g C m−2 year−1, probably caused by the gap filling algo-
rithm used in the data processing.

7. Discussion

7.1. Parameter interactions

EnKF sequential data assimilation is an efficient technique
for model parameter estimation, which is able to trace
Fig. 10 – Comparison between ensemble predicted and
observed annual NEP from 1997 to 2004.



e c o l o g i c a l m o d e l l i n g 2 1 7 ( 2 0 0 8 ) 157–173 169

ame

t
m
s
r
C
t
p
a
t
t
u
(
V
i
s

7
m

T
t
a
w
l
v
1
p
2
i
s
f
a
s
s

Fig. 11 – Correlation between the behavior par

ain likelihood measure. Derived under minimization of the
odel prediction variances in the EnKF framework, it is pos-

ible that the parameter values may differ from the “physical
eality” due to parameter interactions. In our study, the Monte
arlo sampling and multi-criteria constraint is used to explore

he parameter interactions (Mo and Beven, 2004). A total of 226
arameter sets, which mostly satisfied the likelihood criterion,
re selected to analyze the correlation coefficients between
he parameters (Fig. 11) from 10,000 samplings. It is found that
he mean ratio of Jmax to Vc max is 2.06 ± 0.30, close to the value
sed in the EnKF analysis. The highest Pearson coefficients

r2) occur at the relationship between Jmax and m and between

c max and m, which are 0.33 and 0.21, respectively, indicat-
ng that the correlation between the parameter pairs is not
ignificant.

.2. Impacts of the ensemble size, observation and
odel errors

he ensemble size of 50, 100, 200, 500, 1000 had been used
o analyze the impacts of the ensemble size to the EnKF data
ssimilation efficiency. It is found that when the ensemble size
as larger than 100, the predicted GPP and R were quite simi-

ar and the updated parameters reached approximately stable
alues. Fig. 12 shows the results with the ensemble size being
00 and 200 based on 2001 analysis. All of the five updated
arameter showed insignificant differences between 100 and
00 ensemble sizes, just a slight increase in different grow-
ng stages as the ensemble size increased from 100 to 200. Cf

howed a slight difference in summer, m showed a slight dif-

erence in the beginning of the growth, Vc max and Jmax showed

small increase in the late growing season, and Kr showed
ome minor differences (less than 6%) over the growing sea-
on.
ter sets derived from Monte Carlo samplings.

Changes of the values of the model and observational error
covariances are made to explore their effects on the optimized
parameters. Although the retrieved parameters vary smoother
with a 20% observation error than with 10% (not shown here),
there is a slight difference in model performance when the
observation error is set as 10 and 20%, respectively. This impli-
cates that the choice of 15% observation error used in EnKF is
reasonable. To test the model error effect, the parameter vari-
ances of Vc max and Jmax are used for the analysis because they
are essential to match the rapid increase of photosynthesis
in the early leaf expansion period. By setting two values of 2
and 5 for Vc max and two values of 4 and 10 for Jmax as their
variances, we found that the first group (2, 4) cannot match
the rapid increase of the GPP in spring. In contrast, while the
variance is too large with the second group (5, 10), the model is
of overestimating the summer GPP. This confirms our choice
of (4, 8) as the variance for the two parameters as shown in
Table 1.

7.3. Implications for model structure improvement

The significant seasonal and inter-annual variations of the
photosynthetic and respiration parameters demonstrate the
incomplete parameterization of some processes. In most
ecosystem models or land surface process models, the param-
eters of Cf, m, Vc max and soil respiration rates at reference
temperature are set as steady values, which may cause
marked deviation of the model predictions under some abnor-
mal climate conditions, such as drought (Wilson et al., 2001).
For model performance improvement, research foci should

be put on the mechanisms exploration of these seasonal and
inter-annual variations, on which new parameterizations are
developed, such as Cf with LAI, Vc max with leaf age and soil
moisture deficit, etc. Specifically, in the recovering process
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Fig. 12 – Sensitivities of the five parameters

from serious drought, the coupling of transpiration and photo-
synthesis processes are not as tight as normal condition. Soil
respiration should take into account the composition differ-
ences of the labile matter in winter and summer, as well as
the microbe communities, which are expected to significantly
affect the respiration rates. Finally, the response functions of
Vc max and respiration rate to temperature and soil moisture
should be deliberated with more field experiments.

8. Conclusion

Since the parameters in the ecosystem models are tempo-
rally and spatially interlinked in non-linear forms, the derived
parameter values at leaf or canopy scales may lead to incorrect
predictions at other scales. Eddy covariance fluxes measured
in diverse ecosystems, which represent 100–1000 m footprint
distance, are in agreement with the resolution of the dis-
tributed hydrological and ecological modeling purposes. So,
eddy covariance fluxes are widely utilized to calibrate and
validate the ecosystem models.

A data assimilation method based on an EnKF is designed
to improve estimation of ecosystem model parameters and
to reduce model simulation errors using eddy covariance flux
measurements. This method accounts for errors in the model
structure and measurements to ensure that the input-state-
output behavior is consistent with the observations. To reduce
the spontaneous variation of the retrieved parameter values,
measured fluxes of water vapor, GPP and R are sequentially
E

assimilated into the BEPS model with EnKF to update the
five parameters that are closely linked with photosynthetic
capacity, transpiration and heterotrophic respiration. Half-
hourly data from 1997–2004 at BOREAS BERMS Old Aspen site
nKF sizes over the growing season in 2001.

are used. It is found that these parameters show remark-
able variation seasonally and annually. The photosynthetic
capacity presents the prominent seasonal variation, which
usually increases rapidly in the leaf expansion stage and
reaches a plateau in the early summer, following an abrupt
decrease at the end of the growing season. The multiplier
to the heterotrophic respiration coefficients is about 0.5 in
wintertime to about 1.0 in summertime, which are notice-
ably regulated by precipitation patterns. The intensity of soil
respiration may be related to the metabolic responses of
the microbial communities in summer and winter. In sum-
mertime, labile compounds exuded by roots greatly enhance
the microbial activity, whereas long-lived compounds in the
wintertime weaken microbial activity. We found that soil res-
piration intensity was affected by soil moisture conditions
to a certain degree in this case. From leaf expanding in the
spring to senescing in the autumn, Cf presented declining
trend from 0.88 to 0.78 with slight variation; m increased
from 5 and approached to an approximately stable value of
8 since early summer. The relative stability of the parame-
ters values in the growing season means that the assumption
of time-invariant parameter is reasonable for general condi-
tion, keeping in mind that relative larger standard deviation of
the parameters also occurs in the growing season. The inter-
annual variabilities of these parameters were much smaller
than their seasonal variability.

With parameter optimization through data assimilation,
the estimates of GPP, RE, NEP and vapor flux are significantly
improved at daily and annual time scales. It is concluded that

the data assimilation with an EnKF can be used to retrieve the
parameters based on flux measurements, and the optimized
parameters can significantly improve the ecosystem model
accuracy.
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This study, especially the seasonal variation patterns of
ome parameters determined through data assimilation may
e used to guide further model development that accounts for
he mechanisms of the seasonal variability.
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