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Abstract. Light detection and ranging (lidar) sensors, both at the terrestrial and airborne levels, have recently emerged as
useful tools for three-dimensional (3D) reconstruction of vegetated environments. One such terrestrial laser scanner (TLS) is
the Intelligent Laser Ranging and Imaging System (ILRIS-3D). The objective of this research was to develop approaches to
use ILRIS-3D data to retrieve structural information of an artificial tree in a controlled laboratory experiment. The key
crown-level structural parameters investigated in this study were gap fraction, leaf area index (LAI), and clumping index.
Measured XYZ point cloud data from a systematically pruned tree were sliced to retrieve laser pulse return density profiles,
which subsequently were used to estimate gap fraction, LAI, and clumping index. Gap fraction estimates were cross-
validated with traditional methods of histogram thresholding of digital photographs (r2 = 0.95). LAI estimates from lidar
data were corrected for the confounding effects of woody material and nonrandom foliage distribution and then compared
with direct LAI measurements (r2 = 0.98, RMSE = 0.26). The methods developed in this research provide valuable lessons
for application to field-level TLS data for structural parameter retrievals. Successful demonstration of analysis protocols to
extract crown-level structural parameters like gap fraction, LAI, and clumping index from TLS data will be important for
detailed assessments of 3D canopy radiative transfer modeling and likely will lead to more robust inversion algorithms.

Résumé. Les capteurs lidar (« light detection and ranging »), que ce soit au niveau terrestre ou aéroporté, se sont avérés
depuis peu des outils utiles pour la reconstruction 3D des environnements végétalisés. Le système ILRIS-3D (« Intelligent
Laser Ranging and Imaging System ») est l’un de ces systèmes SLT (scanneur laser terrestre). L’objectif de cette recherche
était de développer des approches pour l’utilisation des données 3D de ILRIS pour l’extraction de l’information structurelle
d’un arbre artificiel dans le cadre d’une expérience contrôlée en laboratoire. Les paramètres structurels clés de la couronne
examinés dans cette étude étaient les fractions de trous, l’indice de surface foliaire (LAI) et l’indice d’agrégation. Les
données mesurées du nuage de points XYZ dérivés d’un arbre systématiquement taillé ont été découpées pour extraire les
profils de densité des retours d’impulsion laser, qui furent utilisés par la suite pour estimer les fractions de trous, le LAI et
l’indice d’agrégation. Les estimations de fractions de trous ont été co-validées à l’aide des méthodes traditionnelles de
seuillage d’histogramme d’images numériques (r2 = 0,95). Les estimations de LAI dérivées des données lidar ont été
corrigées pour les effets confusionnels dus aux matériaux ligneux et à la distribution non aléatoire du feuillage, puis
comparées aux mesures directes de LAI (r2 = 0,98, RMSE = 0,26). Les méthodes développées au cours de cette recherche
apportent des leçons utiles pour l’application des données de SLT acquises au sol à l’extraction des paramètres structurels.
La démonstration réussie de protocoles d’analyse pour l’extraction des paramètres structurels de la couronne tels que les
fractions de trous, le LAI et l’indice d’agrégation à partir des données de SLT deviendra importante pour les évaluations
détaillées de modélisation 3D du transfert radiatif du couvert et conduira vraisemblablement à la mise au point
d’algorithmes d’inversion plus robustes.
[Traduit par la Rédaction]

332Introduction

The spatial organization of above-ground plant material,
within a forest canopy, plays an important role in controlling
photon–vegetation interactions, which in turn influence

