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Optical remote sensing imagery can be used to retrieve
the following land surface parameters that are useful for car-
bon cycle modeling: (1) land cover type, (2) leaf area index,
(3) fire scar age, (4) clumping index, (5) biomass, (6) wetland
area, and (7) leaf pigment contents.  In our regional carbon
modeling, the first three parameters
have been used, while progresses are
being made to mapping the other
parameters.  In addition to these
remotely sensed land surface param-
eters, soil texture and organic carbon
maps, gridded monthly climate data
from 1901 to 1998, large fire polygon
data since 1959, and forest inventory
data are used to produce annual spa-
tial distributions of carbon sources
and sinks in the entire Canada’s
forests and wetlands at 1 km resolu-
tion for the period from 1901 to 1998.
The focus of this article is to review
methodologies for retrieving surface
parameters from remote sensing imagery and their use in
modeling the carbon source and sink distribution.

INTRODUCTION
Terrestrial ecosystems have undergone changes due to direct
and indirect impacts of human activities and are found to be
carbon sinks in recent decades, i.e., sequestering carbon from
the atmosphere [1,2].  The heterogeneous nature of terrestrial

ecosystems presents a major challenge
in our effort to improve regional and
global carbon cycle estimation, and
yet the ecosystem carbon budget
information not only has significance
in understanding the global climate
change [3,4], but has also become a
major knowledge gap in formulating
policies related climate change, given
the options of including sinks in
national greenhouse gas inventory
under the Kyoto Protocol (http://
unfccc.int/resource/docs/convkp/
kpeng.html).  Since the first polar
orbiting meteorological sensor
launched in 1978, i.e., the Advanced

Very High Resolution Radiometer (AVHRR), remote sensing
from space has afforded us data for quantitative description
of global land surface heterogeneities and changes, although
high quality data acquired from sensors specifically
designed for regional and global land surface applications
only has a short history since 1998, when both VEGETA-
TION on board SPOT 4 and the Moderate-resolution
Imaging Spectrometer (MODIS) on board Terra became
operational (Table 1).  Although remote sensing imagery is
currently insufficient in terms of the record length relative to
carbon cycle time scales as well as its capability in providing
key surface parameters, space-borne data nevertheless have
given us indispensable information based on which much
improved carbon cycle knowledge has been gained.  The
purpose of this article is to provide a concise review on the
status of remote sensing data used for terrestrial ecosystem
modeling with a main focus on the work done for Canada’s
forests and wetlands.  

METHODS FOR BIOPHYSICAL PARAMETER
RETRIEVAL
There are a number of surface parameters that can be
derived from remote sensing and are useful for carbon cycle
modeling (Table 2).  Some of the parameters, such as land
cover and LAI, are widely used in global and regional mod-
eling and are available from many sources.  Some parame-
ters, such as clumping index, are relatively new and are only

To address the need to
know the carbon source
and sink distribution in ter-
restrial ecosystems for vari-
ous science and policy pur-
poses, satellite remote
sensing can play a critical
and indispensable role.
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Sensor Name Abbreviation Major 

