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Abstract

Leaf area index (LAI) is an important ecological and environmental parameter. A new LAI algorithm is developed using the principles

of ground LAI measurements based on canopy gap fraction. First, the relationship between LAI and gap fraction at various zenith

angles is derived from the definition of LAI. Then, the directional gap fraction is acquired from a remote sensing bidirectional reflectance

distribution function (BRDF) product. This acquisition is obtained by using a kernel driven model and a large-scale directional gap

fraction algorithm. The algorithm has been applied to estimate a LAI distribution in China in mid-July 2002. The ground data acquired

from two field experiments in Changbai Mountain and Qilian Mountain were used to validate the algorithm. To resolve the scale

discrepancy between high resolution ground observations and low resolution remote sensing data, two TM images with a resolution

approaching the size of ground plots were used to relate the coarse resolution LAI map to ground measurements. First, an empirical

relationship between the measured LAI and a vegetation index was established. Next, a high resolution LAI map was generated using the

relationship. The LAI value of a low resolution pixel was calculated from the area-weighted sum of high resolution LAIs composing the

low resolution pixel. The results of this comparison showed that the inversion algorithm has an accuracy of 82%. Factors that may

influence the accuracy are also discussed in this paper.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Leaf area index (LAI) is defined as one half the total
green leaf area (all sided) per unit ground surface area
(Chen and Black, 1992). It is an important parameter of
terrestrial ecosystems, and represents the amount of the
surface area at the interface between plant canopy and the
atmosphere for the fluxes of energy, mass (e.g., water and
CO2), and momentum. Estimating LAI is therefore
important for estimating evapotranspiration, net primary
productivity, and crop yields, and is also useful for studies
of regional and global changes.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Several methods have been developed to estimate LAI
from remote sensing data (Weiss and Baret, 1999), which
can be grouped into two main classes:
(1)
 Empirical relationships based on vegetation indices. This
method correlates LAI with a vegetation index,
typically a combination of reflectances observed in
different spectral bands under one viewing direction.
The most commonly used vegetation indices at the
present are the normalized difference vegetation index
(NDVI) and simple ratio (SR) index. However, the
abilities of NDVI and SR in retrieving LAI are affected
by the background of the vegetation. In addition, since
most indices often become saturated at high LAI
values, the LAI retrieval loses accuracy for dense
canopies. The empirical relations between LAI and
NDVI or SR are generally non-linear and vary with
location, time, as well as vegetation type. Since it is
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impossible to directly measure LAI over large areas on
the ground, large errors are introduced if such
empirical relations are derived from high resolution
images and then applied to coarse resolution images
(Chen, 1999). In addition, compared with other
approaches, vegetation index-based methods can only
use part of the information obtainable from remote
sensing.
(2)
 Model based on inversions. Remote sensing model
inversions consist of determining a set of canopy
biophysical variables that minimizes the difference
between simulated and observed reflectances at various
spectral bands. These inversion model parameters have
definite physical meaning, so this method is increas-
ingly used in current studies. The precision of a model-
based inversion depends on the modeling methodology.
Four classes of models may be distinguished according
to their theoretical basis: turbid medium, geometric
optical, hybrid, and stochastic simulation models
(Goel, 1988). Model inversions can be achieved using
various methods including the traditional iteration
methods, lookup tables, and hybrid methods
(e.g., neural network method). Traditional iteration
methods are time-consuming, and therefore not suita-
ble for pixel-by-pixel inversions. For processing large
data sets, simplification of models or algorithms is
necessary, but this inevitably decreases the inversion
accuracy.
Lookup table methods can partly overcome the
drawbacks of iteration methods. A lookup table is built
in advance through forward calculations to connect
parameters to be inverted to reflectances. During an
inversion, only search and interpolation operations
are needed within a pre-established table. However, to
reach high accuracy, the dimension of the table must be
large enough, which will decrease the on-line searching
speed. Moreover, some parameters, such as soil reflectance,
leaf reflectance, etc., need to be specified in advance.
These parameters are replaced by their representa-
tive values, whereas they sometimes may not only
be highly variable but also have great influence on
reflectance.