functional activities such as photosynthesis and
evapotranspiration. The ability to describe forest canopy
structure involves the characterization of the shape, position,
size, and orientation of vegetative elements. Furthermore, the
organization of the vegetative elements can be evaluated at
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multiple spatial scales (i.e., individual tree, forest canopy, and
ecosystem). Large-scale canopy architecture is often described
using spatially integrating properties such as leaf area index
(LAI), which is the total one-sided area of leaf tissue per unit
horizontal ground area (Watson, 1947). To account for nonflat
leaves such as needles, this definition was modified by Chen
and Black (1992) to half the total developed area of leaves per
unit ground surface area. LAI is a primary variable employed in
ecosystem models that quantitatively characterize energy
exchanges between the atmosphere and the canopy. However,
directly measuring LAI involves destructive sampling and
time-consuming methods (Lang et al., 1985), thus spatially
extensive in situ measurements to characterize large-scale
heterogeneity are not feasible (Jonckheere et al., 2004). To
overcome such obstacles, various approaches have been
developed to indirectly measure canopy structure, involving
optical instruments (i.e., DEMON, LAI-2000, tracing radiation
and architecture of canopies (TRAC)) and models (Lang et al.,
1985; Welles and Norman, 1991; Chen and Cihlar, 1995).
These instruments measure gap fraction, which is the integrated
value of the gap frequency over a given domain (Weiss et al.,
2004). Gap fraction can then be inverted to retrieve LAI values,
or more specifically plant area index (PAI), since leaf and
woody material are not distinguished from one another. Also,
LAI retrievals that are based on random leaf distribution
models can be erroneous, since actual canopy foliage is not
randomly distributed (Jonckheere et al., 2006). In addition,
optically based techniques are indirect methods that rely on
vegetation spectral characteristics, which not only are
influenced by tree–leaf structure but also are affected by
viewing–illumination geometries. With the recent introduction
of laser technology in the field of remote sensing, there is now
potentially a means of directly acquiring a comprehensive
mathematical description of tree structure (van der Zande et al.,
2006). Light detection and ranging (lidar) instruments use the
time-of-flight (TOF) principle to measure the distances of
objects based on the time interval between laser pulse exitance
and return, upon reflection from an object. Recent studies have
illustrated the ability to derive forest canopy structure from
airborne lidar observations (Lefsky et al., 2002; Naesset, 2002;
Parker et al., 2001; Riano et al., 2004). At the ground level,
tripod-mounted lidar units or terrestrial laser scanners (TLS),
commonly used for mining, urban planning, and surveying
applications, can be used to rapidly obtain three-dimensional
(3D) spatial datasets (Lichti et al., 2002). The application of
TLS data for ecological monitoring is now at the forefront of
active remote sensing research. Scientists have begun to
recognize such lidar systems can now be deployed in a forest
environment to quickly digitize structural information of tree
crowns, potentially replacing laborious, time-consuming, and
often relatively inaccurate manual field measurements. Radtke
and Bolstad (2001) derived the vertical distribution of
vegetation structure within broad-leaved forests by acquiring
vertically emitted laser beams from the forest floor, using a
commercially available laser rangefinder. By mounting a laser
ranging system on a pan–tilt platform, Lovell et al. (2003)

cross-validated laser-derived LAI estimates with those
obtained by hemispherical photography to within 8%. More
recently, TLS data have been used to estimate other
photosynthetically significant parameters such as plant area
densities (Takeda et al., 2008) and the ratios of woody to total
plant areas (Clawges et al., 2007). Additional research that
focused on the measurement and segmentation of tree stem
diameters and branching structures has also been conducted
(Henning and Radtke, 2006; Hopkinson, 2004; Thies et al.,
2004; Watt and Donoghue, 2005). Although the delineation of
stem diameters is tree specific, the retrievals of LAI are
spatially integrated for the entire canopy. Laser technology
offers the potential of calculating LAI at the individual crown
level provided that 3D point cloud data can be acquired for
isolated crowns. It is in this context that this paper describes the
acquisition and analysis of 3D TLS data for an individual
artificial Ficus tree.

Controlled laboratory experiments were conducted using an
artificial Ficus tree, which was systematically pruned to
illustrate the impact of various stages of foliage cover, from full
“leaf-on” to complete “leaf-off,” on the laser pulse returns. A
slicing routine was developed to analyze the lidar data and
extract pertinent tree crown structural information, namely
crown-level gap fraction and LAI. Often, within the remote
sensing community, these two parameters are considered or
modeled at the canopy scale. However, due to the precision of
laser scanning systems and the flexibilities of controlled
laboratory experiments, these two parameters can now
potentially be estimated at an individual crown scale. It was the
objective of this research to explore innovative methods of
retrieving gap fraction and LAI in a controlled environment,
from which lessons could be applied to field-level TLS data.

Experimental data acquisition and
processing
Intelligent laser ranging and imaging system (ILRIS-3D)

The Intelligent Laser Ranging and Imaging System (ILRIS-
3D), developed by Optech Incorporated, Toronto, Canada, is a
tripod-mounted surveying tool with a 40° × 40° field of view and
a scanning range of 3 m to beyond 1000 m (Table 1). The ILRIS-
3D is robustly designed for field use and operates at a scanning
rate of 1500 laser pulses per second. The class 1 laser (eye safe)
has a wavelength of 1535 nm. The spot spacing between laser
pulses is 0.026 mm × R, where R is the range distance in metres.
The laser pulse diameter is 12.7 mm at exitance and degrades at a
rate of 0.17 × R. The system has a beam divergence of 0.00974°
(0.17 mrad) and a minimum spot size of 0.00115° (0.02 mrad).
The high-speed counter within the ILRIS-3D measures the TOF
from the start of a laser pulse to the return of that pulse. The time
measurement (t) is then converted to distance (d) using the
relationship d = ct/2, where c is the speed of light. The acquired
dataset, for a given scan, consists of XYZ and intensity point
cloud data, a low-resolution digital image of the captured screen,
and field notes entered during the scan by the operator. The
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acquired data can be recorded for either first pulse returns or last
pulse returns. All data are written directly to an on-board
removable flash card. Postprocessing of the data was done using
a software package known as Polyworks (version 9) from
InnovMetric. ILRIS-3D data were complemented with a high-
resolution digital photograph obtained with a Nikon D50 digital
camera mounted to the system.

