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ABSTRACT

A nested inverse modelling system was developed for estimating carbon fluxes of 30 regions in North America and 20

regions for the rest of the globe. Monthly inverse modelling was conducted using CO2 concentration measurements of

3 yr (2001–2003) at 88 sites. Inversion results show that in 2003 the global carbon sink is −2.76 ± 0.55 Pg C. Oceans

and lands are responsible for 88.5% and 11.5% of the sink, respectively. Northern lands are the largest sinks with North

America contributing a sink of −0.97 ± 0.21 Pg C in 2003, of which Canada’s sink is −0.34 ± 0.14 Pg C.

For Canada, the inverse results show a spatial pattern in agreement, for the most part, with a carbon source and sink

distribution map previously derived through ecosystem modelling. However, discrepancies in the spatial pattern and

in flux magnitude between these two estimates exist in certain regions. Numerical experiments with a full covariance

matrix, with the consideration of the error structure of the a priori flux field based on meteorological variables among the

30 North America regions, resulted in a small but meaningful improvement in the inverted fluxes. Uncertainty reduction

analysis suggests that new observation sites are still needed to further improve the inversion for these 30 regions in

North America.

1. Introduction

Carbon dioxide, the most important greenhouse gas influenced

by human activities and widely considered to be largely respon-

sible for global warming, has been increasing steadily in the

atmosphere (Keeling et al., 2005). Information on the spatial

and temporal distributions of the carbon flux is critical to under-

standing and managing, if possible, the carbon cycle. Currently

three approaches, including direct measurements (Wofsy et al.,

1993; Takahashi et al., 1999), ecosystem modelling (Sellers et al.

1986 and 1996; Running and Coughlan, 1988 and Running and

Gower, 1991; Potter and Klooster, 1999; Liu et al., 1999), and at-

mospheric inverse modelling (Kaminski et al., 1999; Rödenbeck

et al., 2003; Gurney et al., 2003 and 2004; Baker et al., 2006)

are used to estimate regional and global carbon fluxes. Inverse

techniques compare simulated CO2 concentrations in the atmo-

sphere using an atmospheric transport model with observations

at discrete sites over the globe. The spatial and temporal distri-

butions of the difference between the simulated and observed
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values are used to infer the spatial and temporal patterns of the

carbon flux.

However, the number of currently available observation sta-

tions is still sparse relative to the size of the global surface, and

this essentially limits the number of regions that can be reliably

inverted globally without using additional information as con-

straints to the inversion. The inverse technique that has been most

commonly employed to estimate the carbon flux, the Bayesian

synthesis inversion (Enting, 2002), requires a prior estimate of

the carbon flux in each region to be inverted in order to balance

the impacts of the errors in CO2 observation and in the transport

model on the final inverted carbon flux.

Spatial and temporal resolutions are other important aspects

in inverse modelling, as we generally desire accurate spatial and

temporal carbon cycle information for scientific and policy pur-

poses. During the last decade, most inverse studies were done

for large regions (<30 regions globally) (Enting et al., 1995;

Fan et al., 1998; Rayner et al., 1999; Bousquet et al. 2000;

Gurney et al., 2003) with several exceptions such as Kaminski

et al. (1999), and Rödenbeck et al. (2003), who conducted inver-

sions on a grid system with a resolution of approximately 8◦ ×
10◦. Due to their computation efficiency, the former approaches

can be implemented easily in producing transport matrices and in
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solving the flux for each region. However, the aggregation errors

for large regions may be of the same order of magnitude as the

fluxes themselves (Kaminski et al., 2001), and we must be cau-

tious in using the inverted fluxes to answer practical questions.

On the other hand, the heavy computation load of high-resolution

inversion may often be prohibitive, even though the aggregation

errors are small for small regions. Through high-resolution inver-

sion using 35 observation sites after a strict screening procedure,

Rödenbeck et al. (2003) concluded that CO2 fluxes can only be

reliably inverted at continental to subcontinental scales.

Up to now, existing inversion results are too coarse in spatial

resolution to be compared with other sources of information. For

example, recent studies using different approaches show incon-

clusive and somewhat contradicting results on the net exchange

of carbon between Canada’s forests and the atmosphere. A study

based on forest inventory by Kurz and Apps (1999) indicates

Canada’s forests to be a weak source (0.08 Pg C yr−1) during the

1980s and 1990’s. On the other hand, results through ecosystem

modelling by Chen et al. (2000, 2003) found Canada’s forests

to be a weak sink (−0.05 Pg C yr−1) in the same period. Global

annual carbon flux inversions using atmospheric tracer trans-

port models also yielded moderate flux information over North

America boreal forests, and a source of 0.26 ± 0.39 Pg C yr−1

during 1992–1996 was estimated in a TransCom 3 experiment

(Gurney et al., 2003), while Fan et al. (1998) found it to be a

sink of −0.2 ± 0.4 Pg C yr−1 during 1988–1992. Repeating the

TransCom 3 (Level 1) experimental protocol, but with inclusion

of the Fraserdale CO2 data from 1992–1996, Yuen et al. (2005)