Characteristics 

Information Source 

Advanced Alone 

Track Scanning 

Radiometer 

AATSR 4 optical bands 

3 thermal bands 

2 view angles 

1 km resolution 

Since 2002 

http://envisat.esa.int/m-s/ 

Advanced Very High 

Resolution 

Radiometer 

AVHRR 2 optical bands 

3 thermal bands 

1.1 km resolution 

Since 1978 

http://noaasis.noaa.gov/ 

NOAASIS/ml/avhrr.html 

Global Imager GLI 29 optical bands 

7 thermal bands 

0.25-1 km resolution 

12/02-10/03 

http://www.eoc.jaxa.jp/ 

satellite/sendata/gli_e.html 

Medium Resolution 

Imaging 

Spectrometer 

MERIS 15 optical bands 

300 m resolution 

Since 2002 

http://envisat.esa.int/ 

instruments/meris/ 

Moderate- Resolution 

Imaging 

Spectrometer  

MODIS 20 optical bands 

16 thermal bands 

0.25-1 km resolution 

Since 1998 

http://modis.gsfc.nasa.gov/ 

Polarization and 

Directionality of the 

Earth’s Reflectances 

POLDER 15 optical bands 

3 polarization bands 

up to 14 view angles 

7 km resolution 

08/96-06/97, 12/02-

10/03 

http://smsc.cnes.fr/ 

POLDER/ 

VEGETATION VGT 4 optical bands 

1.1 km resolution 

Since 1998 

http://www.spot-

vegetation.com/ 

TABLE 1
MAJOR MODERATE-RESOLUTION OPTICAL SATELLITE SENSORS USEFUL

FOR REGIONAL AND GLOBAL TERRESTRIAL CARBON ESTIMATION
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available for limited regions, while several other parame-
ters, which are retrievable from remote sensing and critical-
ly useful for carbon cycle estimation, are not yet available
for any large regions.  The retrieval methodologies and the
current status for each of these parameters are briefly
reviewed here.

Land Cover Map
Globally, the most updated land cover map is the GLC2000
(http://www.eogeo.org/GLC2000) produced by individual
countries using the SPOT4 VEGETATION data supported
by the European Space Agency.  The North America part of
the map was jointly produced by the Canada Centre for
Remote Sensing and the US Geological Survey [5] using the
method of classification by progressive generalization ini-
tially developed by Cihlar et al. [6].  There are 35 cover types
based on the Natural Vegetation Classification Standard
adopted by the US Federal Geographic Data Committee.
These are
matched with
23 cover types in
GLC2000.  For
carbon modeling,
these cover types
are grouped into
several functional
types, such as
deciduous forest,
conifer forest,
grassland, crop-
land, tundra, bar-
ren, etc., and car-
bon related
parameter sets are
assigned to these
grouped cover
types [7].

Leaf Area Index
Leaf area index (LAI) is defined as one half the total leaf
area (all sided) per unit ground surface area [8].  This defini-
tion is suitable for both broadleaf and needleleaf forms and
is now accepted by the international community [9].  There
are several global LAI products that have been produced
using MODIS [10], POLDER [11], MERIS [12], and VEGETA-
TION and AATSR [13] (see Table 1 for information of these
sensors).  Large discrepancies are found among some of the
products over Canada [14], MODIS LAI [10] being consistently
30-50% larger than VEGETATION LAI derived using an
algorithm developed in Fernandes et al. [15].  In addition to
the differences in band width and response function
between the various sensors, LAI retrieval algorithms used
to produce these products are also quite different, causing
these large discrepancies.  There are also in consistencies in
LAI definition and measurement techniques and protocols.
In producing and validating Canada-wide LAI products,
Chen et al. [16] proposed a set of LAI measurement protocols
as well as validation procedures, which are similar to the
recent work by Abuelgasim et al. [14].  Through previous
studies [15-19], consistent ground-based measurements of LAI
were made in many forest and crop canopies over large
geographical areas, providing a solid foundation for LAI
map validation over Canada.  For forests, it is shown that
the reduced simple ratio (RSR) [20] is most significantly cor-
related with LAI, where RSR is defined as

(1)

where ρn, ρr, and ρs are the reflectances in near infrared
(NIR), red, and shortwave infrared (SWIR) bands, respec-
tively, and ρmin and ρmax are the minimum and maximum
reflectances in the SWIR band, determined from 1% cutoff
points in the histogram of a given image.  Figures 1a and 1b
show the relationships between LAI and SR (i.e., ρn/ρr) and
between LAI and RSR for major cover types, respectively.
Compared with SR, RSR has a large sensitivity to LAI
changes through suppression of the effects of the back-
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Fig. 1 Relationships between the leaf area index (LAI) and the simple ratio (SR) and between LAI and
the reduced simple ratio (RSR) for all cover types in various locations in Canada, with deciduous
forests and crops in Ottawa, deciduous forests in Ontario (several locations), and conifer forests in
other locations [16]. 