Laser scanning of artificial tree

The ILRIS-3D, mounted on a survey tripod, was used to
acquire point clouds of an artificial Ficus tree (Table 2) in a
controlled laboratory environment. The artificial tree was
affixed to a rotating platform, allowing multiple perspectives of
the tree from a stationary viewpoint. First pulse returns were
recorded to yield point cloud files that show the XYZ coordinate
of each detected element. First pulse data measure the range of
the first object encountered, which in this experiment was the
foliage and stem elements of the tree. The distance between the
tree stem location and the ILRIS-3D was kept constant at 10 m,
and all scans were acquired at an angular (x–y) resolution of
2 mm at 10 m (assume parallel laser). After the scan, the tree
was rotated 90° for subsequent scans from three other
perspectives. Once four perspectives of the tree were measured,
leaf samples were pruned from the tree. To provide a range of
structural conditions, the tree was systematically defoliated to
decrease the leaf count from 970 leaves (full foliage) to 0 leaves
in 10 stages (Table 3). Although no precise criteria were
employed to determine which leaf gets pruned and which does
not, the experiment followed the guideline of pruning two
leaves from each branch for the first six steps of defoliation and
one leaf per branch for the last three steps. This guideline
yielded an approximate symmetrical distribution of clipped
leaves after each pruning stage. The four perspectives and 10
steps of leaf cover yield a total of 40 lidar scans of the artificial
tree. The 3D point cloud from one perspective at the different
levels of leaf cover is shown in Figure 1. At each defoliation
step, the leaf inclination angle of all the pruned leaves was
measured. All the pruned leaves of a given defoliation step
were stored together. The individual leaf area of a subset of

leaves (n = 100), 10 leaves at each defoliation step, was
measured using a commercial flatbed scanner.

Processing 3D lidar point clouds

Preprocessing of the 3D lidar data was conducted to omit all
laser pulse returns that were extraneous to the target. Using
Polyworks, a region of interest was delineated around the tree
and all laser pulse returns outside of the region (i.e., from
background wall, ground, etc.) were excluded. Exclusion of all
non-tree laser pulse returns was a straightforward process
because they were visually distinguishable in the Polyworks
software environment. After omitting the extraneous points, the
resultant 3D point cloud was saved in ASCII text format and
served as the input to a slicing algorithm that was used to plot
profiles of the lidar data. Data were processed using the
following steps: (1) read in the XYZ ASCII text file from one
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Tree height 1.7 m
Crown dimensions 0.85 m × 0.90 m (length × width)
Trunk diameter 0.15 m
Leaf dimensions 0.09 m × 0.05 m (length × width)
Materials Silk-screened polyester leaves

Table 2. Artificial tree characteristics.

Dynamic scanning range 3–1500 m to an 80% target; 3–800 m to a 40% target; 3–350 m to a 4% target
Data sampling rate 1500 pulses/s
Beam divergence 0.00974°
Minimum spot step (azimuthal and zenith axes) 0.00115°
Laser wavelength 1535 nm
Laser class Class 1 (eye safe)
Scanner field of view 40° × 40°
Control interface T3 palm pilot
Power supply 24 V DC
Scanner dimensions 320 mm × 320 mm × 220 mm (length × width × height)
Scanner weight 13 kg
Data storage 1 Gb removable compact flash memory card
Digital camera Externally mounted Nikon D50 and 20 mm lens

Table 1. Technical specifications of the Optech Incorporated ILRIS-3D.

Step No. No. of leaves Crown LAI

1 970 4.90
2 850 4.29
3 718 3.63
4 580 2.93
5 448 2.26
6 310 1.57
7 172 0.87
8 106 0.54
9 58 0.29
10 0 0

Table 3. Leaf count at each step of tree
defoliation.



ILRIS-3D scan; (2) determine the nearest (Y-min) and farthest
(Y-max) laser pulse returns along the range direction (Y-axis);
(3) slice the data between the two extreme returns by a user
specified number of intervals; (4) tabulate all the laser pulse
returns that fall within one interval; (5) calculate the centre of
momentum for the laser pulse returns within one interval (X
and Z mean); (6) use Delaunay triangulation to draw
topological triangles between detected laser pulse points within
a predefined slice; (7) sum up the calculated areas of each of the
topological triangles within a slice; (8) use the cumulative area
from step 7 and calculate the radius of a circle with the
equivalent area (assumption that crown is spherical);
(9) determine laser pulse return density using the tabulated
number of points and the area of the polygon within a slice; and
(10) output results to an ASCII file.

The resultant output file yielded the following information:
start of interval (Y-min), end of interval (Y-max), X mean, Z
mean, number of pulses, polygon area, equivalent circle radius,
and pulse density. The algorithm allows a quick profiling of the
point cloud by displaying the fraction of returned laser pulses
as a function of distance from the scanner. Determining these
profiles is an efficient means of evaluating tree structural
properties, which cannot be easily obtained using the tools
provided with the Polyworks software platform.

