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Abstract. Retrieving biophysical parameters, such as the leaf area index (LAI) and the net primary productivity (NPP),
from remote sensing imagery is very useful for modeling terrestrial ecosystems. Spatial heterogeneity of the land surface
often leads to biases in the retrieved parameters when algorithms derived based on high-resolution images are directly used
for coarse-resolution images. In the northern environment in Canada, open water bodies are one of the major features of
surface heterogeneity, and in remote sensing images a considerable number of land pixels are mixed with open water bodies
of different fractions. In an image of Canada at 1 km resolution, there are 47% water-containing land pixels, and their
average water area fraction is 14%. In this article, we investigate the effects of subpixel water area fraction on LAI retrieval
and NPP estimation for all land areas in Canada. A linear mixture model was developed to use the available subpixel
information for this purpose. Previous Canada-wide LAI and NPP maps at 1 km resolution derived without considering the
subpixel information were used for comparison. The following conclusions are drawn from this investigation: (i) LAI
retrieval errors are proportional to water area fraction in a pixel, and on average for all of Canada’s land mass the retrieved
LAI per unit land area without considering the open water effect is 13% smaller than the correct LAI; (ii) the influence of
the subpixel water area on LAI retrieval is the largest for the conifer cover type and the smallest for the deciduous cover
type among forests; and (iii) because of the LAI bias, NPP per unit land area is also negatively biased by 9% when the
subpixel water effect is not considered. The annual Canada-wide NPP summed from the land portion calculated using the
water-corrected LAI is only 0.69% higher than that summed from the total pixel area calculated using LAI without the water
correction. However, the difference in these two NPP values can be either positive or negative among different provinces
and territories, depending on the water area fraction and its distribution.
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Résumé. L’extraction des paramètres biophysiques, tels que le LAI (indice de surface foliaire) et la production primaire
nette (PPN), à partir des images de télédétection est très utile pour la modélisation des écosystèmes terrestres.
L’hétérogénéité spatiale de la surface terrestre entraîne souvent des biais dans les paramètres extraits lorsque les algorithmes
dérivés des images à haute résolution sont utilisés directement pour des images à basse résolution. Dans l’environnement
nordique du Canada, les masses d’eau ouvertes constituent l’une des constituantes majeures de l’hétérogénéité de surface et,
dans les images de télédétection, de nombreux pixels de sol sont mélangés avec ceux des masses d’eau ouvertes de fractions
différentes. Dans une image du Canada à une résolution de 1 km, 47% des pixels terrestres contiennent de l’eau et la surface
moyenne de fraction d’eau est de 14%. Dans cet article, nous examinons les effets des fractions d’eau à l’échelle du sous-
pixel sur l’extraction du LAI et l’estimation de PPN pour l’ensemble des surfaces terrestres au Canada. Un modèle linéaire
de fraction a été développé faisant usage de l’information disponible à l’échelle du sous-pixel à cette fin. Les cartes
existantes de LAI et de PPN à l’échelle du Canada à une résolution de 1 km dérivées sans recours à l’information au niveau
du sous-pixel ont été utilisées pour fins de comparaison. Cette recherche a permis de tirer les conclusions suivantes: (i) les
erreurs d’extraction du LAI sont proportionnelles à la fraction d’eau dans un pixel et, en moyenne, pour l’ensemble de la
masse terrestre du Canada, la valeur de LAI extraite par unité de surface terrestre sans considération pour l’effet des masses
d’eau ouvertes est de 13% plus petite que la valeur réelle de LAI; (ii) l’influence de la surface d’eau à l’échelle du sous-
pixel sur l’extraction du LAI est plus considérable dans le cas d’un couvert de conifères et plus faible dans le cas d’un
couvert de feuillus au plan des forêts; et (iii) à cause du biais dans le LAI, la valeur de PPN par unité de surface terrestre est
également biaisé négativement par 9% lorsque l’effet de l’eau à l’échelle du sous-pixel n’est pas pris en considération. La
valeur annuelle de PPN à l’échelle du Canada, cumulée à partir des portions terrestres en utilisant la valeur de LAI corrigée
pour l’eau, est de seulement 0,69% plus élevée que la valeur cumulée à partir de la surface totale des pixels calculée en
utilisant le LAI sans correction pour l’eau. Toutefois, la différence dans ces deux valeurs de PPN peut être positive ou
négative selon les différentes provinces, dépendant de la fraction de surface d’eau et de sa répartition.
[Traduit par la Rédaction]
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Introduction
Forest resources are intensively utilized for many purposes.