Hybrid methods are the combination of remote
sensing models and non-parametric statistical inversion
methods. Simulation data produced from remote sensing
forward models and non-parametric statistical methods
(e.g. neural networks, local regression) are used to build the
connection between directional reflectances and the para-
meters to be inverted. Compared with lookup table
methods, the main advantage of hybrid methods is the
ability to explain the fluctuations of key parameters.
Although many variables are needed to produce simulation
data, hybrid methods can connect model outputs with
several key input parameters. This is because non-
parametric statistical methods have the ability to transform
data through a non-linear projection, and to enhance some
factors while compressing others.
Although reflectance models are generally mathemati-

cally invertible, they do not provide a complete description
of the actual radiative transfer and canopy structure.
Further, a measured reflectance value often has a large
confidence interval. Therefore, the inverse solution is not
always unique, as a different set of physical variables may
yield very similar directional or spectral signature (Weiss
and Baret, 1999).
Given the importance of LAI and the limitations to its

retrieval from one-directional measurements, it is impor-
tant to evaluate the added contribution of directional
remote sensing for LAI retrieval. The objective of this
paper is to develop a simple method that applies directional
information to retrieving LAI.

2. Algorithm description

2.1. Calculation principles for LAI

LAI can be expressed as the productLAI ¼ mnz: of leaf
area density (m, in m2m�3) and canopy height (z, in m):

LAI ¼ mnz. (1)

In a horizontally homogeneous canopy with randomly
distributed, infinitely thin, planar leaves, the mean gap
probability in direction yv can be expressed as an
exponential function of the optical path length S(yv), the
leaf area density m, and the fraction of foliage projected
towards the direction yv, G(yv) (Broadhead et al., 2003):

TðyvÞ ¼ expð�GðyvÞmSðyvÞÞ, (2)

where T(yv) is the mean gap probability. Eq. (2) can be
rewritten as

GðyvÞm ¼ �
lnT yvð Þ

SðyvÞ
¼ KðyvÞ, (3)

where K(yv) is the average number of contacts per unit
length of travel that a probe would make passing through
the canopy at zenith angle yv (Welles and Norman, 1991).
The analytical solution for foliage density is given by

Miller (1967) as

m ¼ 2

Z p=2

0

KðyvÞ sin yv dyv. (4)

The optical path length is related to the zenith angle by

SðyvÞ ¼ z= cosðyvÞ. (5)

The expression of LAI can be derived from m and z:

LAI ¼ �2

Z p=2

0

lnðTðyvÞÞ cos yv sin yv dyv. (6)

In general, measurements are made at multiple angles
(yvi, i ¼ 1, y, m, where m is the number of zenith
angles used during the measurement). Therefore, the LAI
can be computed using the discrete approximation as
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follows:

LAI ¼ � 2
Xm

i¼1

lnðTðyviÞÞ sin yvi cos yviDyvi

¼ � 2
Xm

i¼1

1

n

Xn

j¼1

ln TðyvijÞ
� � !

cos yvi sin yvi Dyvi, ð7Þ

where n is the number of azimuth angles. The gap
probabilities in Eq. (7), averaged over the azimuth,
represent mean values for the area seen by each detector.
Lang and Xiang (1986) showed that if the canopy consists
of homogeneous regions with different leaf area densities,
averaging the transmittance over these regions would
underestimate the LAI. Hence the average of logarithmic
transmittances is used to substitute the logarithm of
average transmittance in Eq. (7).

The LAI calculated from Eq. (7) should be an effective
LAI, i.e., the part which directly contributes to the canopy
interception of incident radiation (Chen and Black,
1991).To acquire actual LAI, the spatial clumping of leaf
elements such as leaf or shoot, shoud be considered. The
relationship between the effective LAI (Le) and the total
LAI Lt is given by (Chen and Cihlar, 1995a, b):