 

Parameters Type of satellite 

data 

Major usages in 

carbon cycle 

modeling 

Available at 

regional and global 

scale 

Land cover Multi-spectral  

(red, NIR and 

SWIR) 

Differentiate 

between functional 

types 

Yes 

LAI Multi-spectral 

(Red, NIR, SWIR) 

Photosynthesis and 

respiration 

Yes  

Clumping index Multi-angular 

(NIR) 

Radiation 

distribution in 

canopies 

Yes  

Fire scar Multi-spectral 

(NIR, SWIR) 

Disturbance 

emission and forest 

age and regrowth 

Yes  

Biomass SAR, LIDAR Vegetation carbon 

stock, maintenance 

respiration 

No  

Wetland area SAR, Optical Aerobic and 

Anaerobic organic 

matter 

decomposition  

No  

Leaf pigments Hyperspectral Photosynthesis, leaf 

nitrogen 

Yes, but preliminary 

 

TABLE 2
REMOTELY SENSIBLE SURFACE PARAMETERS USEFUL

FOR CARBON CYCLE MODELING
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(2)

where ρh and ρd are the hotspot and darkspot reflectance,
respectively.  Figure 2, shows the relationships between
NDHD and the clumping index for conifer and deciduous
forests separately.

ground greenness (moss and grass under forest canopy) and
variability.  RSR differs less for the various cover types at
the same LAI than does SR, giving a clear advantage for
applications to pixels of mixed cover types, which are the
norm in coarse pixels because at 1 km resolution a pixel is
seldom covered by only one vegetation type.  This advan-
tage is confirmed by Stenberg et al. [21].  Fernandes et al. [15]

proposed an infrared simple ratio (ISR) between NIR and
SWIR reflectances, showing similar sensitivities to LAI
changes, however, further studies are needed to see if ISR
and RSR are too sensitive to the surface water conditions
and are seriously affected by rainfall events shortly prior to
imaging.

Clumping Index
Nilson [22] first proposed the use of a leaf dispersion param-
eter to estimate the effect of nonrandom leaf spatial distri-
butions on radiation transmission through plant canopies.
The leaf distribution can either be more regular than ran-
dom, or more clumped than random.  Natural ecosystems
generally have clumped distributions of leaves, such as
groupings of leaves in shrubs and tree crowns, and this dis-
persion parameter is therefore often called the clumping
index [17].  This clumping index is a critical input to canopy
photosynthesis models with sunlit and shaded leaf stratifi-
cation [23], and this stratification avoids flaws in big-leaf
models, which treats a canopy as a big leaf regardless of dif-
ferences in photosynthesis between sunlit and shaded
leaves [24].  With the same LAI, sunlit leaves reduce and
shaded leaves increase when a canopy is clumped.  Chen
and Cihlar [25] developed an optical instrument named
TRAC (Tracing Radiation and Architecture of Canopies) to
measure this clumping index based on a gap size distribu-
tion theory [26].  Measuring this clumping index has there-
fore become an integral part of LAI measurements, and a
large dataset of clumping index for various ecosystems has
been accumulated.  However, as the three-dimensional
canopy structure varies greatly in space, the clumping index
also varies greatly, and it is highly desirable to map this
index.  It was not possible to do this for a large area until
recently when the multi-angle POLDER data become avail-
able globally.  Chen et al. [27] first demonstrated that the
magnitude of reflectance variation from the hotspot, where
the illumination and observation directions coincide, to the
darkspot, where the reflectance is minimum in forward
scattering direction in the principal solar plane, is mostly
determined by the degree of foliage organization (clump-
ing).  Through geometrical optical simulations using the 4-
Scale model [28] with a new multiple scattering scheme [29],
they demonstrated that clumped canopies cast strong shad-
ows in the forward scattering directions, reducing the dark-
spot reflectance.  The reduction was found from data and
simulations to be the largest for conifer forest, smallest for
grassland, and deciduous forests are the intermediate case.
They developed an angular index based on the hotspot and
darkspot reflectance.  These model simulations were later
validated using airborne POLDER data [30] and space-borne
POLDER data [24].  Through a large number of model simu-
lations [31,32], it is shown that the normalized difference
between hotspot and darkspot (NDHD) is most linearly
related to the clumping index. NDHD is defined as:

