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Abstract

Leaf area index (LAI) is an important parameter used by most process-oriented ecosystem models. LAI of forest ecosystems has routinely been
mapped using spectral vegetation indices (SVI) derived from remote sensing imagery. The application of SVI-based approaches to map LAI in
peatlands presents a challenge, mainly due to peatlands characteristic multi-layer canopy comprising shrubs and open, discontinuous tree canopies
underlain by a continuous ground cover of different moss species, which reduces the greenness contrast between the canopy and the background.

Our goal is to develop a methodology to map tree and shrub LAI in peatlands and similar ecosystems based on multiple endmember spectral
mixture analysis (MESMA). This new mapping method is validated using LAI field measurements from a precipitation-fed (ombrotrophic)
peatland near Ottawa, Ontario, Canada. We demonstrate first that three commonly applied SVI are not suitable for tree and shrub LAI mapping in
ombrotrophic peatlands. Secondly, we demonstrate for a three-endmember model the limitations of traditional linear spectral mixture analysis
(SMA) due to the unique and widely varying spectral characteristics of Sphagnum mosses, which are significantly different from vascular plants.
Next, by using a geometric-optical radiative transfer model, we determine the nature of the equation describing the empirical relationship between
shadow fraction and tree LAI using nonlinear ordinary least square (OLS) regression. We then apply this equation to describe the empirical
relationships between shadow and shrub fractions obtained from mixture decomposition with SMA and MESMA, respectively, and tree and shrub
LAI, respectively. Less accurate fractions obtained from SMA result in weaker relationships between shadow fraction and tree LAI (R2=0.61) and
shrub fraction and shrub LAI (R2=0.49) compared to the same relationships based on fractions obtained from MESMA with R2=0.75 and
R2=0.68, respectively. Cross-validation of tree LAI (R2=0.74; RMSE=0.48) and shrub LAI (R2=0.68; RMSE=0.42) maps using fractions from
MESMA shows the suitability of this approach for mapping tree and shrub LAI in ombrotrophic peatlands. The ability to account for a spectrally
varying, unique Sphagnum moss ground cover during mixture decomposition and a two layer canopy is particularly important.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Peatlands, which are wetlands that accumulate partially
decayed plant matter as peat, are an extensive component of
boreal and subarctic ecozones. In Canada, they cover about 14%
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of the land area (Tarnocai et al., 2000). Bogs are common types
of peatlands which are precipitation-fed (ombrotrophic) and
generally lack any other hydrological inputs, resulting in acidic
and nutrient-poor conditions. The characteristic multi-layer
canopy of bogs comprises a Sphagnum moss ground cover
under ericaceous shrubs, and patches of sparse coniferous trees.
Due to this vertical vegetation structure, a substantial proportion
of the solar energy reaches the shrub canopy resulting in a
significant role for shrubs in carbon, water, and energy
exchanges with the atmosphere (e.g., Baldocchi et al., 2000;
Lafleur et al., 2005; Moore et al., 2002).
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Peat accumulation is the result of net primary productivity
(NPP), the net gain of carbon in the form of biomass through
photosynthesis, persistently exceeding the decomposition of
organic matter. Peatlands act as long term stores of carbon with
an average long-term apparent carbon accumulation rate of 15–
30 g C m−2 year−1 (Turunen et al., 2002). As a result, peatlands
store up to 450 Gt C or one third of the global soil carbon
(Gorham, 1991; Turunen et al., 2002). The role of peatlands as
long-term carbon sinks in the global carbon cycle is closely
related to climatic conditions. Possible responses of peatlands to
climatic changes might include shifts in peatland distribution and
extent, and a switch from long-term sinks to long-term sources of
atmospheric carbon (e.g., Gorham, 1991; Moore et al., 1998).

A promising means to quantify possible responses of peatland
carbon dynamics to likely climatic changes is the use of process-
oriented ecosystem models as predictive tools. An important
parameter of most process-oriented ecosystem models is the leaf
area index (LAI). LAI is a dimensionless quantity of the amount
of foliage area of a vegetation canopy and is defined as one half
the total leaf area (all-sided) per unit ground horizontal surface
area (Chen & Black, 1992). LAI characterizes the canopy–
atmosphere interface of an ecosystem, and is therefore related to
precipitation and atmospheric nutrient deposition interception,
canopymicroclimate, radiation extinction, and water, carbon, and
energy exchanges with the atmosphere. Some process-oriented
models such as the Boreal Ecosystem Productivity Simulator
(BEPS; Liu et al., 1997) use LAI as an input parameter, while
others such as the Peatland Carbon Simulator (PCARS; Frolking
et al., 2002) generate LAI as a function of foliar biomass. For the
parameterization of distributed, process-oriented ecosystem
models such as BEPS, tree LAI in forest ecosystems has
traditionally been mapped based on ordinary least square (OLS)
regression analysis relationships between field-measured tree LAI
and various spectral vegetation indices (SVI) derived from remote
sensing imagery. Common SVI used for this purpose are the
normalized difference vegetation index (NDVI; Deering, 1978),
[(NIR− red) / (NIR+red)], the simple ratio (SR; Jordan, 1969),
[NIR/ red], and the reduced simple ratio (RSR; Brown et al.,
2000), [SR⁎ (1−(SWIR−SWIRmin) / (SWIRmax−SWIRmin))]
(Chen & Cihlar, 1996; Chen et al., 2002; Eklundh et al., 2003).
However, the multi-layer canopy of ombrotrophic peatlands
limits the applicability of SVI-based approaches to map tree LAI
due to the discontinuity and openness of the tree canopy con-
isting of spatially distinct crowns resulting in increased shadow
fraction, and due to the reduced greenness contrast between the
canopy and the background.

Background reflectance in ombrotrophic peatlands varies
depending on the vertical vegetation structure within the peatland.
In forested portions, sunlit trees are the principal contributor to the
overall spectral response. The background reflectance, mainly
determined by crown closure, is composed of the spectral
reflectance of tree and shrub shadow on neighbouring trees,
shrubs, andmosses, sunlit shrubs andmosses, and, in places, open
water. In open portions where trees are absent, sunlit shrubs are
the principal contributors to the overall spectral response. Here,
the background reflectance, mainly determined by shrub canopy
closure, is composed of shrub shadow on neighbouring shrubs
and mosses, sunlit mosses, and, in places, open water. Thus, in
both forested and open portions, the background reflectance
contributing to the overall spectral response is partially controlled
by the spectral characteristics of mosses, which are significantly
different from vascular plants in the visible, NIR, and short-wave
infrared (SWIR) ranges of the electromagnetic spectrum (Bubier
et al., 1997).

Alternative approaches to map tree LAI in forest ecosystems
based on remote sensing imagery include the application of
inverse OLS and reduced major axis (RMA) regression anal-
ysis, and geostatistical techniques such as cokriging, kriging
with external drift (KED), and sequential Gaussian conditional
simulation (SGCS) (Berterretche et al., 2005; Cohen et al.,
2003). Another promising route to map tree LAI in forest
ecosystems was proposed by Hall et al. (1995). In their study
they demonstrated empirically and theoretically that the scene
fractions of shadow and sunlit background obtained by mixture
decomposition of a three-endmember model (sunlit tree canopy,
sunlit background, and shadow) with linear spectral mixture
analysis (SMA) were related to biophysical parameters such
as LAI. The dependence of these fractions on solar zenith
angleb50° (SZA) was shown to be minimal. SMA-based ap-
proaches to map tree LAI were also pursued by Hall et al. (2003),
Hu et al. (2004), and Peddle et al. (1999).

Considering the importance of the shrub canopy in the
overall hydrological and ecological functioning of peatlands, its
reliable parameterization in distributed, process-oriented eco-
system models in addition to the tree canopy is mandatory.
However, none of the existing remote sensing-based methods
allows for the separate mapping of tree and shrub LAI of a
multi-layer canopy comprising shrubs and open, discontinuous
tree canopies. Our goal was to develop a methodology for tree
and shrub LAI mapping in ombrotrophic peatlands and similar
ecosystems based on field measurements, geometric-optical
radiative transfer modelling, and multiple endmember spectral
mixture analysis (MESMA; Roberts et al., 1998). MESMA is an
extension of SMA that takes into account the spectral variability
within endmembers and optionally allows the number of
endmembers to vary on a per-pixel basis. To achieve our goal
we carefully quantified tree and shrub LAI during peak growing
season in the Mer Bleue bog using the LAI-2000 plant canopy
analyzer. This included the determination of previously
unavailable species-specific LAI-2000 correction factors for
tamarack. The multi-layer canopy of the bog and its species
composition are typical for ombrotrophic peatlands (Payette &
Rochefort, 2001). Furthermore, we tested the applicability of
NDVI, SR, and RSR for tree and shrub LAI mapping, and
demonstrated the superiority of MESMA over SMA in
ombrotrophic peatlands due to the unique and widely varying
spectral characteristics of Sphagnum mosses.