obtained a flux estimate of −0.003 ± 0.28 Pg C yr−1 for the North

American boreal region (Alaska and most of Canada). However,

the coarse spatial resolution of these results does not allow de-

termining the flux for specific regions within the boreal forest in

Canada. An inversion with a higher resolution over North Amer-

ica is therefore of great interest in advancing our understanding

of regional carbon cycles. However, if we only carry out inver-

sion over North America, fluxes of CO2 across the boundaries of

the region would become a major issue. A global inversion in a

fine grid would be ultimately the best way to improve inversion

results, but it is currently computationally prohibitive. We there-

fore developed a nested inversion framework of 50 global regions

with 30 small regions over North America based on a land cover

map at 1 km resolution derived from AVHRR Data (DeFries and

Townshend, 1994) as a compromise. We aim at improving our

estimates for North America in two ways: (i) defining regions

based on land cover type to reduce the error caused by the het-

erogeneity inside a region, and (ii) inverting smaller regions than

TransCom 3 to reduce the aggregation errors. In order to provide

continuity with TransCom 3 results, we chose to use the same

22 regions of the globe as used in TransCom 3, except that two

North America regions were divided into 30 small regions (See

Fig. 1).

Here, we present seasonal inversion results of 2003 based

on the CO2 measurements made from 2001 to 2003. Section 2

provides a description of the method employed, including the

transport model used in this study, the inversion set-up, and ob-

servation data. In Section 3, we present the results of this study,

including the annual flux and its uncertainty, and seasonal fluxes

and their uncertainties for each region. Meanwhile, comparisons

are also made between our results and the TransCom 3 annual

(Gurney et al., 2003), seasonal (Gurney et al., 2004), and inter-

annual (Baker et al., 2006) inversion results. We also identify

possible directions for future improvements for nested global

inversion.

2. Inversion methods

2.1. Time-dependent Bayesian synthesis method

To estimate carbon fluxes (f), we represent the relationship

between CO2 measurements and site observations by a linear

model:

c = Gf + Ac0 + ε, (1)

where cm×1 is a given vector of CO2 concentrations; εm×1 is a

random error vector with a zero mean and a covariance matrix

cov(ε) = Rm×m ; Gm×(n−1) is a given matrix representing a trans-

port operator; Am×1 is a vector filled with 1 relating to the as-

sumed initial well-mixed atmospheric CO2 concentrations (c0)

of at least two years before the first observation month; and

f(n−1)×1 is an unknown vector of carbon fluxes of all studied re-

gions. Combining matrix G and A as Mm×n = (G, A), and vector

f and c0 as sn×1= (fT,c0)T, eq. (1) can be expressed as

c = Ms + ε. (2)

If matrix M is ill conditioned, i.e. m < n, we cannot solve the

equations with the traditional least square approach. Even if we

have more or equal measurement equations than the unknown

variables (m ≥ n) in the equations, as the case in this experiment,

we still may not obtain a reliable solution of the unknown fluxes

constrained only by the CO2 measurement because of the uncer-

tainty of CO2 concentration measurement, transport model er-

rors, the uneven distribution of measurement sites, and different

region sizes which may make the problem poorly constrained in

some regions where we have relatively few measurement sites

and overconstrained over other regions where we have many

measurement sites. In this case, the following objective function

J = 1
2

(Ms − c)TR−1(Ms − c)+1
2

(s − sp)TQ−1(s − sp) (3)

is employed in place of the traditional least square objective

function, where spn×1 is the a priori estimate of s; the covariance

matrix Qn×n represents the uncertainty in the a priori estimate;

and Rm×m is the model-data mismatch error covariance. By min-

imizing this objective function, eq. (3), we obtain the posterior

best estimate of s as:

∧
s = (MTR−1M + Q−1)−1(MTR−1c + Q−1sp). (4)
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Fig 1. A nested inversion scheme: 30

regions in North America and 20 regions for

the rest of the globe. Locations of 88 CO2

observational sites are also indicated.

Meanwhile the posterior uncertainty matrix of the posterior

flux can be written as:

∧
Q = (Q−1+MTR−1M)−1. (5)

The measure we employed to check the fit to the observations

requires the modelled CO2 concentration, on average, within

±√
Rii (see eq. (7)) from the observations (Rödenbeck et al.,

2003).

2.2. Transport modelling

The NIES (National Institute of Environmental Studies of Japan)