Since the data are from a TLS, the profiles show pulse
returns as a function of distance into the crown from the front
edge to the back, unlike retrievals from airborne lidar systems,
which typically show a top-down perspective of a tree. It is
important to note that the 3D point density is variable due to the
physical pulse–object interactions and the intrinsic
characteristics of the laser (van der Zande et al., 2006). Since
first pulse return measures the reflection of the first object it
encounters, the spatial information of elements located behind
the object is not available due to the shadow effect (van der
Zande et al., 2006). As a result, the multiple perspectives
acquired in this experiment help to effectively minimize the
influence of shadows and provide a more complete 3D
representation of the crown. Such comprehensive coverage is
not practically feasible in field environments, but such benefits
and lessons at the laboratory scale must first be explored. The
effect of intrinsic scanner properties on the pulse return density
was also considered using a methodology recently reported by
Danson et al. (2007), who developed a laser scanner model (for
the Riegl LMZ210i) to effectively predict the number of laser
pulse returns based on inherent characteristics of the TLS.
Since the TLS system does not record laser misses, it is
necessary to quantify the number and direction of all laser
pulses in a scan, which is dependent on resolution, scanning
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Figure 1. ILRIS-3D scans of the artificial tree were acquired at each step of the systematic defoliation from 970 leaves to 0 leaves. Angular
scan resolution was 2 mm, and the laser spot diameter was 13.7 mm with the tree positioned at a distance of 10 m from the scanner.
Perspective 1 is illustrated here.



geometry, and line and frame scan angle range (Danson et al.,
2007). Thus, generating a laser scanner model for the ILRIS-
3D to predict the number of laser pulse returns for a given area
is needed. Unlike the two-axis scanning mechanism of the
Riegl LMZ210i, the ILRIS-3D is a simplified frame viewing
TLS. Consequently, the need for multiple coordinate system
transformations to build the pulse density prediction model is
not necessary. The user specifies the scan resolution (i.e., the
spacing between laser pulses) at the time of data acquisition,
and that resolution degrades linearly with range distance.
Therefore, it is possible to determine the exact number of laser
pulses that “hit” a target of known area at any given range from
the ILRIS-3D. Furthermore, under the conditions that the target
is (i) normal to the collimated laser pulses and (ii) 100%
reflective, the number of returned laser pulses should equal the
number of pulses emitted. This idealized perspective also
assumes that there are no losses of laser pulses to the
surroundings, by scattering or absorption. Consequently, the
theoretical laser pulse density as a function of distance for
varying scan resolutions can be established (Figure 2).
Differences between the predicted pulse density and the
measured values of the tree crown can be used to retrieve
architectural parameters such as crown-level gap fraction. The
ratio of the measured pulse density to the theoretical density at
the same distance from the scanner yields the percent cover:

(measured pulse density)/(theoretical pulse density)
= percent cover (1)

Gap fraction is the probability of a pulse being transmitted
through the vegetated target without encountering any objects.
Therefore, the gap fraction P for the view direction θ can then
be obtained based on the principle that

1 – (percent cover) = P(θ) (2)

Therefore the return of an emitted laser pulse means 0% gap,
and lack of return for a given pulse means 100% gap. Since the
ILRIS-3D is a frame-viewing scanner, the view direction is
fixed, and the resultant retrievals can be more specifically
labeled as monodirectional gap fraction. It is important to note
that target reflectivity and orientation of target elements relative
to the pulse direction can lead to possible errors of inclusion or
omission in the recorded number of laser pulses. For example, a
particular element within the path of the laser beam needs to
have a high enough reflectivity to produce a return signal that
can be recorded. If the reflected signal does not exceed the
scanner intrinsic noise threshold, then return pulse is not
recorded, thereby erroneously indicating that a gap is present
(Danson et al., 2007). Despite the range dependency on the
ability to detect gaps, the knowledge of sensor intrinsic
properties, such as the degradation of angular (XY plane)
resolution with distance, allows the normalization of this
dependency. This investigation employs an approach that is
similar to that of traditional methods (i.e., hemispherical

photography), where indirect estimates of LAI are determined
through direct measurements of gap fraction as follows:

P
G

( ) exp
( )

cos ( )
θ θ

θ
= −









Ω LAI
(3)

where G(θ) is the G function (mean projection of unit foliage
area),Ω is the clumping index (nonrandomness factor), and θ = 0.