NDHD h d

h d

= −
+

ρ ρ
ρ ρ

Fig.. 2 The relationship between the clumping index and
the normalized difference between hotspot and dark-
spot (NDHD) for (a) conifer forest and (b) deciduous
forests, respectively. For a random spatial distribu-
tion of leaves, the clumping index equals unity, and
when foliage is clumped, it is smaller than one. The
greyness indicates the number density of model
results using 4-Scale with large ranges of stand struc-
tural and optical parameter inputs [31].
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These modeled relationships are applied to multiple angle
POLDER data for regional and global clumping index map-
ping [31,32].  For this purpose, POLDER data for the same
pixel observed at different angles (up to 14 in one single
overpass) are fitted with a simple kernel based model
named FLAIR [33] or a simple exponential function [34] to
find the most reliable hotspot and darkspot values for a
given set of observations.  Using these methodologies, Chen
et al. [32] for the first time produced a global clumping index
map using POLDER data at 7 km resolution (Figure 3).
From the multiple angle views of the globe, we see that
forests are most clumped (clumping index much smaller
than unity) and grassland is least clumped (clumping index
close to unity), and also within the same forest type, there
are large variations in the index.  The multiple angle view
can also differentiate between the shrubland and the grass-
land, which are generally inseparable in a single view
image.  In mountainous areas, the remaining challenge is to
separate the topographical effect on the angular index.

Fire Scar
Wildfires are one of the major causes of forest disturbance
affecting stand dynamics, renewals, biomass and soil carbon
pools, which in turn are important in forest carbon
cycles [35].  Although the Large Fire Polygon Database of
Canada was constructed by the Canadian Forest Service
based on provincial reports [36], this database covers the
periods from 1959 to 1995 and misses considerable northern
fire scarring in remote areas.  Remote sensing data were
therefore used to fill in  gaps in both space and time [37].
After a forest is burned, leaf area is greatly damaged and
the standing liquid water in biomass is drastically reduced,
causing the reflectance in near-infrared (NIR) to decrease
and the reflectance in shortwave-infrared (SWIR) to
increase.  The ratio of SWIR to NIR reflectance therefore
increases dramatically immediately after a fire. Figure 4,
shows the variation of this ratio obtained from SPOT VEGE-
TATION images in the summer 1998 with time since fire for
a large sample of burned fire scars across Canada.  The cor-
relations are higher when separate regressions are made for
individual ecoregions in Canada, r2=0.57-80 for 16 of the 18

ecoregions [38].  As the variation in this ratio becomes small
in about 25 years after the fire, fire scar dating was restrict-
ed to 25 years before the image date in 1998, with an error
of ±7 years.  When images acquired in multiple years are
used, the accuracy in fire scar mapping and dating can be
further improved [39]. 

Biomass
Biomass, both above and below ground, is the living carbon
stock.  However, so far aboveground biomass mapping for
large regions has not been achieved, although it has been
demonstrated that the synthetic aperture radar (SAR) can be
used to retrieve biomass information, especially using not
only the backscatter strength but also the coherence infor-
mation [40,41].  However, regional mapping of biomass using
SAR may experience variations in topography, surface
dielectric constant, vegetation structure, saturation of sig-
nals at high biomass values, etc. [42], and therefore it has not

yet been accomplished.  Airborne light detection
and ranging (LIDAR) systems have been demon-
strated to be effective in retrieving forest biomass
information [43,44].  Spaceborne LIDAR systems
may be available in the near future [45].

Biomass is also needed in carbon cycle models to
estimate the plant maintenance respiration [46].  In
Canada-wide net primary productivity mapping
using the Boreal Ecosystem Productivity
Simulator (BEPS) [7], correlations between biomass
and leaf area for two forest types (deciduous or
conifer) were used.  These correlations, however,
can not handle variations of biomass with age at
approximately the same leaf area.  However, as
the maintenance respiration is generally propor-
tional to sapwood biomass rather than the total
biomass [47], these crude biomass estimates may be
adequate as inputs to carbon cycle models,
because sapwood biomass is generally uniquely
related to leaf area [48]. 