2. Materials and methods

2.1. Site description and transect locations

The Mer Bleue bog (45.4°N latitude, 75.5°W longitude) is
a raised, ombrotrophic peatland, about 10 km south-east of



Fig. 1. Dominant species composition and vegetation structures occurring at Mer Bleue: A) pristine shrub canopy comprising evergreen and deciduous shrubs, B)
sparse patches of pristine tree canopy comprising mainly tamarack and black spruce, C) relatively dense mixed tree canopy along a drainage ditch, and D) mineral
wetland (marsh) comprising mainly cattail (the approximate locations of all photographs are given in Fig. 2).

Fig. 2. Transect (green) and approximate photograph (red) locations of Fig. 1
within Mer Bleue (after National Capitol Commission, Ottawa, Ontario,
Canada) and Mer Bleue bog (approximate boundary).
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Ottawa, Ontario, Canada. It covers an area of about 28 km2 and
is roughly oval shaped with an east–west orientation. The
climate of the region is cool continental, with a 30-year (1971–
2000) mean annual temperature of 6.0±0.8 °C. Sub-surface
water and sometimes surface water is shed from the gently
domed central part of the bog towards its margins, where it
drains away along beaver ponds surrounding the bog (Roulet
et al., 2006). The pristine (undisturbed) species composition of
Mer Bleue bog is characterized by dominant evergreen shrubs
(Chamaedaphne calyculata, Ledum groenlandicum, Kalmia
ngustifolia, Kalmia polifolia, Andromeda glaucophylla), decid-
uous shrubs (Vaccinium myrtilloides) (Fig. 1A), and sparse
patches of sedges (Eriophorum spissum), black spruce (Picea
mariana) and tamarack (Larix laricina) trees, and occasion-
al grey birch (Betula populifolia) and white birch (Betula
papyrifera) trees (Fig. 1B). The average canopy height is
about 0.20 m and 3 m for the shrub and sparse tree cano-
py, respectively. The surface of the bog is covered by spe-
cies of Sphagnum moss (Sp. angustifolium, Sp. capillifolium,
Sp. magellanicum, and Sp. fuscum). Characteristic features of
the bog are distinct microforms consisting of hollows, hum-
mocks, and intermediate lawns, with a mean relief between
hollows and hummocks of 0.25 m (Lafleur et al., 2005).

The species composition along narrow bands of several
approximately north–south oriented drainage ditches is char-
acterized by a relatively dense mixed tree canopy that consists
primarily of tamarack and grey birch with interspersed black
spruce and white pine (Pinus strobus) (Fig. 1C). The average
tree canopy height is about 10 m. The species composition of
the shrub canopy in these areas is the same as for the rest of
the bog, but reaches an average height of 1 m. The patchy
ground cover is composed of Sphagnum and brown mosses.
This vertical vegetation structure reflects the drained condi-
tions along drainage ditches and in the transition between the
peat body and surrounding mineral wetlands (cattail marsh).
The cattail marshes are dominated by narrow-leaved cattail
(Typha angustifolia) with an average height of about 2.5 m
(Fig. 1D). In the following we use “Mer Bleue bog” to refer to
the ombrotrophic peatland characterized by pristine species
composition and vertical vegetation structure, whereas “Mer
Bleue” is used to refer to the ombrotrophic peatland and the
surrounding mineral wetlands as defined by the National
Capital Commission (Ottawa, Ontario, Canada) (Fig. 2).

Using the LAI-2000 plant canopy analyzer (Norman &
Welles, 1991; Li-COR, Lincoln, Nebraska, USA), we mea-
sured tree LAI along five transects (mbt1, mbt2, mbt3, mbt4,
and mbt5) and shrub LAI along eight transects (mbt1, mbt2,



Table 1
Transect characteristics (d=disturbed)

Transect Length [m] Orientation Species composition

mbt1 100 E–W Tamarack/mixed shrubs
mbt2 100 E–W Black spruce/mixed shrubs
mbt3 50 ∼E–W Tamarack/black spruce/mixed shrubs
mbt4 50 ∼E–W Tamarack/black spruce/mixed shrubs
mbt5 100 E–W Mixed forest/mixed shrubs (d)
mbs1 100 NE–SW Mixed shrubs
mbs2 100 NE–SW Mixed shrubs
mbs3 100 NE–SW Mixed shrubs
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mbt3, mbt4, mbt5, mbs1, mbs2, and mbs3) in August 2005
(Fig. 2).

All transects were 50 m or 100 m in length, and oriented in
northeast–southwest or east–west direction (Table 1). Along
each transect a forestry flag was placed every 10 m to serve as a
distance marker. The positions of all flags were recorded in
UTM coordinates (North American Datum 1983) using a
GPSMAP76 global positioning system (Garmin International
Inc., Olathe, KS, USA).

For the tree transects, basal area and stand density (just for
mbt3, mbt4, and mbt5), and for the shrub transects, species
composition and percent cover, were estimated at each flag
position (within a 50×50 cm plot with the flag in the center)
prior to the LAI-2000 measurements.

2.2. LAI field and laboratory measurements

The LAI-2000 instrument measures canopy gap fractions by
detecting blue diffuse light (between 400 and 490 nm) pene-
trating the canopy with quantum detectors arranged in five
concentric rings. The LAI estimate obtained from the LAI-2000
instrument is an “effective” LAI (LAIe) derived from the light
interception of all canopy elements using a radiative transfer
model (Chen, 1996; Chen et al., 1997).

All LAI-2000 measurements were taken at dusk or dawn, i.e.
under diffuse sky conditions, to minimize the effect of multiple
scattering of light within the canopies and to prevent direct
sunlight on the instrument sensor. To avoid any effects of the
operator on the instrument sensor, a 270° view cap was used for
all measurements. The post-processing of all measurements was
accomplished using the LAI-2000 analysis software provided by
LI-COR (F2000.exe). As part of the post-processing, the outer
two rings of the quantum sensor were excluded from the final
calculation of LAIe to (i) decrease the influence of stronger
multiple light scattering effects at larger zenith angles (Chen
et al., 2006; Sonnentag et al., in press), to (ii) eliminate the
additional effect of the microtopographic position of the LAI-
2000 measurement for shrub LAI (Sonnentag et al., in press),
and to (iii) minimize the potential field of view of the quantum
sensor to roughly 0.9 times the average canopy height (with the
inner three rings the sensor's view limit is 43° and tangent (43°)
is 0.9) to guarantee measurement independence along the
transects.

Based on theoretical considerations and subsequent validation,
Chen (1996) and Chen et al. (1997) introduced the fol-
lowing equation to derive tree LAI of boreal forest canopies
from LAIe:

LAI ¼ 1−að ÞLAIe gEXE
ð1Þ

where α is the woody-to-total leaf area ratio (to account for the
contribution of woody canopy elements to light interception),
LAIe is the “effective” LAI [m2/m2], γE is the needle-to-shoot
area ratio (to account for clumping within shoots), and ΩE is the
element clumping index (to account for clumping at spatial
scales larger than shoots). Tree LAI for each flag of the tree
transects was calculated from LAIe using Eq. (1). A critical
component in the application of Eq. (1) is the reliable estimation
of γE, ΩE, and especially α (Chen et al., 2006).

For the estimation of γE for tamarack, we followed the
approach of Chen (1996). Since Larix sp. are a shade intolerant
species (Olaczek, 1986), we took shoot samples from tamarack
trees growing under two different growth conditions in terms of
light availability. A total of 45 shoot samples were taken from
trees of a central forest patch (referred to as forested bog): one
dominant (D), one co-dominant (M), and one suppressed (S)
tree, at three different height levels: top (T), middle (M), and
bottom (L), resulting in nine classes with five shoot samples
each: DT, DM, DL, MT, MM, ML, MS, ST, SM, and SL. To
guarantee sampling consistency, the same sampling scheme
according to tree height was applied to randomly selected,
isolated trees (with one tree corresponding to the average height
of each dominance category) located in an open area of the Mer
Bleue bog (referred to as open bog), also resulting in a total of 45
shoot samples. All 90 shoot samples were stored in electrical
coolers at a temperature of around 0° and analyzed in the
laboratory within 3 days of sampling. Projected shoot areas for
the simplified 3-angle projection method of Chen (1996) were
measured using the apparatus described by Chen et al. (2006).
The apparatus consists of a Toshiba PDR-4300 digital camera
(Toshiba American Information Systems Inc., Irvine, CA, USA)
mounted on a firm stand, a Prolite 5000 light box (Kaiser
Fototechnik GmbH & Co. KG, Buchen, Baden-Wuerttemberg,
Germany), and the WinSeedle (v2003a) image analysis software
(Regent Instruments Inc., Quebec City, Quebec, Canada). A
volume displacement method was used to measure the total
needle area in a shoot (Chen et al., 1997). The conversion of the
displaced volume to the surface area of tamarack needles was
accomplished with an empirical equation for needles with
elliptical cross sections according to the needle thickness-to-
width ratio provided by Chen et al. (2006). For black spruce we
used γE=1.36 as estimated by Chen (1996).