Le ¼ Lt � O, (8)

where O is the clumping index determined by the spatial
distribution pattern of the foliage elements. When the
foliage spatial distribution is random, O is unity. If leaves
are regularly distributed (extreme case: leaves are all laid
side by side), O is larger than unity. When leaves are
clumped (extreme case: leaves are stacked on top of each
other), O is less than unity. The typical clumping index
values for different land cover types are determined
according to the suggested values of Myneni (adopted in
his DISORD program) and Chen (adopted in his LAI
Table 1

Clumping Index for different IGBP land cover types

IGBP Class Class name Clumping index

(Chen)

1 Evergreen needleleaf

forest

0.6

2 Evergreen broadleaf

forest

0.8

3 Deciduous needleleaf

forest

0.6

4 Deciduous broadleaf

forest

0.8

5 Mixed forest 0.7

6 Closed shrublands 0.5

7 Open shrublands 0.5

8 Woody savannas 0.5

9 Savannas 0.5

10 Grasslands 0.9

11 Permanent wetlands 0.9

12 Croplands 0.9

13 Urban and built-up 0.9

14 Cropland mosaics 0.9
algorithm which is developed for the VEGETATION
sensor, Table 1).
The above derivation implies that LAI can be estimated

from the distribution of gap probability over the upper
hemisphere. In ground observations, the gap probability
can be treated as the ratio between the corresponding
below- and above-canopy radiation using upward facing
sensors. The gap probability information can also be
obtained from remote sensing above the canopy, using
another approach.
Studies show that there is a good positive correlation

between NDVI and crown cover fraction. However, after
the crown cover fraction reaches a certain value, NDVI
varies slowly. Multiangular remote sensing provides NDVI
values at various angles, therefore it can be used to derive
the canopy gap fraction at various angles. The directional
gap fractions (i.e., at various satellite view angles) can be
related to directional NDVIs according to the following
equation (Baret et al., 1995; Gutman and Ignatov, 1998;
Zeng et al., 2000):

Tðy;W;fÞ ¼ 1�
NDVIðy;W;fÞ �NDVIbackðy;W;fÞ
NDVIsatðy;W;fÞ �NDVIbackðy; W;fÞ

,

(9)

where NDVIsat is the saturated NDVI, defined as the
NDVI for vegetation fully occupying the field of view;
NDVIback is the NDVI of background under vegetation
cover; y is the solar zenith angle; W is the view zenith angle,
and f is the relative azimuth angle between the sun and the
satellite sensor. Global vegetation products from the
Moderate Resolution Imaging Spectroradiometer
(MODIS) provide the anisotropic reflectance information
of surfaces, which consequently makes it possible to obtain
the directional gap fraction for each pixel.
Class (Myneni) Clumping index

(Myneni)

Clumping index (this

paper)

Needle forest 0.6 0.6

Leaf forest 0.8 0.8

Needle forest 0.6 0.6

Leaf forest 0.8 0.8

0.7

Shrublands 1.0 0.8

Shrublands 1.0 0.8

Savanna 0.8 0.8

Savanna 0.8 0.8

Grasses/cereal crop 1.0 0.9

0.9

Broadleaf crops 1.2 0.9

0.9

0.9
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2.2. Reconstruction of bidirectional reflectance from

MODIS BRDF parameters

A global set of parameters describing the bidirectional
reflectance distribution function (BRDF) of the land
surface is available in the MODIS BRDF/ALBEDO
Products (MOD43B1). These products are derived from
multidate, atmospherically corrected, and cloud-cleared
data over 16-day periods with a semi-empirical kernel-
driven bidirectional reflectance model.

The semi-empirical kernel-driven bidirectional reflec-
tance model adopted in the MODIS product is also
known as a parameterization model. The theoretical basis
of the semi-empirical models is that the surface reflectance
can be modeled as a sum of three kernels representing three
basic scattering types (Roujean et al., 1992; Lucht et al.,
2000):

Rðy; W;f;LÞ ¼ f isoðLÞK iso þ f volðLÞKvolðy;W;fÞ

þ f geoðLÞKgeoðy;W;fÞ, ð10Þ

where Kiso stands for the isotropic kernel and is a constant
of unity; Kvolðy; W;fÞ is the volumetric scattering kernel,
which describes the contribution of horizontally homo-
geneous leaf canopies; and Kgeoðy; W;fÞ is the geometric-
optical surface scattering kernel, which describes the
contribution of 3-D objects that cast individual and mutual
shadows at off-nadir view angles; fiso, fvol, and fgeo are the
weights given to the corresponding kernels, respectively.
The volume-scattering term can be considered as the effects
caused by the small (interleaf) gaps in a canopy, whereas
the geometric-optical term is caused by the larger (inter-
crown) gaps.