global transport model (Maksyutov and Inoue, 2000), one of

the TransCom 3 participating models, was used to simulate the

monthly tracer pulse functions. The model has 15 levels in the

sigma coordinate and a 2.5◦ × 2.5◦ horizontal resolution. The

transport model was forced by the six-hourly NCEP/NCAR re-

analysis data (Kalnay et al. 1996). By coupling with Biome-

BGC (Thornton et al. 2002), a process-based ecosystem model

which is driven by daily meteorological data derived from

NCEP/NCAR reanalysis data, monthly transport operator ma-

trices of five years (1999–2003) for the 50 regions were pro-

duced. That means for each month and region, a flux pattern

(normalized to 1 Pg C yr−1) is prescribed in the NIES model

for forward transport computation to determine the contribution

of each region to the CO2 concentration at each observation

site since January of 1999 in order to form the G matrix (3168

× 3000). The three background fluxes, (i) the 1995 fossil fuel

emission field (Brenkert, 1998), (ii) the neutral seasonal bio-

sphere exchange based on the Biome-BGC model (Thornton et

al., 2002), and (iii) the air–sea gas exchange (Takahashi et al.,

1999), were considered in the forward transport modelling to

calculate the pre-subtracted portions of the CO2 concentration

in the same way as they were treated in the TransCom 3 sea-

sonal inversion (Gurney et al., 2004). The actual pre-subtracted

portions of the CO2 concentration caused by fossil fuel emission

from 2001 to 2003 are adjusted linearly according to the global

fossil fuel emission from 1995 to 2003 (Marland, Boden, and

Andres, 2006). If we substitute c in eq. (1) with the differences

of the monthly means of observed CO2 concentration and these

pre-subtracted portions, then f in eq. (1) will be the differences

between the carbon fluxes and pre-subtracted fluxes.

The selection of a proper atmospheric transport model would

be critical to the accuracy of inversion. However, Baker et al.

(2006) found that the uncertainty introduced into the inverted

fluxes due to transport error (with all of the TransCom 3 par-

ticipating models) is generally less than the random estimation

error. We have therefore used only one model in this study with
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full understanding that the uncertainty in the results would be

larger than the case with an ensemble of models.

2.3. Prior fluxes, and their uncertainties

The same seasonally varying a priori regional flux magnitudes

used in TransCom 3 seasonal inversion (Gurney et al., 2004) have

been used here with those 20 large regions. For the small regions

in North America, we distributed the a priori flux for each region

based on a multi-year mean of NEP (Potter et al., 2003) while

keeping the sum of the a priori for all 30 regions equal to that of

the two large TransCom 3 regions in North America.

A reasonable estimate of the prior flux uncertainty is impor-

tant for deriving inverted results that are close to reality. Based

on previous studies (Gurney et al., 2004; Rödenbeck et al., 2003;

Michalak et al., 2004; Baker et al., 2006), we adopted two ap-

proaches to determine the covariance matrix for the a priori sur-

face flux.

(1) As a basic approach, we used a diagonal matrix with all

its elements filled with the TransCom 3 interannual variability

version prior flux uncertainty (σ ) (Baker et al., 2006) for the

large regions. For those small regions we re-constructed the un-

certainties for each region according to the same principle that

have been used for those large regions in TransCom 3 seasonal

inversion (Gurney et al., 2004).

(2) As an experimental approach, we defined the covariance

items as:

Qi j = w · Ci j · σidiag · σ jdiag

/(
1 + a · |�Pi j |

P
+ b · |�Ti j |

(30 + T )

)
,

(6)

where Ci j is the correlation coefficient of NEP time series be-

tween regions i and j based on Biome-BGC; σidiag is the diagonal

variance of region i used in the first approach; P and T are the

mean precipitation and temperature of regions i and j; �Pi j is

the difference in precipitation between regions i and j ; �Ti j is

the difference in temperature between regions i and j ; a, and b
are two empirical parameters to define the weights of precipita-

tion and temperature, respectively; and w is a parameter to ensure

that all the related uncertainty elements in the covariance matrix

represent the same uncertainties in the diagonal matrix. In this

study, we chose w = 0.5 when i = j to keep 50% of the diago-

nal terms, and distributed 50% of them to the off-diagonal terms.

Choosing a = 1, we can obtain b = 1.75 to make the weights

of both temperature and precipitation to be same on an annual

basis. Finally we can obtain w = 0.140367, 0.140212, 0.138309,

0.140135, 0.133965, 0.128556, 0.126129, 0.130530, 0.132317,

0.139378, 0.141208 and 0.141596 for 12 months, respectively,

when i �= j for those small regions of North America. For other

regions outside of North America we used the same diagonal

elements.

The guiding principle in constructing this matrix is that in

the nested inversion we do not have enough atmospheric CO2

stations over North America, and that the spatial pattern of the

prior surface flux could be used as a source of information to

constrain the inversion for small regions. This constraint may be

accomplished by the covariance of the errors between various

small regions. If two regions have similar climate conditions,

namely temperature and precipitation, we expect that the errors

in the flux estimates for these two regions are better correlated

than those of dissimilar climate conditions. This approach has

been only applied to those small regions of 1 to 30 in North

America for sensitivity analysis and will be further discussed in

Section 3.2.

2.4. CO2 concentration data and model-data mismatch
error covariance matrix

We selected monthly mean CO2 data of 2001 to 2003 at 88

sites (see Fig. 1 and Table 1) from the GLOBALVIEW-2005

dataset (GLOBALVIEW-CO2, 2005). For regions outside of

North America, most of the selected sites have been used in pub-

lished inversions (Gurney et al., 2003; Rödenbeck et al., 2003;

Baker et al., 2006; Patra et al., 2005). For North America, how-

ever, we have to select as many sites as possible in order to

conduct meaningful inversion for the small 30 regions. The ex-

tended record files with extrapolated data (Masarie and Tans,

1995) were used to calculate the monthly mean CO2 concentra-

tions. Table 1 provides the percentage of observed (‘real’) CO2

concentration data to the data we used in the inversion at each

site.