Forests are a source of wood products and also play a key role
in the global climate system. Research has indicated that global
warming may have led to significant changes in the carbon
cycle and ecological functioning of forests, and their feedbacks
can in turn modify the global climate system. Leaves in forest
canopies are the primary surfaces for energy and mass
exchange between the atmosphere and the land surface
(Danson, 2000). Variables, such as the leaf area index (LAI),
are often used to quantify the effect of forest structure on light
interception and absorption, nutrient cycling, and productivity.
In Canada, LAI maps were produced using the advanced very
high resolution radiometer (AVHRR), and annual net primary
productivity (NPP) and evapotranspiration (ET) were
calculated using the boreal ecosystem productivity simulator
(BEPS) model (Liu et al., 1997; 2002). In reality, AVHRR
pixels at 1 km resolution are often mixed with several cover
types (Settle and Campbell, 1998), and the unknown subpixel
mixture introduces major errors and biases in retrieved
parameters (Chen et al., 2002). For example, a pixel labeled as
conifer forest may be composed of conifer and broadleaf
deciduous forests, open water bodies, etc. Errors produced in
calculating LAI in mixed pixels mainly result from two
sources. One is introduced from using nonlinear algorithms,
and the other is caused by applying cover-type-dependent
algorithms to mixed pixels labeled as one dominant cover type
(Chen, 1999).

There are several techniques, such as artificial neural
networks, mixture modeling, and supervised fuzzy c-means
classification, to resolve the problem of information retrieval
for mixed pixels (Atkinson et al., 1997; Aplain and Atkinson,
2001). In this article, we address issues related to retrieving
LAI and calculating NPP for pixels mixed with land and open
water. Open water bodies are one of the main features causing
surface heterogeneity. Water bodies strongly absorb solar
radiation at all wavelengths and greatly reduce the average
reflectance in land–water mixed pixels. Therefore, the effect of
surface heterogeneity caused by open water is expected to be
the largest among all types of surface heterogeneity, and it
would be the first step in spatial scaling of remotely derived
surface parameters. Linear algorithms of LAI such as those
based on the simple ratio (SR) incur no errors for pure pixels,
and even in a mixed pixel, linear algorithms cause smaller
errors than nonlinear algorithms (Chen, 1999). However, the
relationship between LAI and SR is often not linear for many
cover types (Chen et al., 2002). In this paper, both linear and
nonlinear LAI–SR algorithms were used for investigating the
effects of subpixel water area fraction on LAI retrieval and NPP
estimation. As an example, Figure 1 demonstrates a simple
case of a linear relationship between LAI and SR for pixels of
various water area fractions. Also shown is a relationship for
pure land pixels of conifer stands. The water area fraction is
assumed to vary from 100% at LAI = 0 to 0% at the intercept
(SR = 7, LAI = 5) between the two lines representing these two

relationships. For a pixel containing 50% water and 50% land
with LAI = 5, the mean LAI value for the pixel is 2.5. But if the
SR value of 4.2 for this pixel is used to invert LAI assuming it
is a pure land pixel, the LAI value will be 1.4, which is
negatively biased by 0.9.

In Canada, the total forest area assembled from forest
inventory is 416 Mha (Kurz and Apps, 1996), whereas the area
estimated using AVHRR imagery at 1 km resolution is about
460 Mha (Cihlar, 2000). The difference is mostly due to the
subpixel water area fraction in the coarse-resolution imagery.
Although the area statistics can be easily corrected once fine-
resolution water area masks are available, the effects of the
subpixel water bodies on water and carbon flux estimation
cannot yet be readily assessed without a systematic
investigation. Whether open water bodies in land pixels cause
overestimation or underestimation of the fluxes is a question of
interest to scientists who are concerned with the interaction
between the land and the atmosphere. The goal of the present
study is to provide the first-order estimate of bias errors in
retrieving biophysical parameters of the surface and in
modeling the carbon flux.