A G function value of 0.5 was used in the experiment, based
on our measurements of the inclination angle of each leaf as it
was excised during the laboratory experiment. Currently, the
widely accepted reasons for errors in LAI estimation are (i) the
contribution of nonleafy material (i.e., stems, branches); and
(ii) the nonrandom distribution of foliar elements as described
by Ω, or the clumping index (Breda, 2003). Gap fraction based
methods of determining LAI cannot directly distinguish
between green and nongreen materials (i.e., stems, trunks,
branches, senescent leaves, etc.). The amount of wood material
and its spatial organization can significantly alter LAI estimates
using optical instruments. Therefore, alternative terms such as
vegetation area index (VAI) (Fassnacht et al., 1994) and plant
area index (PAI) (Neumann et al., 1989) have been proposed to
label retrievals using gap fraction methods. However, to
appropriately link LAI to canopy functional processes, it is
necessary to specifically target the green photosynthetic
components and account for woody material contributions
(Weiss et al., 2004). Chen (1996) introduced the woody area
index parameter α, based on intensive destructive
measurements, into the calculations of LAI. Furthermore, the
deviation of the foliage arrangement from a random
distribution, more commonly known as the clumping index Ω,
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Figure 2. Knowledge of the scanning configuration parameters,
mainly scan resolution, can be used to determine the theoretical pulse
return density (points/m2) from a solid object (assume no losses due
to scattering or absorption during travel path) at any distance. Highest
resolution capable of the ILRIS-3D is 0.26 mm at 10 m.



is a bias in LAI estimation that must be resolved. The term
effective LAI (Le) was used to describe the product of Ω and
LAI. The clumping index is equal to unity for a random foliage
distribution and deviates from unity as the distribution becomes
more clumped. The relationship between clumping index,
woody material (α), and true LAI (Equation (4)) was proposed
by Chen and Black (1992), where

LAI e=
−( )1 α L

Ω
(4)

From Chen and Cihlar (1995), the clumping index can be
calculated by

Ω =
ln[ ( )]

ln[ ( )]

P

P
m

o

θ
θ

(5)

where Pm(θ) is the measured gap fraction, and Po(θ) is the
imaginary gap fraction with a random spatial distribution.

The unique data (i.e., multiple perspectives and varying leaf
densities) collected in this experiment using the ILRIS-3D
allow the quantification of both of these sources of
discrepancies (α and Ω). The contribution of α to the LAI was
determined using the scan of the artificial tree in the leaf-off
state. Laser pulse densities of the woody material can be
subtracted from the other leaf-on states to get a direct estimate
of the green material component. The clumping index was
determined by comparing the measured gap fraction for the tree
versus the gap fraction of a simulated random laser pulse
distribution within the same boundary space (Equation (5)).
The determination of these two sources of discrepancies allows
the accurate retrieval of LAI from gap fraction estimates and
extends the experiments conducted and described in Danson et
al. (2007).

Experimental results and discussion
Extracting structural parameters: crown-level gap

fraction

A total of 40 ILRIS-3D scans were acquired from the
artificial tree (4 perspectives × 10 steps of leaf cover). The

varying perspectives all exhibit a steady decrease in the number
of laser pulse counts as the amount of leaf material was
decreased (Table 4). Each scan was separated into 50 slices of
approximately 2 cm thickness along the range direction (y
axis). The slicing routine is capable of slicing the XYZ point
cloud data into as many slices as required by the user.
Increasing the number of slices (i.e., decreasing slice thickness)
provides more detailed profiles of the laser pulse returns from
the tree crown. However, other issues such as computational
time must be considered when selecting the number of required
slices. In this investigation 2 cm thick slices were chosen, for
quick computation time, without compromising the resolution
of the retrieval of along-range profiles. Based on the tabulation
of points and the calculation of area for a given slice, the
fractional laser pulse return and the laser pulse return density as
a function of distance into the crown were determined
(Figure 3). The location of the highest fractional laser pulse
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No. of leaves Perspective 1 Perspective 2 Perspective 3 Perspective 4

980 49 215 48 874 49 201 48 672
850 46 019 47 743 48 480 49 396
718 44 771 46 208 45 223 46 283
580 44 283 45 868 43 417 44 133
448 41 597 42 207 41 095 42 839
310 38 802 40 525 37 941 40 569
172 34 467 36 036 36 642 36 644
106 31 503 33 297 32 120 34 405

58 29 048 32 179 30 333 32 584
0 24 258 29 666 24 779 29 248

Table 4. Laser pulse return counts for ILRIS-3D scans.

Figure 3. Slicing of the XYZ point cloud into 2 cm thick slices
yields laser pulse distribution profiles as a function of crown
distance. Decreasing the leaf material results in a lower fraction of
returned laser pulse in the front half of the tree. Minimal changes
were observed in the back half of the tree due to shadowing.



return for any given perspective corresponded with the stem
location. The stem and branch elements of the tree play a
significant role in the number of laser pulse returns. As the
number of leaves was reduced, the fraction of laser pulse
returns on the front half of the tree decreased, with minimal
changes observed in the back half of the tree. Defoliation of the
tree can be detected at the front half of the tree, as observed by
the high degree of variability before the stem location.
However, leaf and woody elements at the front half of the tree
were intercepting the laser pulses, and thus obscuring the return
of laser pulses from elements in behind. In other words, laser
pulse shadowing increases with increasing LAI, but beyond the
stem location the crown can be considered optically thick.
Despite the efforts of azimuthal symmetry in the pruning
process, obstructions and shadowing inhibit the ability to

accurately retrieve leaf material in the back half of the tree.
Thus, rotating the tree and collecting data from multiple
perspectives provides sufficient information about all sides of
the crown for accurate structural parameter extraction.