We defined the data-mismatch error covariance as a diagonal

matrix, R, and determined the error standard deviation of month

i by

Rii = (0.175ppmv)2 + (GV sd)2, (7)

where GVsd is the standard deviation of the residual distribu-

tion computed monthly from the average monthly variability

(var) files of GLOBALVIEW-CO2 2005, and 0.175 ppmv is the

systematic errors for all the data at each site. Table 1 lists the

annual-mean of the monthly error standard deviations
√

Rii for

all 88 sites.

We used a three-year series of CO2 observations to invert

the flux in 2003 because we need enough time to spin-up the

CO2 distribution in the atmosphere. A spin-down period is also

needed to better constrain the last few months of the inversion,

but this is not considered in this study.

3. Results and discussion

3.1. Seasonal variation

Prior and inverted seasonal fluxes and prior and posterior un-

certainties for all 50 individual regions are shown in Fig. 2.
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Table 1. CO2 dataset quality and the annual mean uncertainty of the 88 selected stations

Annual Annual

Percentage of observed data (%) mean Percentage of observed data (%) mean

GlobalView-2005 3-year uncertainty GlobalView-2005 3-year uncertainty

Site ID 2001 2002 2003 mean (ppmv) Site ID 2001 2002 2003 mean (ppmv)

alt 06C0 100 100 100 100 0.79 poc000 01D1 0 56.25 100 52.08 0.5

ams 11C0 100 100 100 100 0.31 pocn05 01D1 0 56.25 100 52.08 0.5

asc 01D0 66.67 100 100 88.89 0.61 pocn10 01D1 0 47.92 100 49.31 0.55

ask 01D0 77.08 100 100 92.36 0.5 pocn15 01D1 0 58.33 100 52.78 0.61

azr 01D0 70.83 83.33 81.25 78.47 1.2 pocn20 01D1 0 58.33 100 52.78 0.84

bal 01D1 62.5 70.83 100 77.78 4.36 pocn25 01D1 0 47.92 100 49.31 1.01

bhd 15C0 95.83 0 0 31.94 0.35 pocn30 01D1 0 50 100 50 1.1

bme 01D0 100 100 100 100 1.42 pocs05 01D1 0 56.25 100 52.08 0.53

bmw 01D0 100 100 100 100 1.42 pocs10 01D1 0 56.25 100 52.08 0.53

brw 01C0 100 100 100 100 1.09 pocs15 01D1 0 54.17 100 51.39 0.56

car040 01D2 93.75 100 72.92 88.89 0.93 pocs25 01D1 0 33.33 100 44.44 0.46

car060 01D2 93.75 100 68.75 87.5 0.61 pocs30 01D1 0 31.25 100 43.75 0.35

cba 01D0 100 100 100 100 1.19 prs 21C0 100 100 100 100 0.72

cfa 02D0 60.42 100 100 86.81 0.75 psa 01D0 100 100 100 100 0.24

cgo 01D0 100 100 100 100 0.25 rpb 01D0 100 100 100 100 0.52

cmn 17C0 100 100 100 100 1.79 ryo 19C0 100 100 100 100 1.61

cpt 36C0 100 100 100 100 0.34 sbl 06C0 0 0 56.25 18.75 2.34

cri 02D0 100 77.08 0 59.03 1.71 sey 01D0 100 100 100 100 0.74

crz 01D0 79.17 47.92 45.83 57.64 0.29 shm 01D0 100 100 100 100 0.93

eic 01D0 100 100 41.67 80.56 0.59 sis 02D0 100 100 93.75 97.92 0.85

esp 06D0 81.25 64.58 100 81.94 2.15 smo 01C0 100 100 100 100 0.48

frd040 06C3 100 100 100 100 3.86∗ spo 01C0 100 100 100 100 0.19

gmi 01D0 100 100 100 100 0.77 stm 01D0 100 100 100 100 1.05

hba 01D0 100 100 100 100 0.21 syo 09C0 100 95.83 0 65.28 0.19

hfm005 01D2 93.75 87.5 66.67 82.64 3.50∗ tap 01D0 100 100 100 100 2.93

ice 01D0 100 79.17 100 93.06 1.03 uta 01D0 100 100 100 100 1.73

izo 27C0 100 100 0 66.67 0.76 uum 01D0 100 83.33 100 94.44 1.61

jbn 29C0 100 100 100 100 0.38 wes 23C0 79.17 100 8.33 62.5 2.43

key 01D0 100 100 100 100 0.83 wis 01D0 100 100 100 100 1.77

kum 01D0 100 100 100 100 0.77 wkt030 01C3 87.5 100 58.33 81.94 3.74

lef011 01C3 100 93.75 0 64.58 3.94 wlg 33C0 89.58 43.75 100 77.78 1.16

lef076 01C3 100 93.75 0 64.58 3.84 wpo000 10D2 100 100 89.58 96.53 0.36

lef122 01C3 100 93.75 0 64.58 3.81 wpon05 10D2 100 100 89.58 96.53 0.35

lef244 01C3 100 93.75 0 64.58 3.74 wpon10 10D2 100 100 89.58 96.53 0.32

ljo 04D0 100 4.17 0 34.72 2.73∗ wpon15 10D2 100 100 89.58 96.53 0.33

maa 02D0 100 41.67 100 80.56 0.24 wpon20 10D2 100 100 89.58 96.53 0.37

mhd 01D0 100 100 100 100 1.3 wpon25 10D2 100 100 89.58 96.53 0.47

mid 01D0 100 100 100 100 0.91 wpon30 10D2 100 100 89.58 96.53 0.55

mlo 01C0 100 100 100 100 0.47 wpos05 10D2 100 100 89.58 96.53 0.4

mnm 19C0 100 100 100 100 0.86 wpos10 10D2 100 100 89.58 96.53 0.43

mqa 02D0 100 100 100 100 0.29 wpos15 10D2 100 100 89.58 96.53 0.47

nwr 01D0 100 100 100 100 1.08 wpos20 10D2 100 100 89.58 96.53 0.43