Methods
Linear mixture model and LAI correction

Land cover classes are treated as end members in linear
mixture models (LMM) (Settle and Drake, 1993; Asner et al.,
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Figure 1. The effect of subpixel open water bodies on LAI
estimation using SR. The thick line represents a relationship
between SR and LAI (Chen, 1999) for boreal conifer forests. The
thin line represents a hypothetical relationship for pixels mixed
with open water and land, with a linear variation of the water area
fraction from zero at LAI = A to 100% at LAI = 0. The point A is
the LAI value over the land portion (L0). For a pixel with 50% land
and 50% open water, point C gives the correct average LAI value
(Lc) for the pixel (per unit area of the pixel). Point B is the LAI
value (Lb) derived using the relationship for pure land pixel. The
difference between C and B is the error caused by the open water
bodies in the pixel when the algorithm derived for pure land surface
is applied to water–land mixed pixels, a general case when the
water area fraction in a pixel is ignored.



1997; Peddle et al., 1999). The LMM used in this study can be
expressed as follows:

R r x ei ij j i
j

n

= +
=
∑ ( )

1

(1)

where i = 1, …, m (number of spectral bands); j = 1, …, n
(numbers of end members in a pixel); rij is the spectral
reflectance of the jth end member for the ith spectral band; xj is
the proportion value of the jth component in the pixel; ei is the
error term for the ith spectral band; and Ri is the spectral
reflectance for the ith spectral band of a pixel containing one or
more components.

In this research, we only consider two end members, land
and water, as the first spatial scaling step because the contrast
between land and water is the largest among the various cover
types. The vegetation index SR is defined as

SR = ρn/ρr (2)

where ρn and ρr are the reflectances in the near-infrared (NIR)
and red channels, respectively. In a mixed vegetation–water
pixel, the mean reflectances in the red and NIR channels can be
given as (Chen, 1999)

ρn = wρnw + (1 – w)ρnl (3)

and

ρr = wρrw + (1 – w)ρrl (4)

where w is the water area fraction; ρnw and ρnl are the NIR
reflectances of water and land surface, respectively; and ρrw and
ρrl are the red reflectances of water and land surface,
respectively. The mean SR for the pixel can then be expressed
as

SR = [wρnw + (1 – w)ρnl]/[wρrw + (1 – w)ρrl] (5)

Based on the LAI algorithms developed by Chen et al. (2002),
Canada-wide LAI maps were recomputed in consideration of
the effect of the subpixel water area fraction. The relationship
between SR and LAI was found to be approximately linear for
conifer species, i.e.,

SR = a + bL (6)

where a and b are constants found from experimental data, and
L is the leaf area index.

The relationship between SR and LAI was found to be
nonlinear for deciduous and mixed forests and other cover
types (Chen et al., 2002):

SR = a – (a – B)e(–L/c) (7)

where a and c are constants determined from experimental data,
and B is the SR value for the background (grass, moss, litter and
soil for forests, and soil for grassland and cropland). To avoid
the effect of the seasonal change in the background of forest
stands, a seasonal background SR is estimated using the
following equation (Liu et al., 1999; Chen et al., 2002):

Bc = –15.286 + 0.53574D – 6.7709 × 10–3D2 + 4.0678

× 10–5D3 – 1.1411 × 10–7D4 + 1.1975 × 10–10D5

Bd = 2.781

Bm = (Bc + Bd)/2

where Bc, Bd, and Bm are the background SR values for conifer,
deciduous, and mixed forests, respectively; and D is the day of
year.