Fig. 3 Global clumping index map produced using POLDER data at
7 km based on its relationship with an angular index, the normal-
ized difference between hotspot and darkspot (NDHD) (Figure 2).
Note that forested areas have the index considerably smaller than
one, indicating high degree of foliage clumping, while grassland,
cropland etc., have the index close to one [32].  

Fig. 4 The variation of the ratio between the shortwave
infrared (SWIR) reflectance and the near infrared
(NIR) reflectance with the time after burn, after nor-
malization of initial values to one. Note that the large
initial decrease in the ratio and the asymptote at
about 25 years after burn. Better correlations were
possible by separating them into 18 ecoregions in
Canada [38]. 
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olution (48 spatial units).  The use of remote sensing not
only greatly improves the spatial resolution (<1 km) but also
allows estimation of changes in forest growth conditions
when the past climate and current vegetation data are used
in process-based modeling [37].  Figure 5 shows the major
remote sensing parameters used in Canada-wide forest car-
bon cycle modeling as well as the major steps.  One unique
aspect of this modeling approach based on remote sensing is
that not only non-disturbance factors (nitrogen and CO2 fer-
tilization effects, climate variables) are considered, as many
process models do, but also disturbance factors (fire, insect,
harvest) are explicitly considered.  Of particular importance
in modeling the disturbance effects is the forest age map in
1998 (Figure 6) created by combining forest inventory, large
fire polygons, and remote sensing data for dating fire scars
(Section 2.4).

The essential information that remote sensing can provide is
the quantitative surface conditions in recent years useful for
spatially explicit modeling.  However, the carbon cycle is a
slow process, involving photosynthesis, dead organic matter
accumulation and decomposition, biomass accumulation
and turnover, disturbance and regrowth, etc., and on aver-
age the carbon residence time is about 50 years in boreal
forests [63].  In order to estimate the current carbon cycle, the
spatially explicit data (including a forest age map) must be
combined with historical climate records of length at least
twice the residence time in order to model changes in vege-
tation and soil conditions over time.  As the sizes of various
soil carbon pools and their decomposition rates are crucial in
carbon cycle estimation and are not directly available from
measurements for large areas, a model spin-up approach,
similar to many other ecosystem models [64], was used to
estimate the pool sizes and their decomposition rates at the
beginning of the modeling period at 1901 [37].  The Integrated
Terrestrial Ecosystem Carbon Cycle model (InTEC) was
developed to simulate disturbance and non-disturbance

Wetland
Wetlands have unique biogeochemical cycles involving both
aerobic and anaerobic processes under fluctuating water
table conditions [49].  As wetland vegetation is different from
the surrounding forests and the water regime is different
from the surrounding terrain, it is potentially possible to
map wetland areas with both SAR (responding to water
conditions) [50,51] and optical (responding to vegetation con-
ditions) sensors [52].  However, regional mapping of wet-
lands suffers from variable size and shape of wetland areas
as well as seasonal variation in water table affecting SAR
signals.  It is an area in which remote sensing techniques are
underutilized.

In Canada-wide wetland carbon cycle modeling [53], wet-
lands are identified from drainage class information in the
Soil Landscape of Canada [54].  The use of drainage class
information in conjunction with topographical data allows
estimation of changes in wetland water table with time, and
therefore making it possible to investigate the variations of
aerobic and anaerobic processes under changing climate [55].

Leaf Pigments
Leaf pigments, including chlorophyll, carotenoids and xan-
thophylls, absorb visible radiation and therefore affect opti-
cal remote sensing signals.  Among these pigments, chloro-
phyll is of particular interest to carbon cycle modeling as
the amount of chlorophyll per unit leaf surface area is the
main control on the photosynthesis rate under given radia-
tion and environmental conditions [56].  For natural ecosys-
tems, the leaf chlorophyll content is closely related to the
leaf nitrogen level [57,58], which is an important parameter in
carbon cycle models that consider nutrient cycles [23,47].
There are leaf-level radiative transfer models that are capa-
ble of retrieving leaf pigments from leaf reflectance and/or
transmittance [59,60].  Jacquemoud’s leaf-level model has
been applied to closed canopies for leaf chlorophyll
retrieval [61].  Through combining a leaf-level model with a
canopy-level model, hyperspectral remote sensing images
were successfully used to retrieve leaf chlorophyll con-
tent [62].  However, reliable techniques are yet to be devel-
oped and tested for deriving leaf-level chlorophyll informa-
tion for open canopies using hyperspectral remote sensing
data.  Using MERIS data (Table 1), some initial efforts are
being made to map leaf chlorophyll globally [12], and it is
expected that this parameter will be used in regional and
global carbon cycle modeling in the near future.