There are many expressions and combinations for the
geometric-optical kernel and the volumetric scattering
kernel (Walthall et al., 1985; Roujean et al., 1992; Li and
Strahler, 1992; Gao et al., 2001). Studies show that the
combination of Ross-Thick and Li-SparseR kernels works
well with the observed data (Lucht et al., 2000), and the
model parameters of this combination are provided in the
MODIS BRDF/albedo product.

The Ross-Thick kernel is a single-scattering approxima-
tion of the radiative transfer theory proposed by Ross
(1981) consisting of a layer of small scatterers with a
random leaf angle distribution, a Lambertian background,
and equal leaf transmittance and reflectance. The form of
Ross-Thick kernel is (Roujean et al., 1992):

Kvol ¼ KRT ¼
ðp=2� xÞ cos xþ sin x

cos yþ cos W
�

p
4
, (11)

where x is the phase angle defined as

x ¼ arccosðcos y cos Wþ sin y sin W cosfÞ. (12)

The Li-SparseR kernel was derived from the geometric
optical mutual shadowing BRDF model by Li and Strahler
(Li and Strahler, 1992; Wanner et al., 1995):

Kgeo ¼ kLSR ¼ Oðy;W;fÞ � sec y0 � sec W0

þ
1

2
ð1þ cos x0Þ sec y0 sec W0, ð13Þ

where O is the overlap area between the view and solar
shadows, which is computed from

O ¼
1

p
ðt� sin t cos tÞðsec y0 þ sec W0Þ, (14)

where

cos t ¼
h

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ ðtan y0 tan W0 sinfÞ2

q
c0yþ sec W0

, (15)

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2y0 þ tan2W0 � 2 tan y tan W0 cosf

q
, (16)

and cos x0, y0, and W0 can be calculated as

cos x0 ¼ cos y0 cos W0 þ sin y0 sin W0 cosf0Þ, (17)

y0 ¼ tan�1
b

r
tan y

� �
, (18)

W0 ¼ tan�1
b

r
tan W

� �
, (19)

where h/b and b/r are dimensionless parameters, which
describe the crown relative height and shape factors. They
are often given the values of 2 and 1, respectively, which
means that spherical crowns are separated from the ground
by half their diameter. Using the parameters provided in
the MODIS land product (MOD43B1) and the above
model, we can reconstruct the anisotropic effect of a
surface.

2.3. LAI inversion procedure based on MODIS BRDF/

ALBEDO product

Fig. 1 shows a schematic diagram of our LAI inversion
procedure based on the MODIS BRDF/ALBEDO pro-
duct. The module for determining saturated and back-
ground NDVI values, marked with the dashed line in Fig.
1, needs to be run only once. The BRDF model parameters
are obtained from MOD43B1, and then BRDF is
calculated according to the Ross-Thick and Li-SparseR
kernel model (Eqs. (10)–(19)). The directional NDVI is
calculated according to Eq. (20):

NDVI y;W;fð Þ ¼
ðBRDFirðy;W;fÞ � BRDFrðy;W;fÞÞ
ðBRDFirðy;W;fÞ þ BRDFrðy;W;fÞÞ

,

(20)

where BRDFir and BRDFr are BRDF values in the red and
near infrared bands, respectively. The canopy NDVI
should be between NDVIback and 1. Because of the
influence of the background or data errors, NDVI may
be less than NDVIback or greater than 1. When
NDVIoNDVIback, we set NDVI ¼ NDVIback, which
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NDVIback(class)

MODIS land cover

product (IGBP)

MODIS MOD43B1

product

Ross-Thick and

Li-SparseR kernels

BRDF

Directional NDVI

If NDVI< NDVIback,NDVI= NDVIback

Else if NDVI>1,NDVI= NDVIback

Else if NDVI> NDVIsat,NDVI= NDVIsat

Directional gap

fraction module

Directional gap

fraction T

Eq.(7)

LAI

Module of determining

NDVIsat and NDVIback of

different classes

Fig. 1. Flow diagram of the inversion procedure.