During the separation of the point cloud into slices, a
Delaunay triangulation algorithm was used to calculate crown
area. The triangulation was computed on each individual slice
to determine crown area as a function of distance from the four
different perspectives at all leaf count levels (Figure 4). This
triangulation method was compared to another approach where
the maximum radius of each slice (based on Euclidean distance
of point distribution) was estimated. Area calculations were
subsequently determined using the derived maximum radius,
assuming a spherical crown. Due to the variability in point
spatial distribution along the range direction, the maximum-
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Figure 4. Mean crown area (from 10 steps of leaf cover) as a function of distance for the four perspectives of the
artificial tree. Errors bars represent one standard deviation from the mean.



radius approach tended to overestimate crown area, which
consequently underestimated laser pulse return density. The
triangulation technique was more representative of the slice
area because it considered all points within the slice and
inherently accounts for the spatial distribution. Crown area
retrievals from the different perspectives reveal the relative
symmetry of the artificial tree (Figure 4). In other words, since
perspectives 1 and 3 are opposing views of the crown, their area
profiles along the range direction mirror one another. Upon
calculation of the slice area and previous tabulation of the
number of laser pulse returns per slice, density distributions can
now be determined. As expected, the laser pulse return
densities decrease as more leaves are pruned from the tree
(Figure 5). The shadow effect of laser scanner data is also
evident when laser pulse densities are calculated as a function
of distance into the crown. Furthermore, to determine
cumulative pulse density (Figure 6) we would sum the return
density from the front side (up until stem location) of one
perspective, with its opposing viewpoint, effectively joining
two halves of the tree. The cumulative pulse return densities
decrease as leaf count decreases. At the laboratory level we
were capable of acquiring multiple perspectives, thereby
permitting such a technique of integrating two halves of the
crown. It is important to note that, although this approach is
applicable in a controlled laboratory environment, it is
potentially ineffective in the field, where acquiring more than
one perspective of a tree may not be feasible due to obstructing
elements in a stand of trees. Consequently, it is important to test
the validity of this assumption by determining if an
extrapolation from single-view data to retrieve full crown
information is feasible. Comparing this cumulative point
density from the tree with the sensor intrinsic theoretical

density at the same range yields an estimate of crown gap
fraction. To cross-validate gap fraction retrievals from TLS
data, a more conventional dataset was acquired. High-
resolution digital photographs, simultaneously acquired with
ILRIS-3D scans, were used to estimate crown-level gap
fraction. Histogram thresholding was employed on a binary
representation of the photographs using standard image
processing software to assess gap fraction (Figure 7). This
methodology follows a protocol similar to that for
hemispherical photography, which has already been shown to
agree well with lidar-derived gap fraction retrievals (Danson et
al., 2007; Hopkinson and Chasmer, 2007; Morsdorf et al.,
2006). Although this optically based method using digital
photography is an indirect approach, it provides a practical
cross-validation dataset.

To address the value of multiperspective ILRIS-3D data of
the tree crown, the comparisons between lidar-based gap
fraction and photography-based estimates were done using two
methods. The first assessment used the laser pulse return from
one perspective (i.e., one half of the tree) and duplicated the
back half, working under the assumption that the tree is
completely symmetric (Figure 8a). The second assessment of
gap fraction utilized the information from one half coupled
with the data from the opposing perspective to effectively
generate a full 3D representation of the artificial crown
(Figure 8b). The experiments show that having true ILRIS-3D
information from both halves of the crown significantly
improves crown-level gap fraction estimates. In certain cases,
the procedure of duplicating the back half using the front half
laser pulse returns leads to an overestimation–saturation of
points, thereby producing negative gap fraction values. In other
words, there were more laser pulse returns than theoretically
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Figure 5. Pulse return density (points/m2) as a function of distance
into the crown was determined based on slice area calculations and
tabulation of laser returns. Changes in leaf density influenced
retrievals in the front half of the tree, with negligible difference
beyond stem location.

Figure 6. Summation of the laser pulse return densities from the
front and back halves of the tree yields a cumulative pulse density
(points/m2) for the entire crown. The crown cumulative densities
decrease as the leaf count decreases and are evaluated against the
theoretical density for gap fraction estimation.



possible when tree structural symmetry was assumed and the
back half was mimicked. The input of actual measured data
from the back half corrected this problem and yielded better
retrievals, when compared to traditional photographic methods.
Since four perspectives were acquired, this effectively provides
two complete 3D representations of each foliage step, when
opposing views are merged. Therefore, 20 estimates of gap
fraction for the tree were generated, and the estimates ranged
from 1% at full foliage state to 64% at the zero leaf state. A
64% gap fraction at the leaf-off state indicates that the woody
material of the tree is a significant contributor to the number of
laser pulse returns. The relative contribution of woody material
to gap fraction plays an important role in LAI estimation.