For the quantification of clumping at spatial scales larger
than shoots we used the Tracing Radiation and Architecture of
Canopies (TRAC) instrument (3rd Wave Engineering, Napean,
Ontario, Canada) based on a gap size distribution theory (Chen
& Cihlar, 1995) to measure ΩE directly in the field. The TRAC
instrument was used five times each along mbt1 and mbt2 on
sunny days during the last week of August 2005 to determine
ΩE for black spruce and tamarack separately.

The biggest source of uncertainty in the application of
Eq. (1) is considered to be α. Ideally, its reliable estimation
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requires destructive sampling (Chen et al., 2006). For black
spruce we used α=0.15 as provided by Chen et al. (2006). Due to
the logistical constraints of harvesting a tree, we approximated α
for tamarack by taking the average of two estimates of
α determined with two different methods. The first estimate of α
was based on a set of tree morphological measurements in
combination with intermediate results obtained from the
estimation of γE for tamarack (Appendix A). The second
estimate of α was based on seven growing and non-growing
season (leaf-off) LAI-2000 measurements (Barr et al., 2004),
taken at the same seven flags of mbt1.

Finally, tree LAI for each flag was calculated from LAIe
using Eq. (1) with γE, ΩE, and α weighted according to basal
area (data not shown) for black spruce and tamarack.

Shrub LAI for each flag of the tree and shrub transects was
calculated from LAIe with a simplified version of Eq. (1)
following Sonnentag et al. (in press):

LAI ¼ ð1−aÞLAIe ð2Þ
where α is the woody-to-total area ratio, weighted according to
percent cover of each species at each flag (data not shown).
Species-specific values for α for the shrub canopy of Mer Bleue
bog are provided by Sonnentag et al. (in press).
Fig. 3. False color composite (4, 3, 2 band combination) of the clipped subset of
the Landsat TM scene of Mer Bleue, demonstrating the different spectral
characteristics of the five considered land cover classes.
2.3. Multiple endmember spectral mixture analysis

Mixture decomposition with SMA is a widely applied
technique in passive optical remote sensing for determining
fractions of pixel components. SMA has been successfully
applied in a wide range of disciplines including forestry (e.g.,
Roberts et al., 2004), geology (e.g., Bryant, 1996), social
sciences (e.g., Schweik & Green, 1999), and urban studies (e.g.,
Wu & Murray, 2003). In SMA it is assumed that the spectral
reflectance of a pixel (ρλ′) is a mixture of the spectral reflectance
of individual scene components (endmembers), each weighted
according to their abundance to produce the mixture. Further-
more, it is typically assumed that the mixture is linear and that
multiple scattering is negligible resulting in minimal interaction
between scene elements (Adams et al., 1993; Hall et al., 1995;
Roberts et al., 1993). The model is described by:

qk V¼
XN
i¼1

fi⁎qik þ ek ð3Þ

where ρiλ is the spectral reflectance of endmember i for a
specific band (λ), fi is the fraction of the endmember, N is the
number of endmembers, and ελ is the residual error. A common
way to assess the fit of an endmember model is by the root mean
square error (RMSE), calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
k¼1

ðekÞ2

M

vuuuut ð4Þ
whereM is the number of bands. To produce accurate fractions,
two constraints have to be imposed on the mixture decompo-
sition. The first constraint requires that the fractions sum up to
one and the second constraint requires the fractions to be non-
negative (Heinz & Chang, 2001).

One of the most critical steps in the application of mixture
decomposition is the selection and proper spectral character-
ization of suitable endmembers (Dennison & Roberts, 2003a;
Tompkins et al., 1997). The spectral signature of endmembers
can be determined by spectroradiometer measurements in the
field or in the laboratory, selection of “pure” endmember pixels
from the image to be unmixed, or simulation with a radiative
transfer model. However, using a fixed set of endmembers, each
with a single invariant spectral signature is a significant
simplification of the real world and a fundamental limitation
of SMA since it might result in poor accuracy of fractions
(Petrou & Foschi, 1999; Song, 2005; Theseira et al., 2003).
Furthermore, SMA uses the same number of endmembers for
each pixel, not considering whether the respective endmember
is present in a pixel or not. To overcome these two limitations of
SMA, Roberts et al. (1998) introduced multiple endmember
spectral mixture analysis (MESMA) to account for the spectral
variability of endmembers and the varying number of end-
members on a per-pixel basis. In MESMA, endmembers for
mixture decomposition are selected from a site-specific spectral
library containing the spectral signatures of suitable end-
members. The endmember combination producing the lowest
RMSE is assigned to each pixel (Roberts et al., 1998).

MESMA has been successfully applied in a wide range of
remote sensing studies including snow cover and area mapping
(e.g., Painter et al., 2003), plant species mapping (e.g., Dennison
& Roberts, 2003a,b; Roberts et al., 1998, 2003), soil mapping in
arid lands (e.g., Okin et al., 2001), landform mapping (e.g.,
Ballantine et al., 2005), fire temperature mapping (e.g.,
Dennison et al., 2006), urban morphology (e.g., Rashed et al.,
2003), and planetary mapping (e.g., Johnson et al., 2006; Li &
Mustard, 2003).

Based on field observations, the spectral similarity among
tree and shrub canopies found in an exploratory study (data
not shown), and aerial photographs, it was determined that a
three endmember model consisting of a general sunlit vascular
plant canopy, sunlit Sphagnum moss, and shadow would be



Fig. 4. Mixed forest, cattail marsh, and non-vegetation pixels excluded from the
Mer Bleue subset with SAM to obtain the open and forested portions of Mer
Bleue bog with pristine species composition and vertical vegetation structure for
spectral unmixing.
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suitable for Mer Bleue bog. The spectral characterization of
the sunlit Sphagnum moss and shadow endmembers was
accomplished with branch scale spectroradiometer measure-
ments in the field (Section 2.4). The sunlit vascular plant
canopy endmember was spectrally characterized using “pure”
image pixels (Section 2.5). For both SMA and MESMA,
fractions were constrained to sum to 1 and RMSE was re-
stricted to ≤0.025. Pixels exceeding this RMSE value
were left unmodelled. No negative or superpositive abundance
fractions were allowed for the sunlit vascular plant canopy ang
sunlit Sphagnum moss endmembers. No minimum abun-
Fig. 5. Conceptualization of our shrub LAI mapping approach: the open tree canopy a
of a pixel is the sum of the sunlit vascular plant canopy and shadow fractions, i.e. [
dance fraction for the shadow endmember was set. Its maximum
abundance fraction was set to 0.80.

Mixture decomposition with SMA and MESMA on Landsat
TM bands 1 through 5 was performed with VIPER Tools de-
veloped at the Department of Geography at University of
California Santa Barbara as an add-on for the ENVI software
package (http://www.vipertools.org).

2.4. Spectral measurements

We measured the spectral reflectance of “pure” Sphagnum
moss ground cover (for the spectral characterization of the sunlit
Sphagnum moss endmember), the shrub canopy with a
Sphagnum moss ground cover background (for the parameter-
ization of the geometric-optical radiative transfer model in
Section 2.6), and tree and shrub shadows at the branch scale (for
the spectral characterization of the shadow endmember) be-
tween 350 and 2500 nm at 2 nm sampling intervals in the field
with a FieldSpec Pro spectroradiometer (Analytical Spectral
Devices (ASD) Inc., Boulder, Colorado, USA) during the last
week of August 2005. To capture the intra-canopy variability in
spectral reflectance of shrubs and the inter-species as well as the
intra-species variability in spectral reflectance of Sphagnum
moss as influenced by different volumetric moss moisture con-
tents and environmental conditions, we took several sets of
spectral reflectance measurements at different locations with
nd its shadow are both “underlain” by shrub canopy, and thus the shrub fraction
1− sunlit Sphagnum moss fraction].

http://www.vipertools.org
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different shrub and Sphagnum moss species under different
moisture conditions across the bog. Each set of spectral re-
flectance measurements consisted of six individual measure-
ments taken within a radius of 0.5 m. All spectral reflectance
measurements were taken between 10 am and 2 pm at a height
of about 0.25–0.30 m above the target (sensor field of view:
25°), and were standardized to reflectance using a Spectralon
diffuse reflectance target (Labsphere, North Sutton, New
Hampshire, USA). The raw data of all spectral measurements
acquired for this study are available from the corresponding
author upon request.