Table 2

Parameters value for the LAI2000 LAI computation

yvi
(deg.) Dyvi sin yvi

7 0.034

23 0.104

38 0.160

53 0.218

68 0.494

S. Tang et al. / Journal of Environmental Management 85 (2007) 638–648642
means that NDVI in this case is determined mainly by the
background, and the gap fraction is 1. When NDVI4ND-
VIsat, the sensor field of view is fully covered by the canopy,
and we set NDVI ¼ NDVIsat.

Gap fraction is calculated using Eq. (9), and LAI is
inverted according to Eq. (7). Similar to the ground
measurements using LAI-2000, the MODIS BRDF products
are unreliable at high zenith angles. Results from any simple
BRDF model should generally be treated with caution for
zenith angles larger than 801 or so (Strahler et al., 1999). In
Eq. (7),

Pm
i¼1 sin yviDyvi ¼ 1 i.e.

R p=2
0 sin yvi dyvi ¼ 1, sig-

nifying a weighting operation for measurements at various
zenith angles. The yv and Dyvi sin yvi values used in LAI-
2000 are listed in Table 2 (Li-Cor, 1992).

Table 2 shows that the average angular integration step
used in LAI-2000 is 151, and the largest zenith angle range
is 60–741. The same integration steps and angle configura-
tion can be used in our algorithm to improve calculation
speed. We use the view zenith angle range from 01 to 751
with a 151 integration step; this scheme is similar to that of
LAI-2000 (see Table 2).
2.4. Determination of the saturated and background NDVI

Theoretically, for each canopy type and each solar and
view angle configuration, there should be one pair of
saturated and background NDVI values. For the same
canopy type, since the saturation and background NDVI
values vary less than 20% with view and illumination
angles except for a small angular range near the hotspot
(Leblanc et al., 1997), we only determine one land-cover
dependent pair of saturation and background NDVI
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values. It should also be pointed out that the saturation
NDVI mentioned here refers to the NDVI value when the
field of view is completely covered by the canopy, which is
equivalent to the saturation point of NDVI. Even when the
field of view is fully occupied by vegetation, NDVI may
still increase slowly with view zenith angle due to the effects
of multiple scattering.

As discussed later, the background NDVI has little
influence on the accuracy of LAI inversion. Studies show
that the range of background NDVI is generally between
0.02 and 0.05 (Baret et al., 1995; Gutman and Ignatov,
1998; Zeng et al., 2000). Based on our measurements, we
found that background NDVI set to 0.02 would be suitable
for our study in most cases.

The saturation NDVI can be acquired from experiment or
model simulations, or from statistics of actual directional
NDVI values. A model can first simulate the LAI–NDVI
relation curves for different land covers and then determine
the saturation NDVI according the curve shape; this method
is simple and quick. The statistical method calculates
maximal directional NDVI histogram of the same land
cover, then takes 90% of the maximal NDVI as the
saturation NDVI; theoretically, this method is more reliable,
but it needs enough samples and is computationally
intensive.

To determine the saturation NDVI for each IGBP land
cover, the following method was used: directional NDVI
values of each pixel are calculated from BRDF products,
and then the maximal NDVI value of each pixel is found.
The frequency of maximal NDVI values of each IGBP land
cover is calculated, and the histogram is drawn. The NDVI
value of the intersection point of the histogram and x-axis
is taken as maximal NDVI of that land cover. Saturation
NDVIs are assumed to be 90% of the maximal NDVIs.