Theoretically, we can use Equation (5) to estimate pixel
reflectance as the sum of reflectance for land and water parts,
weighted by their fractional presence within each pixel. For a
forest–water mixed pixel, however, the scaling process is
controlled mostly by the NIR reflectance, as the red reflectance
is small. From Chen’s (1999) observation, the composite SR
varies with w almost linearly. Consequently, the approximated
SR and land portion SR0 in a pixel can be expressed as follows:

SR = SR0(1 – w) + SRww (8)

where SR0 and SRw are the SRs of the land and water portions,
respectively. After rearranging Equation (8), we have

SR0 = (SR – SRww)/(1 – w) (9)

The value of SRw depends on the depth and turbidity of the
water and can vary in a wide range from 0 to 1. Through a
sensitivity test with SRw varying from 0 to 1, we only found
very small (<0.7%) effects on LAI and NPP. For simplicity and
efficiency in image processing, we have chosen to set SRw =
0.5. Equation (9) converts remotely observed SR values for a
land–water mixed pixel to the SR value of the land portion
(SR0) in the pixel based on w. SR0 is then used to calculate the
LAI of the land portion denoted as L0 (i.e., point A in Figure 1)
using Equations (6) and (7) for different land covers. The SR
value for the mixed pixel was directly used to estimate the LAI
(Lb) of the mixed pixel with the same equations without
considering the water effect (i.e., point B in Figure 1). Because
L0 accounts for the LAI contributed by the land portions, the
average LAI of a pixel is expressed as

Lc = Lww + L0(1 – w) = L0(1 – w) (10)

where Lw is the LAI of water and is equal to zero.
The difference between Lc and Lb, i.e., Lc – Lb, is considered

as the correction for the water effect on the land portion.
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Net primary productivity (NPP) calculation and its
correction

Net primary productivity (NPP) provides highly synthesized
information useful for natural resources management and is
also a foremost indicator of the carbon budget regionally and
globally. The BEPS process model (Liu et al., 1997; 2002) is
used for estimating NPP. Inputs to the model include remotely
sensed LAI maps every 10 days, biomass, available water
holding capability of soil, and daily meteorological variables
(Liu et al., 2002). Canada-wide NPP maps at 1 km resolution
were recalculated using new LAI maps derived after the water
area fraction correction. Because the LAI value for the land
portion of a mixed pixel, i.e., L0, always increases after the
correction, the value of the NPP (in kg C m–2·year–1) per unit
land area in the pixel, i.e., NPP0, is always higher than the NPP
per unit pixel area calculated using the uncorrected LAI. For
the corrected NPP value per unit pixel area, NPPc, whether
mixed with water or not, it is necessary to discount for the
portion of the area occupied by open water, i.e.,

NPPc = (1 – w)NPP0 (11)

In this case, the total amount of NPP (in kg C) in a region
depends on the mean water area fraction and the magnitude of
NPP increase for the land portion after the correction for LAI.
In other words, the regional mean value of NPP can either
increase or decrease after the recalculation using the corrected
LAI. Because NPP0 is calculated based on the corrected LAI of
the land portion instead of the whole pixel, it is useful for
comparing with ground-based measurements of NPP. In the
meantime, the NPP change (increase or decrease) based on the
total pixel area quantifies the biases in the total NPP caused by
ignoring the subpixel water bodies.

Date sets and the water fraction mask
Canada-wide LAI maps every 10 days produced by Chen et

al. (2002) and annual NPP maps presented in Liu et al. (2002)
are used in this study. Both map series were produced using the
AVHRR imagery at 1 km resolution without the subpixel water
area correction. In this study, LAI composite images in 1994
are investigated with the water area correction methodology,
and annual NPP results before and after the correction are
analyzed. Whereas the LAI correction requires only the
additional input of the subpixel water area fraction, the NPP
recalculation using the corrected LAI requires all other inputs
necessary for calculating NPP, including land cover, available
water holding capacity, and daily meteorological variables. A
description of all these inputs is found in Liu et al. (2002).

Critical to this study is the Canada-wide water area fraction
map (Figure 2) produced by the Canada Centre for Remote
Sensing (available at http://www.ccrs.nrcan.gc.ca/ccrs/data/
data_e.html). This map was produced through digitizing
topographical maps at a resolution of about 20 m. This fine-
resolution water area mask can be resampled to produce

subpixel water area fraction maps at desired resolutions. In this
study, the mask is resampled to 1 km to be compatible with
remote sensing imagery.

Results
Land cover statistics of the Canadian landmass are shown in

Figure 1. Statistical items shown in Table 1 include the number
of pixels of every land cover, percentage of every land cover to
the whole land area, number of water-containing pixels in
different land covers, average water area fraction of all pixels,
and water-containing pixel percentage for every land cover.
Obviously, 50% conifer pixels contain significant open water
bodies, and the mean water area fraction of conifer pixels is
14.6%. With their high percentage (30%) as a Canadian land
cover type, conifers contribute a large portion of the total NPP
in Canada.