2.5. Landsat TM image preprocessing

The Landsat TM scene at 30 m-resolution used in this study
was acquired September 6, 2005. The scene was ordered as a
radiometrically and geometrically corrected L1G product in
UTM coordinates (North American Datum 1983). The digital
numbers of the scene were transformed into radiance values
at the top of the atmosphere by using the gains and offsets
provided with the image. The atmospheric correction to convert
the radiance values at the top of the atmosphere into spectral
reflectance values at the ground surface was accomplished with
the Second Simulation of Satellite Signal in the Solar Spectrum
(6S) code (Vermote et al., 1997) using atmospheric conditions
from Ottawa at the date of scene acquisition as input. The
atmospheric water vapour and ozone burden data required by 6S
were obtained from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) Atmospheric Profile data product (http://
daac.gsfc.nasa.gov/MODIS/). Atmospheric optical depth which
is crucial in the derivation of spectral reflectance values at the
ground surface from radiance values at the top of the atmo-
sphere was simulated by 6S based on a standard continental
aerosol profile using the meteorological parameter “visibility”
as provided for Ottawa for the date of scene acquisition by
Environment Canada (http://climate.weatheroffice.ec.gc.ca).
All subsequent processing steps related to the calculation of
SVI, SMA, and MESMA were performed on a subset of the
Landsat TM scene, clipped to the boundary of Mer Bleue
(Fig. 3). For our purposes of peatland LAI mapping we
distinguish between the five land cover classes “open bog”,
“forested bog”, “mixed forest”, “cattail marsh”, and “non-veg-
etation” (including open water and roads), all of which have
significantly different spectral characteristics (Fig. 3).

To test the applicability of common SVI for peatland LAI
mapping, we computed NDVI, SR, and RSR for OLS regression
analysis with our tree and shrub LAI field measurements.

Our LAI mapping efforts with MESMA were aimed at the
open and forested portions of Mer Bleue bog with pristine
species composition and vertical vegetation structure (Fig. 3).
Therefore, parts of Mer Bleue that are characterized by mixed
forest, cattail marsh or non-vegetation were identified and ex-
cluded prior to mixture decomposition using the Spectral Angle
Mapper (SAM; Kruse et al., 1993), a supervised classification
method (Fig. 4). The spectral characterization of the reference
reflectance spectra for SAM and the sunlit vascular plant canopy
endmember of our three-endmember model was accomplished
with the Minimum Noise Feature (MNF) transformation (Green
et al., 1988) and the Pixel Purity Index (PPI; Boardman et al.,
1995) applied to MNF transformed data for the identification of
spectrally “pure” pixels as implemented in the ENVI software
package (ENVI, 2004). To guarantee that we obtain just the
purest pixels for mixed forest, cattail marsh, non-vegetation, and
the sunlit vascular plant canopy endmember, we applied the PPI
approach successively, using different PPI thresholds for the
four different classes. For SAM and spectral endmember
characterization we averaged the 10 purest pixels of each class.

2.6. Tree and shrub LAI mapping

Inspired by the study of Hall et al. (1995), which empirically
and theoretically demonstrates the relationship between shadow
fraction and tree LAI, we investigated the nature of this
relationship for the Mer Bleue bog using the geometric-optical
radiative transfer model 4-Scale (Chen & Leblanc, 1997) and
nonlinear OLS regression analysis. Our hyperspectral 4-Scale
simulations were aimed to calculate shadow fractions for tree
LAI values ranging from 0 to 3 for a spatial domain of the size
of a Landsat TM pixel (900 m2). The calculation of domain
fractions with 4-Scale requires information on the optical prop-
erties of foliage and background in the form of hyperspectral
leaf scale transmittance and reflectance spectra and hyperspec-
tral branch scale reflectance spectra, respectively. To investigate
the nature of the regression relationship between tree LAI and
shadow fraction, we used the sum of shaded crown and shaded
background as the total shadow fraction of our modelling do-
main. Details on the major features of 4-Scale and information
on its parameterization for this study is provided in Appendix B.

All tree and shrub transects were located on the Landsat TM
scene. To estimate the average tree and shrub LAI for Landsat
TM pixels along transects, all LAI-2000 field measurements
taken within each transect pixel were averaged. In total, we
obtained 17 pixels of the forested portions of Mer Bleue bog to
which we were able to assign an average value of field-mea-
sured tree LAI (LAI-2000 instrument). Depending on the rela-
tive location of each transect on the Landsat TM scene, the
number of field-measured tree LAI per pixel varied between one
(for three pixels) and four (for one pixel), respectively. Average
tree LAI of six and seven pixels was based on two and three
field measurements, respectively.

Tree LAI of the forested portions of Mer Bleue bog was
mapped through inversion of the equation describing the
empirical relationship between shadow fraction obtained from
mixture decomposition and tree LAI as determined through our
simulations with 4-Scale. Tree LAI for the mixed forest pixels
of Mer Bleue (Fig. 4) was mapped through inversion of the
published exponential equation of the empirical relationship
between RSR and mixed forest tree LAI provided by Chen et al.
(2002):

RSR ¼ 9:3−9:3eð−LAI=2:93Þ: ð5Þ

Regarding shrub LAI, we obtained 29 pixels in total, 15
pixels corresponding to tree transects (two of the 17 pixels of

http://daac.gsfc.nasa.gov/MODIS/
http://daac.gsfc.nasa.gov/MODIS/
http://climate.weatheroffice.ec.gc.ca


Table 3
Mer Bleue bog-specific clumping indices (ΩE) of black spruce and tamarack and
woody-to-total area ratios (α) of tamarack for use in Eq. (1) to derive LAI from
LAIe after Chen et al. (1997)

Parameter Method Tree
species

No. of
samples

Min. Max. Mean

ΩE TRAC Black
spruce

4 0.77 0.96 0.87

ΩE TRAC Tamarack 4 0.77 0.95 0.87
α Morphological

measurements
Tamarack 12 0.12 0.17 0.15

α Leaf-off LAI-2000
measurements

Tamarack 7 0.19 0.37 0.30
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the forested portions close to a drainage ditch were neglected
because the shrub canopy reached an average height of 1 m) and
14 pixels corresponding to shrub transects, to which we were
able to assign an average value of field-measured shrub LAI
(LAI-2000 instrument). The number of field-measured shrub
LAI per pixel varied between one (for five pixels) and four (for
two pixels), respectively. Average shrub LAI of 10 and 12 pixels
was based on two and three field measurements, respectively.
Shrub LAI was mapped through inversion of the empirical
relationship between shrub fraction and field-measured shrub
LAI. The assumption underlying this approach is the observa-
tion that the open tree canopy of Mer Bleue bog is “underlain”
by shrub canopy, and the shadow produced by trees is also
“underlain” by shrub canopy. Thus, the shrub fraction of a pixel
is assumed to be the sum of the sunlit vascular plant canopy and
shadow fractions, i.e. [1− sunlit Sphagnum moss fraction]
(Fig. 5). Both approaches to map tree and shrub LAI based on
fractions obtained from SMA and MESMA were validated
using “leave-one-out”-cross-validation (LOOC) (Isaaks &
Srivastava, 1989).

Our approach to map shrub LAI based on shrub fraction is
not applicable to shrubs under the mixed forest canopy due to
the relatively high degree of crown closure. Therefore, shrub
LAI for mixed forest pixels was set to a constant value of 2.50
(1.13), which is the average (S.D.) shrub LAI measured along
transect mbt5. Due to the lack of field-measured LAI, cattail
LAI was set to a constant maximum growing season value of
3.63 (M.-C. Bonneville, unpublished data).

3. Results and discussion

3.1. Field measurements

A summary of needle-to-shoot area ratios of tamarack
growing at Mer Bleue bog under two different lighting
conditions is provided in Table 2. To the best of our knowledge,
there has been no study reporting estimates of γE for tamarack.
Table 2
Needle-to-shoot area ratios (γE) of tamarack at Mer Bleue bog, growing under
two different growth conditions in terms of light availability

Sample Open bog Forested bog

Mean S.D. Mean S.D.