The 5-Scale model (Chen and Leblanc, 1997; Leblanc
et al., 1999; Leblanc and Chen, 2000) was used to test the
saturation NDVI acquired from the above method. 5-Scale
is a combination of 4-Scale model (Chen and Leblanc,
1997) and LIBERTY (Dawson et al., 1998). Its main goal is
to compute the reflectance of a vegetated surface from the
remote sensing. 5-Scale is a geometric-optical radiative-
0.7
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0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IGBP classes

N
D

V
I s

at

Fig. 2. Saturation NDVI of each IGBP land cover and its range.
transfer model with emphasis on the structural composi-
tion of forest canopies at different scales. A multiple
scattering scheme, which is capable of including the effect
of canopy architecture on multiple orders of scattering, was
incorporated into the model (Chen and Leblanc, 2001).
Although developed for boreal forest (Leblanc et al., 1999),
5-Scale can also be applied to other types of vegetation.
The directional reflectances of 15 IGBP land covers were
simulated with their representative structural and spectral
values using 5-Scale. By adjusting the reflectance of foliage
and background, increasing 25% and decreasing 25% on
the basis of average values respectively, we obtained the
range of saturation NDVI. Fig. 2 illustrates the saturation
NDVI determined from histogram and its range deter-
mined through 5-Scale simulations. It can readily be seen
that all saturation NDVIs determined from the histogram
method fall within the ranges determined by the 5-Scale
model.

3. Validation

3.1. LAI distribution map of China

The above algorithm was used to retrieve a LAI map of
China in mid-July 2002. Fig. 3 is a false color composite
image of that region, and its corresponding LAI map is
illustrated in Fig. 4.

3.2. Study area

Field LAI measurements were made in two study areas:
the Changbaishan Nature Reserve, in northeast China, and
the Qilian Mountain in the upper reach of Heihe River, in
northwest China.
The Changbaishan Nature Reserve was the main study

area, located in the southeast of Jilin province, China
Fig. 3. Original false color composite image of China.
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(411420N–421100N, 1271380E–1281100E) (Fig. 5). Its eleva-
tion ranges from 720 to 2691m above sea level. The climate
is temperate continental mountainous type. The annual
rainfall is about 700mm at lower levels and increases to
about 1400mm at Tianchi Lake, near the top of the
Changbai Mountain. The mean annual air temperature
varies from 4.9 1C at the foot of the mountain to �7.3 1C at
its top.

Influenced by climate, the vegetation distribution varies
with altitude in the region. Four landscape zones can be
distinguished from 720 to 2600m: Korean pine and
broadleaf mixed forest zone (720–1100m); dark coniferous
forest zone (1100–1700m), which dominated by conifers
such as Korean pine, spruce, fir, and larch; subalpine
Betula ermanii forest zone (1700–2000m), representing a
transition from dark coniferous forest to alpine tundra
Fig. 4. LAI map in China in the middle of July 2002.

Fig. 5. Stud
zone with birch as dominant but spruce, fir, larch, Alnus

maritime, etc. also present; and alpine tundra zone (above
2000m, no forest in this zone). The Korean pine and
broadleaf mixed forest is the dominant vegetation type in
this area. Its vegetation density varies with elevation, which
provides a large natural range for developing remote
sensing algorithms of biophysical parameters.
The Qilian Mountain study area lies in the Yugu

nationality autonomous county, Gansu province, China, in
the upper reach of Heihe River. The climate is semiarid with
mean annual air temperature 0.5 1C, the annual rainfall of
440mm, and the frost-free period 90–120 days long.
Vegetation varies with climate and terrain, and can be
divided into three zones: mountainous prairie-timber zone,
subalpine brush and partum zone, and subalpine nival sparse
vegetation zone. Mountainous prairie-timber zone is the main
cover type, with Picea crassifolia as the dominant tree species.

3.3. Site description and distribution

With few exceptions, the Changbai Mountain sampling
sites were located within the Nature Reserve. The sites were
distributed along an altitudinal gradient and included the
main forest types. For each forest type, 3–5 sites with
different stand densities were selected, guided by a satelllite
image (Fig. 6). Table 3 shows the dominant forest type at
each site.
There are 12 sampling sites at Qilian Mountain study

area. They are distributed along Heihe River, and contain
Qinghai spruce (Picea crassifolia) as the dominant tree
species.