SPATIALLY EXPLICIT CARBON CYCLE MODELING:
AN EXAMPLE
Extensive research was previously done for Canada’s forest
carbon budgets based on forest type and age structure pro-
vided in forest inventory data [35].  In this previous study,
biomass-age relationships were derived from the inventory
compiled over about 100 years regardless of possible
changes in growth conditions over the long period, and
these relationships were applied to 457 forest types in
48 spatial units over Canada’s landmass.  This previous
study does not include the effects of non-disturbance fac-
tors, such as the climate change, and is limited in spatial res-

Fig. 5 An example of remote sensing products, land cover,
LAI, and fire scar, used for carbon modeling for
Canada’s forests. The net primary productivity
(NPP), which is the carbon absorption in living bio-
mass per unit time (year) and space, is calculated in
daily steps for recent years. A forest age map
(Figure 6) produced from inventory, large fire poly-
gons, and remotely sensed fire scar, is used with
other inputs (climate over 100 years, soil carbon,
N and CO2) to estimate the net ecosystem productivi-
ty (NEP) and net biome productivity (NBP). NEP is
NPP minus heterotrophic respiration, and NBP is
NEP minus direct carbon release at the time of distur-
bance.
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effects on the forest carbon cycle using these datasets [63,65].
InTEC is a combination of (i) Farqhuar’s leaf-level photo-
synthesis model [66] applied to remote sensing pixels
through a spatial and temporal scaling scheme, (ii) CENTU-
RY soil biogeochemical model [67] modified for forest appli-
cations [65] and (iii) an empirical forest regrowth model
depending on air temperature [37].  Using InTEC with inputs
from remote sensing and other spatial datasets, the carbon
budget of Canada’s forests was calculated at 1 km resolu-
tion in annual time steps.  Figure 7 shows the carbon source
and sink distribution in Canada’s forests averaged over the
1984-1998 period.  The term, net biome productivity (NBP),
is defined as net primary productivity less heterotrophic
respiration (organic matter decomposition) and the direct
carbon emission at the time of disturbance.  When NBP is
larger than zero, the surface is a sink, meaning absorbing
carbon from the atmosphere, and when NBP is smaller than
zero, the surface is a source.  Compared with the forest age
map (Figure 6), it is obvious that NBP is closely related to
forest age.  In BC, where most forests are older than 100
years, forests are near carbon neutral conditions because
small positive effects of warming (improved nutrient cycles)
and CO2 fertilization might have offset the small decline in
growth in aging forests.  These results may have underesti-
mated sinks in B.C. if the second growth forest areas are
underrepresented in the forest inventory data.  In prairie
provinces, the overall forests are carbon sources due to fre-
quent disturbances, and the increase in regrowth could not
compensate for the dramatic increase in disturbance in
1980’s and 1990’s.  Eastern and maritime provinces are gen-
erally carbon sinks because of large areas of productive
forests gaining benefits from increased nitrogen deposition
and improved nutrient conditions under warming condi-

tions as well as a small effect of CO2 fertilization.  There is
also a general gradient of decreasing sink strength from
south to north because of the differential effects of warming
on forests and soils.  In InTEC, the decomposition of soil
organic matter at higher latitudes is more sensitive to warm-
ing, while forest growth benefits less immediately from
warming at higher latitudes where vegetation is sparse.
Critical to modeling these spatial patterns are remotely
sensed forest fire patches and forest density (LAI).  Partial
validations of the results of soil and vegetation carbon
stocks and carbon budgets were initially made against soil
carbon data in Soil Landscape of Canada, aboveground bio-
mass data in forest inventory, and four flux tower sites [37].
Validation using more tower sites of the Fluxnet Canada
Research Network was made by Ju et al. [55].