Images of LAI and NPP are reproduced for the period of
1994, and the average LAI and NPP values before and after the
subpixel water area fraction correction are investigated. The
statistical results are shown in Tables 1–4, where Lb and NPPb
are LAI and NPP values per unit pixel area before the
correction, L0 and NPP0 are the LAI and NPP values per unit
land area after the correction, and Lc and NPPc are the LAI and
NPP values per unit pixel area after the correction. All these
statistics are calculated after regrouping all cover types into six
classes: coniferous forest, deciduous forest, mixed forest,
agricultural land, grassland, and others (including burned
forest, barren land, urban area, and ice), or according to the 12
Canadian provinces and territories.

LAI correction

The three sets of LAI values of different land cover types
before and after the water area correction are shown in Table 2.
Averaged for all cover types, the mean negative bias in LAI per
unit land area without considering the effect of subpixel water
bodies is 13%, and the mean negative bias in LAI per unit pixel
area (Lc) is reduced to 1.85%. However, it should be realized
that Lc is meaningless in further modeling of NPP and other
variables because it is artificially spread from the land area to
the total pixel area. As shown in Table 1, coniferous forests
occupy about 30% of the Canadian landmass. It is the largest
cover type in Canada, and meanwhile the water area fraction in
coniferous forests is also highest among all forest covers. For
the cloud-free composite images in 1994, the relative negative
bias in LAI retrieval for the land portion in each pixel for the
conifer type without considering the water area fraction is 15%,
which is the largest among all cover types that contribute to the
carbon cycle. The results also indicate that LAI retrieval errors
resulting from water effects are inversely related to the
proportion of the land area in a pixel, and this is consistent with
Tian et al. (2002). Considering the large areas of Canadian
landmass, the results certainly indicate that bias errors in LAI
retrieval caused by open water bodies in the boreal landscape
are considerable and cannot be ignored. The correction to the
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Figure 2. Canada-wide coverage of water area fraction at 1 km resolution. The original water area mask at 20 m
resolution digitized from topographical maps is resampled to produce this map.

Conifer Deciduous Mixed Cropland Grassland Other Total

No. of pixels 2 642 329 40 240 1 121 650 670 234 51 615 4 385 890 8 911 959
Land cover percentage (%) 29.65 0.45 12.59 7.52 0.58 49.21 100.00
No. of water-containing pixels 1 383 280 12 907 436 425 332 466 31 079 1 994 309 4 190 466
Average water fraction (%) 14.57 4.99 8.37 5.92 8.36 16.44 14.05
Water pixel percentage (%) 52.35 32.08 38.91 49.60 60.21 45.47 47.02

Table 1. Land cover statistics of Canada.

Conifer Deciduous Mixed Cropland Grassland Other Total

Lb 2.22 3.52 3.00 1.09 0.35 0.33 1.30

L0 2.61 3.70 3.22 1.16 0.41 0.42 1.49

Lc 2.28 3.48 2.99 1.10 0.36 0.34 1.32

Relative difference
between Lb and L0 (%)

14.96 4.65 7.05 6.22 13.24 20.66 13.00

Relative difference
between Lb and Lc (%)

2.74 –1.26 –0.11 1.07 1.62 3.31 1.85

Table 2. Relative difference of LAI before and after the water area fraction correction for different cover types in 1994.



LAI of water-containing pixels would also be an essential step
for the comparison between ground-based LAI measurements
and remote-sensing-based LAI estimates.