3.4. Experimental methods

The optical instrument named Tracing Radiation and
Architecture of Canopies (TRAC) was used for measuring
y areas.
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LAI and the clumping index. The principles of TRAC and
its use can be found in Chen and Cihlar (1995a, b) and
Leblanc et al. (2002).
Fig. 6. Distribution of test sites in Changbai Mountain study area.

Table 3

Site description

Stand ID Forest type S

1 Broadleaf mixed forest 1

2 Broadleaf mixed forest 1

3 Larch forest 2

4 Bueaty pine forest 2

5 Bueaty pine forest 2

6 Korea pine and broadleaf forest 2

7 Poplar birch forest 2

8 Korea pine and broadleaf forest 2

9 Poplar birch forest 2

10 Korea pine and broadleaf mixed forest 2

11 Korea pine forest 2

12 Broadleaf culled forest 2

13 Korea pine forest 3

14 Korea pine and broadleaf forest 3

15 Over cut mixed forest 3

16 Korea pine and broadleaf forest 3

17 Broadleaf nixed forest 3
At each site, a 30m� 30m quadrant was selected. Three
transects perpendicular to the sun’s azimuth angle were set
up in the quadrant. A forestry flag was inserted into the
ground every 10m along the transects to serve as a distance
marker. Basic information on the test site was recorded
including stand ID, position, slope and aspect, elevation, tree
number, tree ring count, etc. The within-shoot clumping
factor, required for TRAC measurements for conifer stands
was taken from Chen et al. (1997) for similar species.

3.5. Validation methods

Because the resolution of a MODIS pixel is 1 km, it is
impossible to directly relate a MODIS product to the
ground measurements. In this paper, the high-resolution
images whose pixel size is approximately equal to the
ground plot size were used to scale up from ground sites to
MODIS pixels. Two TM images acquired near the ground
measurements period were chosen for this purpose, and
treated as illustrated in Fig. 7. Scaling between small-plot
ground measurements and low-resolution remote sensing
data was achieved through the following steps:
(1)
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Empirical relationships were developed between vege-
tation indices and LAI measured on the ground, after
the images were geometrically and radiometrically
corrected and the digital numbers were converted to
reflectance.
(2)
 High resolution LAI distributions were calculated using
the above empirical relationships.
(3)
 The high resolution LAI images were co- registered
with MODIS images.
(4)
 The mean LAI value for each MODIS pixel was
calculated through arithmetic averaging of the high-
resolution LAI values for all pixels that fall within each
MODIS pixel.
d ID Forest type

Korea pine and broadleaf forest

Larch forest

Cloudy fir forest

Korea pine and Cloudy fir forest

Poplar birch forest

Cloudy fir forest

Needle and broadleaf mixed forest

Larch forest

Larch and fir forest

Cloudy fir forest

Cloudy fir forest

Fir and Ermans Birch mixed forest

Cloudy fir forest

Fir and Ermans Birch mixed forest

Ermans Birch forest

Ermans Birch forest

Ermans Birch forest
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Fig. 7. Validation process.
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Fig. 9. Validation of 1 km LAI derived using MODIS data against high-

resolution LAI maps for two ground sites based on ground measurements.
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In Qilian Mountain, the tree species are few and the LAI
is small. For the high-resolution satellite image, correlation
between SR and LAI was used to map LAI (Fig. 8a).
However, in Changbai Mountain, tree species are numer-
ous and given that only a few sample points were obtained
for each forest type, the measurements were insufficient to
establish a forest type- dependent SR-LAI relationship.
The reduced simple ratio (RSR) (Brown et al., 2000) was
therefore used in this case (Fig. 8b). The major advantages
of RSR over SR are that (i) the information from the
background is suppressed, and (ii) the difference between
cover types is greatly reduced and can be neglected in many
cases; hence LAI can be retrieved from RSR without
considering differences among forest types (Brown et al,
2000; Chen et al., 2002).

The LAI of a low-resolution pixel was calculated from
the following equation:

LAIL ¼
1

N

XN

i¼1

LAIHðiÞ

 !
, (21)

where LALL is LAI of a low-resolution pixel, LAIH(i) is
the ith high resolution pixel that is part of the low-
resolution pixel, and N is the number of high-resolution
pixels within a low-resolution pixel. The validation result is
illustrated in Fig. 9.