obs023 06C3 0 0 97.92 32.64 3.49∗ yon 19C0 100 100 100 100 1.41

pfa025 01D2 64.58 62.5 75 67.36 0.73 zep 01D0 100 100 100 100 1.06

∗Adjustment has been made on the uncertainty.

More than half of the posterior curves are changed significantly

from the a priori curve, suggesting the effectiveness of atmo-

spheric constraint. Among the large regions outside of North

America, several changes are noteworthy. The major heat wave

and drought (NCDC, 2004) in Europe (Region 39), for exam-

ple, may be the reason that the posterior flux curve shifts upward

during summer and fall seasons. The continued drought in South

Africa (Region 34) may be the cause for shifting the a priori
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Fig 2. Seasonal patterns of the a priori flux (grey) and the inverted flux (dark) for the 50 regions and their uncertainties of 2003.

carbon uptake in the first three months to posterior carbon re-

lease. In Region 36, the May/June heat wave (NCDC, 2004)

might be one of the reasons that the carbon uptake is delayed

until July and August. Although we cannot explain all the differ-

ences in all regions, these examples suggest that our inversion is

meaningful.

The magnitude of the decrease from the prior uncertainty to

the posterior uncertainty indicates the degree to which the final

inverted flux is constrained by CO2 measurements. From Fig. 2,

we can see the uncertainty reduction for each month and region.

In order to investigate the uncertainty reduction in different re-

gions, we defined the uncertainty reduction percentage (UR) as

follow:

UR = q − q ′

q
× 100%, (8)

where q is the a priori flux uncertainty for a region in 2003, which

equals the square root of the sum of the 12 related diagonal items

Tellus 59B (2007), 2
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Fig 3. Annual flux uncertainty change for all inverted regions. (a) North America. (b) Regions outside of North America.

of Q in eq. (3); and q′ is the posterior flux uncertainty for a region,

which equals the square root of the sum of a sub-matrix related

to the 12 months of
∧
Q defined in eq. (5). Figs. 3(a) and 3(b)

present the uncertainty reduction percentages for all 50 regions.

The Tropical Atlantic Ocean (Region 46) exhibits the smallest

reduction in the uncertainty mainly due to the few reliable ob-

servation sites exist in or around the region in comparison with

other ocean regions (table 1). Of course the a priori uncertainty is

also a factor affecting the uncertainty reduction. It is often those

regions with large a priori uncertainties and constrained by a

sufficient number of good observation sites show large reduc-

tions in uncertainty. The South Pacific Ocean (Region 43), and

the Southern Ocean (Region 48), for example, have the greatest

reductions of the uncertainty. For the land regions, we have to

separate them into two groups for comparison because of the

influence of a priori uncertainty on the uncertainty reduction.

For large land regions, the largest reduction of the uncertainty

appears in extra-tropical part of Eurasia continent. This can be

attributed to the relatively large number of reliable observation

sites in these regions, in contrast with fewer sites in the trop-

ical and southern land regions (excluding Region 38). For the

30 small regions in North America, a general impression is that

reductions in uncertainty are smaller than the large regions. One

of the reasons is that we assigned relatively small a priori uncer-

tainty for the small regions. In most northern regions containing

no land observing sites, the uncertainty reductions are very small.

There are also little uncertainty reductions in several southern

regions, such as Regions 19, and 29. However, if we consider

North America as one region, the uncertainty reduction can be

as large as 33.4%. This total uncertainty reduction for this large

region is much larger than the mean value of the small 30 re-

gions because of covariance among small regions, leading to a

posterior uncertainty of 0.21 Pg C yr−1 for North America.