DT 1.56 0.34 1.33 0.27
DM 0.97 0.32 1.57 0.22
DL 1.78 0.86 1.53 0.39
MT 1.70 0.45 1.41 0.51
MM 1.49 0.16 1.55 0.06
ML 1.21 0.32 1.50 0.30
ST 1.04 0.17 1.06 0.70
SM 1.35 0.35 1.73 0.74
SL 1.37 0.34 1.34 0.28
Mean 1.39 0.38 1.45 0.38

For each growth condition, 45 shoot samples were taken from three trees: one
dominant (D), one co-dominant (M), and one suppressed (S) tree, at three
different height levels: top (T), middle (M), and bottom (L), resulting in nine
classes with five shoots samples each: DT, DM, DL, MT, MM, ML, MS, ST,
SM, and SL.
Comparisons of Table 2 with published estimates of γE for
several coniferous tree species in Canada show that the mean
values for tamarack under both growth conditions are con-
siderably smaller. Chen et al. (2006) reported γE estimates of
1.66, 1.61, 1.71, and 1.91 for a mature and young Douglas fir
stand on Vancouver Island, a balsam fir stand in New Bruns-
wick, and a white pine stand in southern Ontario, respectively.
The variation of γE among the two different growth conditions
and also among the nine classes of each growth condition
does not show any pattern. This is in contrast to the systematic
variation of γE observed for different coniferous tree species
among the nine classes by Chen et al. (2006), with the highest
values for γE in dominant trees, followed by co-dominant and
suppressed trees, respectively. Within a tree they reported
generally higher γE values for shoots at higher levels than for
shoots at lower levels. Considering the harsh growth conditions
in acidic and nutrient-poor ombrotrophic peatlands, our gen-
erally small γE estimates for tamarack compared to the values
reported by Chen et al. (2006) and the lack of any systematic
variation between different height levels within trees is
consistent with their hypothesis that the needle-to-shoot area
ratio is mainly determined by growth conditions. Furthermore,
our uniform γE estimates reflect the openness of the tree canopy
at Mer Bleue bog where inter-tree shading does not result in
more favorable lighting conditions of more open areas when
compared to denser tamarack stands (Gower & Richards, 1990).
For the calculation of tree LAI from LAIe using Eq. (1) after
Chen et al. (1997) we used the average γE value between open
and forested bog of 1.42 (Table 2).

Our Mer Bleue bog-specific mean ΩE estimate for black
spruce of 0.87 is in reasonable agreement with the values
provided by Chen et al. (2006) for the same species at two forest
sites in Canada. Similar to the needle-to-shoot area ratio for
tamarack reported above, there has been no study reporting ΩE

and α estimates for tamarack (Table 3). Our mean ΩE estimate
for tamarack is the same as for black spruce, i.e. reflecting a
relatively high degree of foliage clumping.

The quick and reliable non-destructive estimation of α is still
in its infancy, and often best estimates for this parameter are used
in Eq. (1) (Chen et al., 2006). To reduce the considerable amount
of uncertainty introduced by applying best estimates, we
determined αwith two simple non-destructive methods providing
contrasting results (Table 3). Our α estimate of 0.15 based on
morphological measurements is in the lower range compared to α



Table 4
Summary of field-measured tree and shrub LAI summarized according to the
relative location of each transect on the subset of Landsat TM scene

Tree LAI
[m2/m2]

Shrub LAI (forested bog)
[m2/m2]

Shrub LAI (open bog)
[m2/m2]

No. of pixels 17 15 14
Min. LAI 0.23 0.76 0.73
Max. LAI 3.06 2.87 3.05
Mean LAI 1.59 1.57 1.50
S.D. 0.83 0.61 0.67

Fig. 6. Mapped SVI for Mer Bleue computed from the atmospherically corrected
Landsat TM subset: (A) NDVI, (B) SR, and (C) RSR.
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estimates reported by Chen et al. (2006) for other coniferous tree
species in Canada, whereas an α estimate of 0.30 is in the higher
range. We assume that the α estimate based on morphological
measurements is underestimated due to the nature of the approach
of simply using mean values of a few morphological measure-
ments. Our α estimate based on leaf-off LAI-2000 measurements
is most likely overestimated due to the timing of the non-growing
season LAI-2000 measurement at dusk after a sunny day in mid-
November. The short sunset provided us just with a very short
time window with diffuse light conditions to take the measure-
ments. The highest individual α values coincide with the last
measurements when it was probably too dark, resulting in an
overestimation of non-growing season LAIe and thus α. We
assume that our two contrasting α estimates define the limits of its
actual mean value, and thus we used the average of both estimates
of 0.225 for application in Eq. (1).

The final averaged tree and shrub LAI values per pixel after
correcting LAIe for γE, ΩE, and α (tree LAI) and for α (shrub
LAI) with Eqs. (1) and (2), respectively, are provided in Table 4.
Tree LAI varies over a wide range from 0.23 and 3.06, resulting
in a mean value of 1.59. This average tree LAI is much smaller
than the average tree LAI of several forest sites in Canada (Chen
et al., 2006), and thus reflects the low productivity of acidic and
nutrient-poor ombrotrophic peatlands. Shrub LAI varies over a
range similar to tree LAI, with a slightly lower mean shrub LAI
measured along transects located in open areas of the bog
compared to forested portions. The similar ranges and means of
tree and shrub LAI, respectively, provided by Table 4 indicate
the importance of the shrub canopy in the Mer Bleue bog's
hydrological and ecological functioning as described in several
studies (e.g., Lafleur et al., 2005; Moore et al., 2002).

3.2. Spectral vegetation indices for Mer Bleue

All three SVI computed from the atmospherically corrected
Landsat TM subset of Fig. 3 respond to the dense tree canopy
along drainage ditches and the beaver ponds with the highest
values for Mer Bleue (Fig. 6). Non-vegetation pixels yield the
lowest values for the respective SVI (e.g., the southern beaver
pond of the northern finger delineating Mer Bleue bog,
portions of the drainage dissecting the eastern half of Mer
Bleue bog). Intermediate between these two extremes are the
cattail marshes and areas of Mer Bleue bog characterized by
pristine species composition and vertical vegetation structure.
The central part of Mer Bleue bog, in particular, responds with
values for the respective SVI similar to non-vegetation pixels,
thus indicating sparse vascular vegetation. However, from
field observations and aerial photographs (data not shown) we
know that these central areas comprise very open patches of
typical black spruce and tamarack canopies over an also
relatively open and low shrub canopy. Thus, in these areas, the
major contributor to background reflectance is the Sphagnum
moss ground cover, with spectral features that do not allow for
the adequate characterization of the absorption in the red
portion of the visible range and the high reflectance of the
NIR range of the vascular plants (Fig. 8).

The linear OLS regression relationships between the SVI
of Fig. 6 and the field-measured tree and shrub LAI (open
bog) of Table 4 are provided by Fig. 7. Regarding tree LAI,
the highest value for R2 is obtained for RSR (R2 =0.27),
followed by SR (R2 =0.13) and NDVI (R2 =0.09), respective-
ly. Generally, the R2 values for the Mer Bleue bog are
significantly smaller than those obtained in boreal forest
ecosystems (e.g., Brown et al., 2000; Chen et al., 2002),
indicating for each pixel that there is no single SVI vs. tree
LAI linear regression relationship but a set of relationships, all
of which are a function of crown closure and thus of the nature



Fig. 7. Linear OLS regression relationships between SVI (Fig. 6) and field-measured tree and shrub LAI: A) NDVI vs. tree LAI, B) NDVI vs. shrub LAI, C) SR vs. tree
LAI, D) SR vs. shrub LAI, E) RSR vs. tree LAI, and F) RSR vs. tree LAI.
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of background reflectance. However, the general superiority of
RSR over SR and NDVI for tree LAI mapping in boreal
forests due to its capability to compensate for differences in
canopy closure and background reflectance was demonstrated
in several previous studies (e.g., Brown et al., 2000; Chen
et al., 2002). For shrub LAI, the highest value for R2 is again
obtained for RSR (R2 =0.71), followed by SR (R2 =0.70) and
NDVI (R2 =0.64), respectively. These significantly higher R2

values for all three SVI demonstrate their general applicability
Fig. 8. Sphagnum moss reflectance spectra measured at Mer Bleue bog: nine
individual sample sets for mixture decomposition with MESMA, and their
average (bold line) for mixture decomposition with SMA.
to the shrub canopy of the open portions of the Mer Bleue
bog. However, none of the SVI of Fig. 7 allows for mapping
of shrub LAI of the forested portions of Mer Bleue bog.