Crown-level leaf area index

After the estimation of gap fraction from the ILRIS-3D point
clouds, the focus of the investigation shifted to retrieving LAI
values. The systematic defoliation of the artificial tree provided
a large range of LAI conditions. Ten pruned leaves from each of
the 10 steps were scanned using a commercial flatbed scanner.
A mean leaf area of 28 cm2 was measured, with a variance of
5 cm2 for the 100 leaf samples. The low variance in leaf area is

due to the fact that this is an artificial tree. With the knowledge
of not only the number of leaves, but also the leaf area, direct
estimates of LAI were calculated. Based on the truth
measurements, crown-level LAI values for the tree ranged from
0 to 4.9. LAI estimates from the ILRIS data were obtained,
while accounting for the leaf inclination angle distribution, and
compared with the actual LAI (Figure 9). Based on the gap
fraction observations, initial LAI retrievals ranged from 0.8 to
8.7. Despite the strong correlation (r2 = 0.95) between the
estimated and truth measurements, there was still a large
discrepancy in the estimates (root mean square error (RMSE) =
1.13). This disagreement is primarily due to the inclusion of the
nongreen elements in the gap fraction. The stem and branches
of the artificial tree are significant contributors to the laser
pulse returns and the observed gap fraction. Therefore, these
initial estimates of LAI, which include the woody material
contribution, are more properly termed plant area index or PAI.
Correcting for the woody material fraction α requires a
subtraction of the cumulative laser pulse density of the leaf-off
state from all other leaf-on states. Once this correction factor is
applied, the LAI estimation errors decreased (RMSE = 0.68),
and a more 1:1 relationship was observed (Figure 10). Once
again, the flexibilities of a laboratory experiment allow lidar
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Figure 7. High-resolution digital photographs acquired at every defoliation step (shown here
on first row, 970 leaves; second row, 58 leaves) were converted to binary images. Spectral
thresholding techniques were used to calculate crown gap fraction based on the ratio of white
to black pixels.



characterization of the tree with zero foliage. At a field setting,
however, it is impractical to defoliate a tree to determine its
woody area index. Nonetheless, it may be feasible to acquire
field-level lidar scans of broadleaved crowns at the peak of the
growing season (leaf-on) and after senescence (leaf-off).
However, accounting for changes in the branching structure –
woody material index between field measurements could be a
challenging task. Alternative approaches that use lidar intensity
measurements to separate green from nongreen components
could also be explored. Furthermore, there are several obstacles
in using TLS in complex forest ecosystems, like the Boreal
forest. For example, forests with tall trees with overlapping

crowns hinder the ability to acquire crown-specific TLS data,
where individual crowns can be separated. Nonetheless, TLS
data, especially from a frame-viewing system like the ILRIS-
3D, can be used in environments with plantation-like
organization for individual crown characterization. For
example, research in olive (Olea europaea L.) plantations
(Moorthy et al., 2007) is revealing that lidar systems are a more
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Figure 8. ILRIS-3D-derived gap fractions were compared with
measured values (from digital photography) by (a) replicating
individual perspectives (n = 40) (i.e., assume symmetrical tree),
and (b) merging point densities from two opposing perspectives
(i.e., perspectives 1 + 3 and perspectives 2 + 4) (n = 20).

Figure 9. Estimated PAI from ILRIS-3D compared with actual
LAI (scanned leaf clippings) reveals good agreement (r2 = 0.95)
but inaccurate estimates (RMSE = 1.13).

Figure 10. Removal of woody material index, as obtained from
leaf-off measurements, using ILRIS-3D improved LAI retrieval
accuracies.



rapid operational approach for acquiring highly detailed crown-
specific information as compared to traditional coarse-
resolution ground-based survey methods.

Crown-level clumping index

The degree of clumping is a scale-dependent variable. Small-
scale clumping depends on the way foliage is located along the
stems of an individual plant trunk, whereas large-scale
clumping deals with the relative position of plants–trees within
a canopy (Weiss et al., 2004). The artificial tree experiment in
this investigation provided a unique dataset for directly
determining clumping index Ω at the individual plant scale.
Since clumping index is evaluated as a deviation from
randomness, simulations were conducted to generate randomly
distributed elements within the crown. Using the measured
return count for the tree from the different perspectives
(Table 4), random distributions of the equivalent number of
returns were produced. The boundary space of the random