In our inversion estimate, there is a time lag in the seasonal

cycle between our inverted flux and the a priori flux for north-

ern land regions. As Biome-BGC is driven by meteorological

variables, we expect that carbon fluxes resulting from photosyn-

thesis activities would lag behind the flux estimation of Biome-

BGC based on air temperature because the seasonal increase or

decrease in soil temperature would lag behind the air tempera-

ture. Comparing observed CO2 concentration and those simu-

lated from forward transport modelling using Biome-BGC flux,

Zhang et al. (2005) also noticed a similar phase lag.

3.2. Annual distribution

Monthly carbon fluxes presented in Fig. 2 are summed to yield a

spatial distribution of the annual net flux, as shown in Fig. 4. From

this map, the performance of our inversion can be evaluated. The

northern land is a large carbon sink of −3.14 ± 0.34 Pg C yr−1,

and the tropical land and the southern land are carbon sources

of 1.82 ± 0.67 and 1.01 ± 0.68 Pg C yr−1, respectively.

As our nested inversion is considered as an extension

of TransCom 3, we first compared our annual results with

TransCom 3 results. Fig. 5 shows the annual results from (a)

this inversion for 2003, (b) the NIES model results in TransCom

3 seasonal inversion from 1992 to 1996 (Gurney et al., 2004),

(c) the NIES model alone used in TransCom 3 annual inver-

sion from 1992 to 1996 (Gurney et al., 2003), and the NIES

model flux results for 2003 from the TransCom 3 interannual

variability study (Baker et al., 2006). The region NA represents

the combination of Regions 1 to 30 in this inversion, which is a

combination of the Boreal North America and Temperate North

America in TransCom 3.

Although the inverted fluxes represent different time periods,

North America (NA), Europe (39), and Asia Boreal (35) were the

most important carbon sinks over land regions, while Southern

Africa (34) and Tropical Asia (37) were carbon sources. For the

Europe region (39), the inverted sink from this inversion (1.17 ±
0.27 Pg C yr−1) is smallest among the four inverted results and

is only 69% of the estimate from TransCom 3 seasonal inversion

(−1.69 ± 0.16 Pg C yr−1), while the result from the TransCom

3 interannual inversion is almost the same as the TransCom 3

annual inversion (−1.22 ± 0.35 Pg C yr−1). We can also find

that the curve of the monthly flux (Fig. 2) differs notably from

the TransCom 3 seasonal estimation curve (Gurney et al., 2004),

which may reflect the anomaly of 2003 in this region (Ciais et

al., 2005). For the Asia Boreal region (35), our inversion result

(−0.95 ± 0.27 Pg C yr−1) differs most from that of the TransCom

3 annual inversion (−1.34 ± 0.37 Pg C yr−1) and least from the

TransCom 3 interannual result (−0.97 Pg C yr−1). The uptake

(−0.97 ± 0.21 Pg C yr−1) for North America from our inversion

is the largest, while TransCom 3 interannual inversion produced

a sink of −0.61 Pg C yr−1, which is the second largest. We

found greater disagreement than the above cases in other land

regions, especially in the Africa continent. The Northern Africa

region (33) only releases less than 1/3 of TransCom 3 interannual
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Fig 4. The inverted annual carbon flux distributions in 2003, including pre-subtracted ocean flux, excluding fossil fuel emission.

Fig 5. Comparison of nested monthly step inversion results from this study with NIES model results from TransCom 3 seasonal inversion

(1992–1996) (Gurney et al., 2004), NIES model results from TransCom 3 annual inversion (1992–1996) (Gurney et al., 2003), and NIES model

results from the TransCom 3 interannual variability study (2003) (Baker et al., 2006). Region NA represents the combination of Regions 1 to 30 in

this inversion, which is the same as the combination of Boreal NA and Temperate NA of TransCom 3.

inversion results, while the Southern Africa region (34) becomes

a large source in our inversion, opposite to TransCom 3 annual

and seasonal results. However, if we put the Northern Africa re-

gion (33) and the Southern Africa region (34) together, the carbon

release from the whole continent would be in good agreement

with the results from TransCom 3 seasonal and interannual in-

versions. The possible reason could be the different observation

sites selected in or around these regions. The continued drought

and abnormal wildfire events in the Southern Africa region (34)

and the above normal rainfall in the Northern Africa region (33)

may also have some contributions to the differences among the

inversion results.

The largest change appears in Tropical America (31) where

the TransCom 3 seasonal inversion shows a carbon release of

1.67 ± 0.66 (Pg C yr−1), the largest of all 50 regions, while this

study gives a small sink of −0.11 ± 0.55 (Pg C yr−1), which

differs the least from the result (0.37 Pg C yr−1) of Baker et al.

(2006).

For ocean regions our inversion mostly shows a very similar

pattern with the TransCom 3 interannual results, and in close

agreement with the result of Takahashi et al. (1999), one of our

pre-subtracted components. However, in the Tropical West Pa-

cific region (41), the South Atlantic region (47), and the Southern

Ocean region (48), we found obvious differences. In the South-

ern Ocean region (48), our result (−0.61 ± 0.14 Pg C yr−1) only

shows less than 70% of the uptake of Takahashi et al. (1999),

and it is close to the new result (−0.40 ± 0.35 Pg C yr−1) of

Gruber et al. (2005), while the TransCom 3 (NIES) results are in

close agreement with the sink value of Takahashi et al. (1999).