3.3. Mixture decomposition with SMA and MESMA

We used nine Sphagnum moss reflectance spectra measured
at Mer Bleue bog convolved to the wavelength range
corresponding to the Landsat TM bands 1 through 5 for mixture
Fig. 9. Spectral characterization of the three-endmember model for mixture
decomposition with SMA (convolved to the mid-points of the Landsat bands 1
through 5): sunlit vascular plant canopy, sunlit Sphagnum moss, and shadow.
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decomposition (Fig. 8). All nine reflectance spectra are char-
acterized by diagnostic reflectance differences in the visible,
NIR, and SWIR distinguishing them from the reflectance spec-
tra of vascular plants. Generally, Sphagnum moss is more re-
flective in the red portion of the visible range and less reflective
in the NIR range than vascular plants. Further characteristic
features of Sphagnum moss reflectance spectra described by
Bubier et al. (1997) are the strong water absorption features at
about 980 and 1200 nm, resulting in three distinctive spectral
reflectance peaks at about 930, 1100, and 1300 nm (Fig. 8).
Fig. 10. Fractions and assessment of model fit for SMA and MESMA: A) sunlit vascu
sunlit Sphagnum moss endmember (SMA), D) sunlit Sphagnum moss endmember (M
RMSE (SMA), and H) RMSE (MESMA).
However, the amplitudes of this general behavior varies over a
wide range since it is significantly controlled by the near-
surface volumetric moss moisture content, soil and water chem-
istry, and environmental conditions such as light availability
(Bryant & Baird, 2003; Bubier et al., 1997; Harris et al., 2005,
2006).

We used the average of the nine Sphagnum moss reflectance
spectra of Fig. 8 to spectrally characterize the sunlit Sphagnum
moss endmember of our three-endmember model for SMA. For
the spectral characterization of the shadow endmember, we
lar plant endmember (SMA), B) sunlit vascular plant endmember (MESMA), C)
ESMA), E) shadow endmember (SMA), F) shadow endmember (MESMA), G)



Table 5
Direct comparison of the classified Mer Bleue subsets obtained with SMA and
MESMA (subset of Fig. 8)

Mer Bleue # pixels 29,734
Non-pristine (Fig. 4) # pixel 9856
Mer Bleue bog # pixels (%) 19,878 (100)

SMA MESMA

Average reflectance spectra # pixels (%) 19,393 (97.56) –
Classified # pixels (%) ss 1 – 19 (0.10)
Classified # pixels (%) ss 2 – 172 (0.87)
Classified # pixels (%) ss 3 – 3720 (18.71)
Classified # pixels (%) ss 4 – 1439 (7.24)
Classified # pixels (%) ss 5 – 8 (0.04)
Classified # pixels (%) ss 6 – 9104 (45.80)
Classified # pixels (%) ss 8 – 5119 (25.75)
Classified # pixels (%) ss 9 – 130 (0.65)
Total # pixels (%) 19,393 (97.56) 19,711(99.16)

Fig. 11. Classified Mer Bleue subset (MESMA) using the nine reflectance
spectra in Fig. 8 to describe the sunlit Sphagnum moss endmember (ss=subset
of Fig. 8).
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manually selected the field-measured shadow reflectance
spectrum with the lowest spectral reflectance values in the
visible, NIR, and SWIR ranges. The sunlit vascular plant
canopy endmember was spectrally characterized through the
combined use of MNF and PPI. The resulting sunlit vascular
plant canopy reflectance spectrum is similar to the sunlit
Sphagnum moss reflectance spectrum, indicating the influence
of the underlying Sphagnum moss ground cover on the overall
spectral response of the shrub canopy (Fig. 9).

For MESMA we built a spectral library that consisted of all
nine Sphagnum moss reflectance spectra (Fig. 8) together with
the sunlit vascular plant canopy and shadow endmembers
(Fig. 9) resulting in nine different three-endmember models.

The fractions of the three endmembers and the RMSE
obtained from mixture decomposition with SMA and MESMA,
respectively, are provided in Fig. 10. For both mixture decom-
position approaches, the distributions of the sunlit vascular plant
canopy endmember are relatively uniform (Fig. 10A and B,
respectively). The highest sunlit vascular plant canopy fractions
are south of the northern margin and north of the southern
margin of Mer Bleue bog corresponding to open bogs where
trees are absent (Fig. 3). The lowest values occur in the central,
forested portions of Mer Bleue bog. This portion of the bog also
shows the lowest response to the SVI (Fig. 6), indicating sparse
vascular vegetation.

The spatial distributions of the sunlit Sphagnum moss
endmember (Fig. 10C and D, respectively) are the inverse of the
sunlit vascular plant canopy endmember, i.e. relatively uniform
except for the central portions, where the highest fractions
occur. High sunlit Sphagnum moss fractions are indicative of
the absence or a low density of the shrub canopy. The shadow
fractions from SMA and MESMA both show a clear pattern
corresponding to open and forested portions of the Mer Bleue
bog (Fig. 10E and F, respectively): areas where trees are absent
or that just contain individual, isolated trees are characterized by
the lowest shadow fractions, whereas forested portions are
characterized by the highest shadow fractions. Seventy pixels in
Fig. 10E and 66 pixels in Fig. 10F have unrealistic negative
shadow fractions, some of which occur in both images. How-
ever, since these pixels were all located in areas of Mer Bleue
that clearly correspond to cattail marsh, mixed forest, or non-
vegetation they were excluded from the subsequent analysis.
Most likely these pixels were simply misclassified by SAM.

Regarding the spatial distributions of RMSE, for both SMA
andMESMA the highest values occur in areas of Mer Bleue that
correspond to cattail marsh, mixed forest, or non-vegetation
(Fig. 10G and H, respectively), and thus were most likely also
misclassified by SAM. However, since these pixels have
realistic fractions, they were kept for the subsequent analysis.
Within the Mer Bleue bog, RMSE obtained from SMA covers a
wider range and shows more spatial variation than RMSE
obtained from MESMA. The highest RMSE values from SMA
occur in the central areas of the bog, which also show the
highest sunlit Sphagnum moss and shadow fractions.

The direct comparison of the classified Mer Bleue subsets
obtained with SMA andMESMA is summarized in Table 5. SMA
using the average Sphagnum moss reflectance spectra of Fig. 8
can be used to model the spectral response of 97.56% of the pixels
of the Mer Bleue subset, whereas MESMA using all nine
Sphagnum moss reflectance spectra successfully models 99.16%.

The spatial variation of the different Sphagnum moss reflec-
tance spectra of Fig. 8 used by MESMA shows that different
areas of the Mer Bleue bog are modeled best by different three-
endmember models (Fig. 11). For example, the spectral re-
sponse of forested central portions of the bog is modeled best
with a three-endmember model that includes subset 8 in Fig. 8,
whereas the open portions of the bog are modeled best with a
three end-member model that includes subset 6. Other subsets in
Fig. 8 such as subsets 1, 2, and 9 are of minor importance, the
three-endmember model that includes subset 7 is not used at all
(Table 5).

Qualitatively, the spatial distributions of all three end-
members in Fig. 10 obtained from SMA and MESMA, re-
spectively, are good approximations of the spatially varying
pristine species composition and vertical vegetation structure
of Mer Bleue bog, thus indicating the general applicability
of our three end-member model to ombrotrophic peatlands.
However, the spatial variability and the greater range of RMSE
obtained from SMA compared to MESMA, and the lower
percentage of classified pixels indicate that the widely varying
spectral characteristics of the sunlit Sphagnum moss end-
member are not adequately described by the average Sphagnum
moss reflectance spectrum of Fig. 8, which might result in
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less accurate fractions. Furthermore, by using a range of dif-
ferent Sphagnum moss reflectance spectra, the influence of the
similarity between the average sunlit Sphagnum moss and the
sunlit vascular plant canopy reflectance spectra is minimized
(Fig. 9). Less accurate fractions limit the use of SMA for
peatland LAI mapping as demonstrated in Section 3.5.

3.4. Geometric-optical radiative transfer modeling

The simulated relationship between shadow fraction and tree
LAI is clearly not linear but appears to be of exponential nature
and is best described with a nonlinear exponential equation of
the general form (Fig. 12):

y ¼ a−b⁎expð−x=cÞ ð6Þ
where x and y are tree LAI and shadow fractions, respectively,
and a, b, and c are regression constants. The constants a, b, and
c of Eq. (6) describe the simulated exponential relationship
between tree LAI and shadow fraction and were determined
through unconstrained, non-linear OLS regression analysis as
0.361, 0.326, and 1.698, respectively (Fig. 12).