NPP correction

After using water-corrected LAI (L0), the annual total NPP in
1994 is recalculated, and a water-corrected annual image of
NPP per unit pixel area (NPPc) is produced (Figure 3a). In
1994, the change in NPP before (NPPb) and after (NPP0) the
correction per unit land area in a pixel has a spatial pattern
similar to that of LAI, and a map showing the spatial distribution
of this change is shown in Figure 3b. In Table 3, the difference
in NPP before and after the correction is given. For each land
cover type, the average annual NPP (in kg C m–2·year–1) and
their relative differences are shown. The relative negative bias
error in NPP calculation for the conifer type without
considering the water area fraction is 10.7%, which is still the
largest among all cover types. The mean negative bias error is
8.6% for all cover types including conifer. The corrected NPP0
per unit land area in a pixel should be the quantity to compare
with ground-based estimates, such as those derived from forest
inventory data. In comparison, the relative difference between
uncorrected NPPb and corrected NPPc per unit pixel area is less
than 1% (0.69%) when averaged for all of Canada’s landmass.
However, this does not mean that we can ignore the influence of
open water bodies on NPP estimation. Table 4 shows LAI and

NPP statistics by province and territory. These statistics
include the land areas of 12 provinces and territories, the
percentage of each provincial area to the whole land area, the
percentage of water-containing pixels to all pixels for each
province, the average water area fraction of water-containing
pixels, the average uncorrected NPPb and corrected NPPc (in kg
C m–2·year–1), and the relative differences between NPP0 and
NPPb and between NPPc and NPPb. Table 4 suggests that there
are positive or negative bias errors due to the influence of water
bodies, and the relative negative bias errors in NPP per unit
pixel area could be very large in some regions. For example, the
relative error for Newfoundland is as high as 9.3%. According
to Tables 3 and 4, the uncorrected and corrected annual net
primary production for Canada was 1.48 and 1.49 Gt C year–1,
respectively. Among all of provinces, Quebec has the largest
absolute difference in NPP before and after the correction, up to
6.9 Mt C year–1.

Finding these positive and negative bias errors in NPP
estimation without considering the subpixel water area fraction
suggests the importance of spatial scaling in terrestrial carbon
cycle estimation. It also suggests that the NPP statistics as
presented in Liu et al. (2002) are biased by the same amount
and that the carbon sink values calculated by Chen et al. (2003)
may also be underestimated by the same percentage. In the
methodology of Chen et al., the magnitude of relative errors in
the net biome productivity (NBP) is similar to that of the
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Area (km2)

Area
percentage
(%)

Percentage of
water-containing
pixels (%)

Average
water
fraction

NPPb

(kg C)
NPPc

(kg C)

Relative
error of
NPP (%)

Annual C
difference
(×106 kg C)

Newfoundland 434 207 4.06 86.07 0.17 0.0317 0.0350 9.31 1413.78
New Brunswick 66 240 0.62 45.04 0.22 0.2545 0.2559 0.53 89.42
Prince Edward Island 6 817 0.06 38.72 0.31 0.1194 0.1197 0.26 2.16
Nova Scotia 87 066 0.81 22.57 0.13 0.2424 0.2451 1.09 232.55
Quebec 1 633 565 15.28 68.53 0.18 0.1464 0.1506 2.80 6900.18
Ontario 1 112 580 10.41 48.73 0.17 0.2869 0.2877 0.28 884.50
Manitoba 646 504 6.05 51.29 0.20 0.2197 0.2197 0.01 10.99
Saskatchewan 696 618 6.52 61.84 0.14 0.2118 0.2092 –1.25 –1816.78
Alberta 751 501 7.03 27.99 0.09 0.2524 0.2519 –0.23 –426.10
British Columbia 1 065 436 9.97 16.98 0.15 0.2155 0.2138 –0.77 –1760.10
Yukon Territory 523 273 4.89 17.48 0.09 0.0923 0.0926 0.34 164.83
Northwest Territories 3 667 699 34.30 48.52 0.23 0.0316 0.0327 3.49 4192.18
Total 10 691 506 100.00 47.02 0.19 0.1388 0.1397 0.69 9878.95

Table 4. Relative difference of NPP calculated using Lb and L0 for the Canadian provinces and territories in 1994.