The southern Pacific region (43) shows the largest difference of
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1.11 Pg C yr−1 from the seasonal and more than 0.5 Pg C yr−1

from the annual and the interannual result of TransCom 3, and

this may be due to the inclusion of the Easter Island site in our

inversion (Law et al., 2003).

For inverted fluxes in the 30 small regions in North America

(Figure 4), no other similar inversion results are available for

comparison. However, it is encouraging to see that the distri-

bution pattern of sinks and sources in Canada seems to resem-

ble ‘bottom-up’ results of 1990–1998 independently estimated

based on remote sensing and other spatial datasets (Chen et al.,

2003; Chen et al., 2005; and Ju et al., 2006). The ‘bottom-up’ re-

sults show that Region 10, the forested region of Albert, Canada,

and Regions 14, 15 and 16, the mid-age productive forests in

southern Ontario and Quebec were obvious carbon sinks, while

our result of 2003 shows that Regions 10 and 15 are the strongest

sinks of −117.29 ± 88.09 and −117.94 ± 77.86 g C m−2 yr−1,

respectively. Region 9, in west of Canada, is a small carbon

sink due to the old age forest in the ‘bottom-up’ result, while

our inversion result shows that it is a weak sink of −38.01 ±
66.47 g C m−2 yr−1. Region 12, the forested regions of Mani-

toba, was found to be carbon sources due to frequent fire dis-

turbance in recent decades, while our result of 2003 shows that

Region 12 is a weak sink of 47.90 ± 70.73 g C m−2 yr−1. From

the respect of relative strength of whole Canada, the spatial pat-

terns from this study are broadly consistent with the `bottom-up’

results.

However, we found considerable relative differences in Re-

gions 11, 16 and 17. Our results shows that Region 11 is a strong

sink of −106.15 ± 64.45 g C m−2 yr−1, Region 16 is a weak

sink of −36.54 ± 101.03 g C m−2 yr−1, and region 17 is a

weak source of 4.64 ± 77.13 g C m−2 yr−1. To investigate the

reason for these discrepancies, we experimented with different a

priori flux uncertainty matrices including the full covariance ma-

trix as defined in equation (6). The full covariance matrix made

small but non-negligible differences in the inverted flux distri-

bution (Fig. 6), and in Region 17, it produces a sink of −20.58 ±
54.68 g C m−2 yr−1; in Region 16, the sink is strengthened to

59.09 ± 70.94 g C m−2 yr−1; in Region 11, the sink strength also

decreases to 93.40 ± 46.51 g C m−2 yr−1. The sensitivity exper-

iment demonstrates that the use of the a priori flux uncertainty

covariance matrix can reduce the posterior flux uncertainty, es-

Fig 6. Considering the similarity of

meteorological conditions among the 30

regions in North America by adding realistic

correlations to the a priori flux covariance

matrix made a small difference in the carbon

source and sink distribution. ‘Diagonal’:

only variance terms in the diagonal of the

matrix are considered; ‘Covariance’: both

diagonal and off-diagonal terms are included

through considering the meteorological

similarity (eq. 6).

pecially for those poorly constrained regions (Fig. 6). The mean

posterior uncertainty of all 30 North America regions is further

reduced by 7.6% in contrast with that of the well-constrained

regions (2, 11, 15, 21, 22 and 26) when comparing with the case

that only the diagonal a priori error matrix is used. This suggests

that a full covariance matrix would allow regions that are not

well constrained by atmospheric measurements to be reliably

inverted as the covariance between biologically similar regions

can provide the additional source of spatial information. It is

therefore critical to understand the behaviour of an ecosystem

model in terms of their error structure.

For northern regions in Canada, where there are not enough

observation sites, the number of the observation stations is there-

fore the main limiting factor in the inversion, in particular for

regions where the surface flux has little impacts on concentra-

tions at existing stations. For example, the inverted fluxes of

Regions 4, 5 and 6 are mostly controlled by the a priori fluxes.

This reinforces the existing argument that tall tower CO2 mea-

surements at continental sites are critical for quantifying regional

carbon budgets (Yuen et al., 2005). From the effect of adding one

observation site - Old Black Spruce, Saskatchewan, Canada, in

Region 11 on the inversion results, we may conclude that adding

three or more observation sites in North America would greatly

enhance our nested inversion accuracy.

3.3. Global and North America carbon budget

Compared with results of previous seasonal and annual in-

versions (1992–1996), and interannual inversion (in2003) of

TransCom 3, this inversion derives a similar carbon uptake by the

Earth’s surface. The net total flux from the atmosphere, exclud-

ing fossil fuel emissions (7.303 Pg C) but including emissions

associated with land use changes, is a sink of −2.76 ± 0.55

Pg C in 2003 from this inversion, a sink of −2.81 ± 0.01 Pg

C yr−1 (1992 –1996) from the NIES model in TransCom 3 sea-

sonal inversion (Gurney et al. 2004), and −2.47 Pg C in 2003

from the NIES model in the interannual inversion of TransCom

3 excluding fossil fuel emission of 7.0 Pg C (Baker et al., 2006).