4. Discussion

In the algorithm developed in this study, saturation and
background NDVI values for each cover type are pre-
determined parameters that have considerable effects on
the retrieved LAI results. To investigate the influence of
these two factors on retrieved LAI, a sensitivity test was
conducted. A pixel was randomly selected from the image,
and the LAI of the selected pixel was calculated using
different combinations of the saturation and background
NDVI values. Fig. 10 shows results of the sensitivity test,
where the background NDVI varies along the X-axis and
the saturation NDVI varies along the Y-axis. The inversion
of LAI was not sensitive to the background NDVI, as
evidenced by the nearly flat contour lines along the X-axis.
For example, when the background NDVI varies from 0 to
0.2, the LAI changes by less than 0.5. This small sensitivity
of retrieved LAI to the background NDVI can be
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explained by Eq. (9) and Eq. (20). It is well known that
NDVI can partly eliminate the influence of background. In
Eq. (20), the background NDVI occurs both in the
numerator and the denominator, thus further weakening
its effect on the LAI inversion. Therefore, our algorithm
reduces the influence of background optical properties.

LAI variation along the Y-axis is larger than along the
X-axis (Fig. 10), indicating that the influence of NDVIsat
on LAI is greater than NDVIback. The higher the LAI, the
denser are the contour lines, and the greater the gradient
along the Y-axis. The contour lines show that the NDVIsat
effect is larger at higher LAI values. At low LAI values,
contour lines are very sparse and their gradients small,
suggesting that the effect of NDVIsat is small at low LAI
values.

The above results imply that the largest error in LAI
retrieval occurs for pixels with the NDVI values close to
the saturation NDVI. This is an inherent limitation of
optical remote sensing, which our algorithm is not able to
avoid. In general, the algorithm, through the use of
multiple angle information, can overcome problems in
mono-angle LAI algorithm caused by the forest back-
ground. The major advantage of the new algorithm is that
the retrieval error is insensitive to background variability
because the latter is automatically taken into account.
Higher LAI retrieval accuracy in its application to new
areas can be achieved by adjusting the saturation and
background NDVI values according to observed data if in
situ observations are available.

5. Conclusions

Regional and global retrieval of LAI plays a very
important role in numerous remote sensing applications to
terrestrial ecosystems. However, obtaining accurate LAI
estimates is not an easy task. Some commonly used
methods, such as those based on vegetation indices or
physical models, often have problems when used in large
area applications. Since ground observations for large
areas are difficult to acquire, empirical relationships
between ground data and coarse resolution remote sensing
data are inherently unreliable. The shortcomings of
physical model-based methods are also obvious. First,
there are no perfect remote sensing forward models that
can be directly used for LAI inversion over large areas.
Secondly, selection of the parameters for the inversion
models is complicated, and some parameters are very
difficult to determine. Furthermore, to improve the
inversion accuracy, many factors need to be considered,
and large lookup tables are needed to support the
inversion. For common remote sensing users and regular
applications, complex models would not be generally the
first choice.
To circumvent some of the above problems, a new LAI

inversion method was developed in this paper. Compared
with existing approaches, it not only draws on the
advantage of vegetation index methods and is simple and
easy to use, but also takes advantage of remotely sensed
directional characteristics of the plant canopy. The
algorithm was validated using data collected in the field.
An accuracy of 82% was reached.
The algorithm also provides a new framework for LAI

inversion that differs from existing methods. Under this
framework, many modules can be further studied and
improved, for example, the BRDF algorithm, the gap
fraction algorithm, and others. Based on the product
evaluation conducted in this study, the current algorithm
does not appear to provide significantly better LAI
products than existing methods because it depends on the
accuracy of the current input products (e.g., the BRDF
product for the kernel parameters). However, it is
anticipated that as the remote sensing products are
improved and the algorithm is further refined, this
approach will lead to a more complete and effective
utilization of the information content of multiple angle
optical remote sensing for terrestrial applications.
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