The first constant in Eq. (6), a, is the maximum shadow
fraction, and the second constant, b, is the difference between
maximum shadow fraction and background shadow, i.e. shadow
produced by the shrub canopy, since no trees are present at a tree
LAI value of zero. Thus, for our simulated relationship the
amount of shadow produced by the shrub canopy is estimated as
0.035.
3.5. Tree and shrub LAI mapping using MESMA

Based on Eq. (6) we determined the regression relationships
between tree LAI (Table 4) and shadow fractions obtained from
SMA (Fig. 10E) and MESMA (Fig. 10F), respectively, through
partially constrained non-linear OLS regression analysis
(Fig. 13A and B, respectively). In both the regression relation-
ships of Fig. 13A and B the first regression constant, a, was
Fig. 12. Simulated exponential relationship between shadow fraction (SF) and
tree LAI for a Landsat TM pixel of Mer Bleue bog.
preset to the maximum shadow fraction obtained from mixture
decomposition (Fig. 10E and F, respectively). The second re-
gression constant, b, was pre-set to the difference of the first
regression constant and background shadow. An average back-
ground shadow of 0.09 produced by the shrub canopy was
calculated based on pixels corresponding to the three shrub
transects mbs1, mbs2, and mbs3 located in open areas of theMer
Bleue bog where trees were absent. The third regression con-
stant, c, was determined iteratively through the regression anal-
ysis. Comparison of the R2 values obtained through the mixture
decomposition-based non-linear OLS regression (Fig. 13A and
B, respectively) with those from the SVI-based linear OLS
regression (Fig. 7A, C, and E, respectively) reveals that the
shadow fraction is generally a strong predictor of tree LAI in
ombrotrophic peatlands, with MESMA being superior over
SMA as indicated by R2 values of 0.75 (Fig. 13B) and 0.61
(Fig. 13A), respectively. Similar findings demonstrating the
general superiority of the shadow fraction over SVI for tree LAI
estimation were made by Hall et al. (1995) and Hall et al. (2003).

For the estimation of shrub LAI based on shrub fraction we
also applied the approach of partially constrained non-linear
OLS regression analysis using Eq. (6) (Fig. 13C and D, re-
spectively). A simple plot of field-measured shrub LAI and the
shrub fractions obtained from SMA and MESMA revealed that
the shrub fraction reaches a plateau at about 0.90 despite
increasing shrub LAI. A possible reason for this might be that
increasing shrub LAI is inherent with increasing shrub fraction
up to a certain point, after which shrub LAI increases as a
function of shrub height resulting in more foliage seen by the
LAI-2000 instrument sensor but not necessarily in a higher
fraction of shrubs covering the ground as determined through
SMA and MESMA, respectively. This interpretation is sup-
ported by the observation that the highest shrub LAI values
along our transects were measured at mbt5 and mbs3, both of
which are close to a drainage ditch and to the margin of Mer
Bleue bog, respectively. Both areas are characterized by lower
water table positions with more favorable growth conditions,
resulting in higher and denser shrub canopies. In both OLS
regression relationships of Fig. 13C and D, respectively, the first
regression constant, a, was pre-set to a maximum shrub fraction
of 0.90, representing the plateau of the exponential relationship.
The background was set to zero, since if shrubs are absent,
shrub LAI is supposed to equal zero. Our simple approach of
calculating the shrub fraction as the sum of the sunlit vascular
plant canopy and the shadow fraction (i.e. [1− sunlit Sphagnum
moss fraction]) most likely resulted in overestimation of the
shrub fraction for some areas of Mer Bleue bog since it does not
account for the situation where shadows produced by trees are
“underlain” directly by Sphagnum moss, i.e. where the shrub
canopy is absent. However, we assume that this overestimation
is on average balanced by the underestimation that would result
from the correction of 0.09 to the shadow fraction for the
average shadow produced by the shrub canopy estimated above.
Simple comparison of the R2 values obtained through the mix-
ture decomposition-based non-linear OLS regression (Fig. 13C
and D, respectively) with those from the SVI-based linear OLS
regression (Fig. 7B, D, and F, respectively) might suggest that



Fig. 13. Exponential relationships between shadow fractions derived from SMA andMESMA, respectively, and field-measured tree LAI based on Eq. (6), and between
shrub fractions derived from SMA and MESMA, respectively, and field-measured shrub LAI, also based on Eq. (6).
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the three SVI are generally stronger predictors of shrub LAI
than the shrub fraction. However, SVI-based shrub LAI map-
ping produces good results in open portions of the Mer Bleue
bog but fails in its forested portions since these SVI respond to
both shrub and tree canopies due to the low degree of canopy
closure. Our approach based on shrub fraction is not sensitive to
canopy closure, thus allowing for shrub LAI mapping in Mer
Bleue bog's open and forested portions, and still produces
acceptable results (Fig. 13C and D, respectively). Similar to tree
LAI, MESMA is again superior over SMA as indicated by R2

values of 0.68 (Fig. 13D) and 0.49 (Fig. 13C), respectively.

3.6. Cross-validation

To gain confidence in our approaches we tested the tree and
shrub LAI predictors derived from the shadow (Fig. 13A and B,
respectively) and shrub fractions (Fig. 13C and D, respectively)
with LOOC for the pixels of the tree and shrub transects. For
tree LAI, as expected, the shadow fraction from MESMA
(Fig. 14B) results in more accurate tree LAI estimates with R2

and RMSE values of 0.74 and 0.48, respectively, compared to
tree LAI estimates based on SMA (Fig. 14A) with R2 and
RMSE values of 0.60 and 0.62, respectively. For both SMA and
MESMA, the slope and intercept are not significantly different
from 1 and 0 (significance level=0.05), respectively.

Similar to tree LAI estimates, shrub LAI estimates based on
the shrub fraction from MESMA (Fig. 14D) with R2 and RMSE
values of 0.68 and 0.42, respectively, are more accurate than
shrub LAI estimates based on the shrub fraction from SMA
(Fig. 14C) with R2 and RMSE values of 0.55 and 0.73, re-
spectively. The shrub LAI predictor based on shrub fraction
obtained from SMA tends to overestimate shrub LAI in the
higher range even though slope and intercept are not sig-
nificantly different from 1 and 0 (significance level=0.05),
respectively. Shrub LAI estimates based on MESMA are
slightly underestimated at higher shrub LAI values and slight-
ly overestimated at lower shrub LAI values with the slope just
slightly different from 1 (p=0.0417) and the intercept not sig-
nificantly different from 0 (significance level=0.05).

For the final production of the tree and shrub LAI maps for
Mer Bleue based on inversion of Eq. (6), the shadow and sunlit
Sphagnum moss (i.e. [1− sunlit Sphagnum moss]) fractions
determined with MESMAwere used (Fig. 15A–C). For the tree
LAI calculation of the mixed forest pixels (Fig. 4) with Eq. (5)
we constrained the RSR values of Fig. 6C to a maximum value
of 9.2 (i.e. 29.47% of the mixed forest pixels). For the shrub



Fig. 14. “Leave-one-out”-cross-validation (LOOC) for tree LAI estimated based on shadow fraction obtained from SMA (A) and MESMA (B), and for shrub LAI
estimated based on shrub fraction obtained from SMA (C) and MESMA (D).
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LAI calculation with Eq. (6) based on Fig. 10F, we constrained
the shrub fraction of a pixel to a maximum value of 0.89 (i.e.
9.34% of Mer Bleue bog). We consider this constraint to be
reasonable since at Mer Bleue bog a shrub fraction greater than
0.90 over an area of 900 m2 is unrealistic due to the bog's
microtopography. On average, hollows, which make up approx-
imately one third of Mer Bleue bog's surface area (Lafleur et al.,
2005), have a percent cover of less than 0.5, and thus full shrub
coverage over large areas does not exist (Sonnentag et al.,
in press).

Total LAI was calculated as the sum of tree and shrub LAI
(Fig. 15C). In all three maps, non-vegetation pixels (Fig. 4),
pixels that were excluded due to negative shadow fractions
(Fig. 10F), and unclassified pixels (Fig. 11) were set to NoData.
Qualitatively, the LAI maps of Fig. 15 capture the spatial
variation of the species composition and vertical vegetation
structure of Mer Bleue quite well when compared to Fig. 3. As
expected, the highest total LAI values occur along beaver ponds
and drainage ditches, whereas the Mer Bleue bog is character-
ized by considerably lower total LAI values. A striking feature
of the shrub LAI map is the generally low shrub LAI values in
the central forested parts of Mer Bleue bog as indicated by the
fractions of Fig. 10 (Fig. 15B). The SVI of Fig. 6 indicate sparse
vascular vegetation for these portions of the Mer Bleue bog,
which would result in low total LAI values. However, the total
LAI of these areas is in the same range as for the open portions
of Mer Bleue bog, with the tree LAI as the major contributor to
total LAI.

4. Conclusions

Tree LAI of forest ecosystem has routinely been mapped
based on the empirical relationships between SVI derived from
remote sensing imagery and LAI field measurements. The
suitability of this approach is limited for tree and shrub LAI
mapping in ombrotrophic peatlands, mainly due to the spatially
varying vegetation structure of their multi-layer canopy, which
usually includes a moss ground cover. Additionally, mosses
have spectral characteristics that are significantly different from
vascular plants.