InTEC has recently been expanded to include aerobic and
anaerobic processes in wetlands [53] and to include hydro-
logical processes responsible for the lateral water redistribu-
tion [55] so that the total carbon absorption and release by
CO2 and CH4 gases are also included.  For these purposes,
additional spatial data of the digital terrain model and
drainage class are used to estimate water table and soil
moisture, giving the possibility of modeling coupled water
and carbon cycles. 

CONCLUSIONS
Through the use of remote sensing data in combination with
climate and other spatial datasets, spatially explicit carbon
cycle processes in Canada’s forests are simulated for the last
century.  The results suggest that positive effects of climate
warming, nitrogen deposition, and CO2 fertilization out-
weighed the negative effects of increased disturbance and

Fig. 6 Forest age map produced using forest inventory
(gridded to 10 km resolution), large fire polygons
(rasterized to 1 km resolution), and remote sensing
imagery (1 km resolution) in 1998 for fire scar dat-
ing [37].

Fig. 7 Average carbon source sink distribution in Canada’s
forests in the period from 1984 to 1998, quantified in
terms of the net biome productivity, which includes
net primary productivity, heterotrophic respiration,
and direct carbon release due to disturbance [37].
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22. T. Nilson, “A theoretical analysis of the frequency of gaps in
plant stands”, Agricultural and Forest Meteorology, 8:25-38, (1971).

23. J.M. Chen, J. Liu, J. Cihlar and M.L. Guolden, “Daily canopy
photosynthesis model through temporal and spatial scaling for
remote sensing applications”, Ecological Modelling, 124:99-119,
(1999).

24. J.M. Chen, J. Liu, S.G. Leblanc, R. Lacaze and J.-L. Roujean,
“Multi-angular optical remote sensing for assessing vegetation
structure and carbon absorption”, Remote Sensing of Environment,
84: 516-525, (2003).

25. J.M. Chen and J. Cihlar, “Plant canopy gap size analysis theory
for improving optical measurements of leaf area index”, Applied
Optics, 34:6211-6222, (1995).

26. E.E. Miller and J.M. Norman, “A sunfleck theory for plant
canopies. I: lengths of sunlit segments along a transet”, Agronomy
J., 63: 735-738 (1971).

27. J.M. Chen, J. Liu, S.G. Leblanc, J.-L. Roujean and R. Lacaze,
“Utility of Multi-angle Remote Sensing for Terrestrial Carbon
Cycle Modeling”, Proceedings of the 8th International Symposium on
Physical Signatures and Measurements in Remote Sensing, Aussois,
France, 8-13 January, 2001, 12 pages.  

28. J.M. Chen and S. Leblanc, “A 4-scale bidirectional reflection
model based on canopy architecture”, IEEE Transactions on
Geoscience and Remote Sensing. 35:1316-1337, (1997).

29. J.M. Chen and S.G. Leblanc, “Multiple-scattering scheme useful
for hyperspectral geometrical optical modelling”, IEEE
Transactions on Geoscience and Remote Sensing, 39:1061-1071,
(2001).

30. R. Lacaze, J.M. Chen, J.-L. Roujean and S.G. Leblanc, “Retrieval of
vegetation clumping index using hot spot signatures measured
by POLDER instrument”, Remote Sensing of Environment, 79: 84-
95, (2002).

31. S.G. Leblanc, J.M. Chen, H.P. White and R. Latifvic, “Canada-
wide foliage clumping index mapping from multi-angular
POLDER measurements”, Canadian Journal of Remote Sensing (in
press, 2005).

heterotrophic respiration in 1980’s and 1990’s, making
Canada’s forests a net carbon sink of about 60 MtC/y in
1980-1998.  Remote sensing provided the critical spatial
information to achieve this conclusion through process
modeling.  Active research is being conducted to consider
fully the coupled water and carbon cycles and to make use
of other remote sensing parameters, such as clumping
index, leaf chlorophyll content, and wetland area and types.
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