However, the proportions of the contributions from lands and

oceans are different among these inversions, with −0.32 ±
0.75 Pg C yr−1 attributed to lands in this inversion, −1.25 ±
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0.61 and −1.75 Pg C yr−1 in the seasonal (1992–1996) and in-

terannual (in 2003) TransCom 3 inversions, respectively. The

corresponding ocean surface fluxes are −2.44 ± 0.51 Pg C yr−1,

−1.55 ± 0.61 Pg C yr−1 (1992–1996) and −0.71 Pg C yr−1.

What are the reasons for the striking differences of land and

ocean total fluxes, especially between the result of this inversion

and that of TransCom 3 interannual inversion? Sites selection

may be one of them. We can see from Fig. 5 that the tropical

zone and middle latitude zone in the southern hemisphere con-

tribute the most to the large difference. As we have mentioned,

the Easter Island site may cause the flux value to decrease dra-

matically in the South pacific region (43) and the flux value in

the South America region (32) to increase as compensation. The

sites we selected in and around the Africa continent are likely to

affect the flux over Africa and further contribute to other tropical

regions. Patra et al. (2005) used those sites in their inversion and

obtained 10-yr (1991–2000) mean fluxes of −0.31 and −2.35

Pg C yr−1 for land and ocean, respectively. Another possible

reason is the wind field we used in the forward modelling. As

described in Section 2.2, NCEP/NCAR reanalysis dataset for

the period of 1999 to 2003 has been used in our modelling.

TranCom 3 interannual inversion, however, used the climatolog-

ical wind field, and 2003 is not a normal year in terms of mete-

orological conditions (NCDC, 2004). Comparing to TransCom

3 results, the total land carbon uptake decreases considerably,

but northern lands are still the largest sinks. North America is a

sink of −0.97 ± 0.21 Pg C yr−1, while Canada alone is −0.34 ±
0.14 Pg C yr−1. The carbon exchange of Canada’s forest, grass-

land and farmland, and Tundra is −0.33 ± 0.14 , 0.02 ± 0.04

and −0.03 ± 0.02Pg C yr−1, respectively.

In order to use as many sites as possible in North America, we

choose to use the GLOBALVIEW-CO2 2005 dataset in which

tower data are now averaged using afternoon hours only. How-

ever, monthly mean planetary boundary layer (PBL) heights were

used in the NIES model to produce the transport matrices in this

study. This incompatibility between model and data may have

caused biases towards sink in the inverted fluxes in regions that

are tightly constrained by the tower data because the CO2 con-

centration in the afternoon is much smaller than the daily aver-

age. To remove these biases, a transport model capable of using

diurnal PBL information is needed in our future study.

4. Conclusion

We made an attempt, using a Bayesian synthesis inversion tech-

nique, to infer the global seasonal variation of the carbon flux

within a nested framework of 50 regions including 30 small re-

gions in North America and 20 large regions of the globe. The

main conclusions are as follows.

(1) Based on the uncertainty reduction from the prior to pos-

terior carbon flux, this inversion has made an effective use of

atmospheric CO2 observations for improving carbon flux esti-

mation of the various regions. The improvement is uneven across

all the 50 regions. Large regions generally have large uncertainty

reductions as a whole because of the relatively large numbers

of effective constraining observation sites per region. In North

America, the uncertainty reductions are larger for regions at mid-

dle latitudes where more sites are available for constraining the

inversion. Additional three to four observation sites in North

America could further improve the nested inversion accuracy.

(2) The annual carbon fluxes from this study are similar to

those of TransCom 3 (1992–1996) in the northern hemisphere,

although in Europe the carbon exchange was affected by the

extreme weather in 2003. Considerable differences exist between

TransCom 3 inversions for 1992–1996 and this inversion for

2003 in several other regions. These differences may be partially

attributed to the changes in the intensive land use in tropical and

southern land regions (FAO, 2005), frequent climate anomalies,

and the post-Pinatubo uptake in 1992 (Rödenbeck et al., 2003).

The selection of different observation sites in different inversions

may account for some of the flux differences in regions where

observations are limited.

(3) In North America, the use of 30 small regions based on

land cover types could theoretically improve the inversion accu-

racy through reducing surface heterogeneity within a region. In

practice, it is difficult to evaluate this improvement. However,

we are quite encouraged by the facts that the inverted flux spa-

tial pattern is mostly consistent with the bottom-up ecosystem

modelling results (Chen et al., 2003) and that the use of a prior

flux uncertainty covariance matrix with more realistic correla-

tions has made some meaningful modification to the inverted

flux distribution. These facts suggest that the nested inversion

technique may be a promising way to improve regional carbon

cycle estimation.

(4) Large deviations (>1σ ) of inverted fluxes from the prior

fluxes show that some prior flux values and uncertainties in the

winter and summer in some regions are unreasonable, indicating

that further improvements could be made by selecting a realistic a

priori flux field and by defining its uncertainties based on physical

and biological principles.
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