Based on a promising approach to map tree LAI in forest
ecosystems using fractions from mixture decomposition with
SMA, we mapped tree and shrub LAI of an ombrotrophic
peatland at the peak growing season. Applying MESMA, an
extension of SMA, to a three-endmember model comprising a
general sunlit vascular plant canopy, Sphagnum moss, and
shadow, the widely varying spectral characteristics of Sphag-
num mosses were taken into account in the mixture decompo-
sition. A slightly higher percentage of pixels of the Mer Bleue
bog were successfully unmixed by our three endmember model
with MESMA than with SMA. Furthermore, mixture decom-
position with MESMA reduces the RMSE, mainly in portions



Fig. 15. Mapped LAI for Mer Bleue based on fractions obtained from MESMA
and Chen et al. (2002): tree LAI (A), shrub LAI (B), and total LAI (C).
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of Mer Bleue bog where the shrub canopy is sparse or absent
and the overall pixel spectral signature is mainly controlled by
the spectral characteristics of Sphagnum mosses. Thus, it can be
assumed that the fractions obtained from MESMA are more
accurate than the fractions obtained from SMA.

The nature of the exponential relationship between shadow
fraction and tree LAI in peatlands shows that a small portion of
the shadow fraction has to be attributed to the shrub canopy.
Validation with LOOC shows that less accurate fractions from
SMA than from MESMA result in weaker predictions of both
tree and shrub LAI.

We are confident that our approach developed for the multi-
layer canopy of an ombrotrophic peatland can be used suc-
cessfully to map tree and shrub LAI in similar ecosystems. For
example, another common type of peatland includes fens,
which receive, in addition to precipitation, hydrological inputs
from their surrounding mineral uplands in the form of surface
and subsurface flow (minerotrophic). As a result, fens, com-
monly subdivided into poor and rich fens, are less acidic and
nutrient-rich peatlands, dominated by feather mosses, grami-
noids, shrubs, and coniferous and deciduous trees (Wheeler &
Proctor, 2000). Future research should investigate the applica-
bility of our approach to the multi-layer canopy of miner-
otrophic peatlands, and also its applicability to a larger area
containing both, ombrotrophic and minerotrophic peatlands.
Furthermore, the applicability of the resulting LAI maps for the
explicit parameterization of two distinct canopy layers in dis-
tributed, process-oriented ecosystem models still has to be
explored.
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Appendix A

For 12 tamarack trees we measured height, diameter at breast
height (DBH), and average branch length at three different
height levels (top, middle, and bottom), and counted the number
of branches of the entire tree. For three representative branches
corresponding to the average length of each height level we
counted the number of twigs, and measured their lengths and
radii at the stem and at the end. Based on these measurements
we calculated the woody surface area (AW) of each tree as the
sum of stem surface area (AS), average branch surface area (AB),
and average twig surface area (AT). AS and ATwere calculated as
the lateral surface area of circular cylinders with:

A ¼ 2prh ðA� 1Þ

where r is stem radius [m] and an average twig radius of
0.002 m, respectively, and h is tree height [m] and twig length
[m], respectively. AB was calculated by equally dividing the
total number of branches into the three height levels and
multiplying the number of branches with an average branch
surface area of each height level, which was calculated as the
surface area of truncated cones not including the top and the
base circles, with:

A ¼ pðr1 þ r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1−r2Þ2 þ h2

q
ðA� 2Þ

where r1 and r2 are average branch radii [m] at the stem and at
the end, respectively, and h is average branch length [m] per
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height level of each tree. The calculation of total tree leaf area
(AL) is based on a needle-to-woody area ratio ε, which we
calculated based on the 90 tamarack shoot samples collected for
the needle-to-shoot area estimation with:

e ¼
P

ANP
AT

ðA� 3Þ

where AN is half the total needle area (including all sides) in a
shoot [m2], and AT is half the total woody area [m2] of a shoot
sample, i.e. half the surface area of its twig. AT was calculated
using Eq. (A-1) with the average twig radius of 0.002 m
determined as part of the previous tree woody area calculation,
and the twig length [m] of the respective shoot sample. Based
on Eq. (A-3) we calculated an average value for ε of 11.69. The
total needle surface area of each tree was calculated as the sum
of the top, middle, and bottom level needle surface areas, which
in turn were calculated by multiplying ε with the twig surface
area of the respective height level as determined in the previous
tree woody area calculation. Using AWand AN, we calculated an
average value for α in accordance with Kucharik et al. (1998)
with:

a ¼
P

AWP
AW þP

AN
ðA� 4Þ

Appendix B

The geometric-optical radiative transfer model 4-Scale
considers the interaction of light with architectural elements
of tree canopies at four different scales: tree groups, tree crowns,
branches, and foliage elements. To simulate the patchiness
usually observed in boreal forests, 4-Scale uses a Neyman type
A distribution, assuming that trees are combined in groups, with
the center of the group entirely contained in quadrats that divide
the simulation domain into smaller areas (Chen & Leblanc,
1997). A geometry-based multiple scattering scheme considers
the scattering of light between all architectural canopy elements
(Chen & Leblanc, 2001).

In our study we parameterized 4-Scale using averaged leaf
scale western larch (Larix occidentalis) reflectance and trans-
mittance spectra obtained as part of a previous study (D.A.
Roberts, unpublished data). The leaf scale spectra were mea-
sured using a modified Beckman DK2A with an integrating
sphere attachment designed for measurements of directional
hemispherical transmittance or reflectance. Western larch spec-
tra were collected from needles destructively sampled from the
sunlit portions of lower tree crowns. After collection, needles
were stored cooled and transported to the laboratory for spectral
measurements. Spectra were collected within 48 h of original
collection. Laboratory spectra were collected from needles ar-
ranged on slide mounts with minimal gaps and overlaps as
described by Roberts et al. (2004). Regarding the optical prop-
erties of background, we parameterized 4-Scale using the avera-
ge of nine sets of branch scale background reflectance spectra
obtained in this study.
In addition to leaf and branch scale input reflectance
spectra, 4-Scale requires several site- and tree architecture
specific input parameters including tree LAI and stand density.
To avoid the arbitrary variation of stand density with
increasing tree LAI or the “growth” of bigger trees with less
foliage by keeping stand density constant with increasing tree
LAI, we determined the empirical relationship between stand
density and tree LAI with unconstrained nonlinear OLS
regression analysis for a total of nine flags of mbt3, mbt4,
and mbt5.

Based on the exponential stand density vs. tree LAI
relationship (R2 = 0.62) we estimated stand densities
corresponding to tree LAI values of 0.1, 0.5, 1.0, 1.5, 2.0,
2.5, and 3.0 (Table B-1). For comparison of simulated shadow
fractions with shadow fractions derived from the subset of the
Landsat TM scene with SMA and MESMA, the simulations
were performed using a SZA corresponding to date and time of
image acquisition and a viewing zenith angle (VZA) of 0°.
Other parameters required by 4-Scale are based on field
observations (stick and crown height, crown radius, and
foliage element size) and measurements (clumping index,
needle-to-shoot area ratio) obtained in this study, or are set
following literature recommendations (number of quadrats,
Neyman A grouping, and repulsion factor that avoids
unnatural tree crown overlapping) after Chen and Leblanc
(1997).

Based on the input spectra and the site- and tree architecture
specific input parameters of Table B-1, 4-Scale calculates the
spectral reflectance of the four domain components sunlit and
shaded crown, and sunlit and shaded background, together with
their respective fractions. The overall domain spectral reflec-
tance is calculated by associating the spectral reflectance of the
domain components with their fractions according to Eq. (3)
without the residual error.

Table B-1: 4-Scale parameterizations used to investigate the
nature of the empirical relationship between shadow fraction
and tree LAI for Mer Bleue bog
LAI
 0.1
 0.5
 1
 1.5
 2
 2.5
 3
Site
parameters
Size
 900
 900
 900
 900
 900
 900
 900

Stand
density
[trees/900 m2]
64
 64
 153
 294
 354
 380
 391
Tree
clumping
# Quadrats [-]
 5
 5
 5
 5
 5
 5
 5

Neyman A
grouping [-]
2
 2
 2
 2
 2
 2
 2
Other
 SZA [°]
 43
 43
 43
 43
 43
 43
 43

VZA [°]
 0
 0
 0
 0
 0
 0
 0

Stick height [m]
 0.2
 0.2
 0.2
 0.1
 0.1
 0.1
 0.1

Crown height [m]
 1.7
 1.7
 1.7
 1.1
 1.1
 1.1
 1.1

Crown radius [m]
 0.7
 0.4
 0.4
 0.3
 0.3
 0.3
 0.3

Clumping index [-]
 0.87
 0.87
 0.87
 0.87
 0.87
 0.87
 0.87

Apex angle [°]
 13
 13
 13
 13
 13
 13
 13

Needle-to-shoot
area ratio [-]
1.41
 1.41
 1.41
 1.41
 1.41
 1.41
 1.41
Foliage
element
size [m]
0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
Repulsion
factor
0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
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