crown was confined by the limits of the measured values of the
Ficus crown. The analysis for estimating gap fraction was
repeated for the random crowns, and the results were compared
with the tree retrievals. It was observed that the gap fraction for
the tree (clumped case) was generally greater than the gap
fraction for a random crown with the equivalent number of
laser pulse returns (Figure 11). This finding is in agreement
with Chen and Cihlar (1995), who describe that clumped
vegetated targets not only have larger gap fractions than
random canopies but also exhibit different gap-size
distributions. Clumping index profiles as a function of leaf
count were calculated using Equation (5) (Figure 11). The
observed range of clumping index was between 0.43 and 1.07,
and the index is near unity at higher leaf counts. Decreasing the
number of leaves causes the tree to be more clumped, and
subsequently the clumping index deviates from unity.
Previously estimated LAI values can now be corrected with the
computed clumping indices. The inclusion of the clumping
parameter in the LAI estimates further improved LAI retrieval
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Figure 11. Gap fraction measurements of the artificial tree were compared with gap fraction
retrievals from a similar crown with a random distribution of scatterers within the same physical
boundary space. Clumping index was determined for the 10 stages of leaf count by examining
the relationship between gap fraction of clumped tree (solid line) versus gap fraction of random
crown (broken line). Since four perspectives were acquired, the analysis can be repeated for two
unique (perspectives 1 + 3 and perspectives 2 + 4), but 3D representations of the tree.



accuracies (RMSE = 0.26) (Figure 12). Furthermore, slope and
offset values of 1.01 and –0.04, respectively, indicate the
strong linear correlation between lidar-derived LAI estimates
and true LAI measurements from destructive sampling.

Conclusion
We have shown that based on laboratory experiments it is

feasible to precisely retrieve crown-level structural properties
of an individual tree using terrestrial laser scanner (TLS) data.
High-resolution laser scans of an artificial tree, with varying
degrees of foliage cover, were acquired using the Intelligent
Laser Ranging and Imaging System (ILRIS-3D). A slicing-
based algorithm was developed to retrieve pertinent
information about spatial organization of the measured XYZ
point cloud datasets. The algorithm was efficient and effective
for quantitative analysis and visualization of the laser pulse
returns as a function of range distance. Measured laser pulse
return densities were compared with theoretical pulse densities
(based on sensor intrinsic properties) to compute crown-level
gap fraction estimates. Cross-validation of the retrievals
revealed strong agreement (r2 = 0.95), provided that opposing
viewpoints of the tree can be merged to overcome the
shadowing effect. Subsequent analysis utilized the gap fraction
values to determine crown-level leaf area index (LAI). Two
major sources of discrepancy in LAI estimation using optically
based remote sensing methods are (i) the contribution of the
woody plant material and (ii) the clumping or aggregation of
foliage elements. In this investigation both of these
discrepancies were quantitatively accounted for through
innovative evaluation of the laser point cloud data. The
influence of woody plant material was removed using the

measured laser pulse return density from the leaf-off state. This
correction converts the overestimating plant area index (PAI)
values (nongreen + green material) to LAI (only green
material). Accounting for the woody material index improved
initial PAI estimates with a root mean square error (RMSE) of
1.13 to LAI retrievals with an RMSE of 0.68. The second
correction factor or clumping index in this case was determined
by comparing the measured spatial distribution of the laser
point cloud with a random distribution. Integrating the
clumping index factor into the LAI estimates further improved
the retrievals (RMSE = 0.26). Based on the results, correcting
for the woody material error contribution to LAI estimates was
more significant than accounting for the clumping index, for
this particular tree. However, determining woody area index in
the field setting is not a trivial problem. New methods are being
investigated to evaluate if lidar-observed intensity or coupled
lidar and multispectral data can offer a potential solution to
discern green from nongreen elements within a canopy. Also,
to overcome the limitation of using only a single tree in this
study, a more extensive benchmark using trees of varying
shape and structure will be required to increase confidence in
the findings and improve applicability to field-level data.
Nonetheless, the experiments described in this study indicate
that TLS data are capable of deriving critical crown optical
properties (LAI and clumping index) with precision. Such
experiments could potentially push the use of TLS data as a
viable tool for field-level forest structure characterizations.

Furthermore, current analysis of TLS data includes
evaluating the additional benefits of nadir views coupled with
traditional tripod-mounted perspectives. ILRIS-3D-derived
tree metrics (from multiple perspectives) will be compared with
structural retrievals with airborne laser scanners. Also,
methodologies are being developed to construct general
primitives (i.e., cones, spheres, ellipsoids) from TLS data for
use as direct inputs into ray-tracing 3D radiative transfer
models. These physically based radiative transfer models have
been shown to have particular promise to accurately estimate
vegetation canopy biophysical variables in open canopies from
remote sensing observations, provided that canopy architecture
and scene components are accurately considered. Ongoing
research aims to improve the accuracy of 3D radiative transfer
models to predict canopy optical characteristics using prior
knowledge of the spatial arrangement of vegetated elements at
an individual tree scale (i.e., leaves, branches) and at a canopy
scale (i.e., plantation, homogeneous, open-clumped) derived
from TLS data.
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Figure 12. ILRIS-3D-based LAI estimates, now corrected for both
woody material and clumping index, are compared with measured
LAI from leaf clippings (r2 = 0.98, RMSE = 0.26).
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