Conifer Deciduous Mixed Cropland Grassland Other Total

NPPb (kg C m–2·year–1) 0.2396 0.4201 0.3649 0.1566 0.0716 0.0157 0.1388

NPP0 (kg C m–2·year–1) 0.2684 0.4289 0.3837 0.1626 0.0826 0.0188 0.1518

NPPc (kg C m–2·year–1) 0.2418 0.4203 0.3670 0.1556 0.0718 0.0159 0.1397

Relative difference between
NPP0 and NPPb (%)

10.72 1.90 4.89 3.69 13.41 16.48 8.55

Relative difference between
NPPc and NPPb (%)

0.92 –0.09 0.57 –0.70 0.40 1.54 0.69

Table 3. Relative difference of NPP calculated using Lb and L0 for different cover types in 1994.



relative errors in NPP. The Canada-wide NBP annual mean
values are therefore affected by less than 1%, relatively, but the
spatial pattern would change significantly after this water
correction.

To demonstrate the reason for the positive and negative NPP
biases, an example of the uncorrected and corrected NPP
variations with water area fraction is shown in Figure 4. Both
NPPb and NPPc decrease with increasing water area fraction
(w). The two curves intersect at w = 0.58. If w < 0.58, NPPb
shows a negative bias from NPPc, and if w > 0.58, NPPb shows

a positive bias. The absolute difference between NPPc and
NPPb indicates a nonlinear variation with water area faction.
This further suggests that corrected NPP could be larger or
smaller that uncorrected NPP depending on the mean water
area fraction. In addition, the variation in the number of all
water-containing pixels with water area fraction is shown in
Figure 5, which indicates that there are many pixels with w
smaller than 0.58 in Canada, resulting in the uncorrected NPP
being negatively biased.

Improvements in the future

In this study, we focus on the effect of subpixel water area
fraction on LAI retrieval and NPP calculation, while the effect
of other types of surface heterogeneity is ignored. However, the
same methodology can also be used for pixels mixed with cover
types other than just water and land. In particular, pixels mixed
with conifer and deciduous forests, with forest and open land,
or with forest and cropland–grassland can all cause
considerable errors. Estimation of the effects of these pixel
mixtures is more complex. However, the effects of these
mixtures may be more random than systematic, unlike the case
of pixels mixed with open water, which generally causes
negative biases in LAI and often the same biases in NPP. A step
forward in scaling research may be to use the soft land
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Figure 3. Spatial distribution of NPP and the water area effects on
NPP estimation: (a) NPP map of Canada after correction for the
effects of subpixel water area fraction; (b) relative change in NPP
per unit land area before and after the correction.

Figure 4. Variations of uncorrected NPP (NPPb) and corrected NPP
(NPPc) per unit pixel area with water area fraction for typical
conifer pixels.

Figure 5. Number of water-containing pixels at various water area
fractions in all of Canada’s landmass.



classification approach, e.g., the continuous field approach
(DeFries et al., 1999), although it is a considerable challenge to
control the errors in soft classification (Latifovic and Olthof,
2004). The spectral signals of various cover types in a pixel do
not always mix linearly. Therefore, linear mixture analysis
techniques have limitations in some circumstances. Some
nonlinear mixture modeling methods could be used, such as the
artificial neutral network (ANN) (Foody et al., 1997). Deriving
subpixel information for spatial scaling purposes would be a
useful research topic for regional and global applications.

Conclusions
With the wide application of coarse spatial resolution

satellite imagery for regional and global carbon cycle studies,
spatial scaling is of particular importance. In Canada, 47% of
remote sensing pixels at 1 km resolution contain open water
bodies. As open water bodies are the most apparent features of
land surface heterogeneity, our first attention in spatial scaling
was given to their effects on remote-sensing-based estimates of
land surface parameters. Using a Canada-wide water area mask
at 20 m resolution, a subpixel water area fraction map at 1 km
resolution was produced for this study. A simple methodology
was adopted and refined to remove the errors in Canada-wide
maps of LAI and NPP. Open water bodies occupying a
significant fraction of a remote sensing pixel often cause a
negative bias in the LAI estimate for the land portion in the
pixel. Their effects are greatest for conifer types (15%). Their
effects on NPP estimation per unit land surface area (excluding
the water area fraction) are also always negative, but NPP per
unit pixel area (including both land and water) can be either
positive or negative depending on the water area fraction.
Canada-wide total NPP estimates are affected by less than 1%
after the water area correction, but the spatial distribution
pattern is significantly altered from the results published
previously (Liu et al., 2002), with the largest changes of +9.3%
in Newfoundland and –1.3% in Saskatchewan.
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