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Abstract

To date, simulating land surface hydrological processes over large areas at spatial resolutions higher than 1 km remains technically unfeasible,
because of limitations of data availability and computational resources. Several studies have demonstrated, however, that gridding the land surface
into coarse homogeneous pixels may cause important biases on ecosystem model estimations of water budget components at local, regional and
global scales. These biases result from the overlook of sub-pixel variability of land surface characteristics. This study suggests a simple algorithm
that uses sub-pixel information on the spatial variability of vegetation and soil cover, and surface topography to correct evapotranspiration (ET)
estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in
such a way that the ET rates as obtained from calculations made at coarse spatial resolutions are multiplied by separate simple functions that
attempt to reproduce the effects of sub-pixel variability of land cover, leaf area index, soil texture, and topography on ET. Its application to a
remote sensing process-based model estimates made at a 1-km resolution over a watershed located in the southern part of the Canadian boreal
forest improved estimates of average ET as well as its temporal and spatial variability.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Spatial scaling of land surface processes, such as land
surface–atmosphere exchanges of water and carbon, has been
recognized as one of the most difficult and challenging issues in
environmental sciences (Bonan et al., 2002; Chen, 1999; Jarvis,
1995; Kimball et al., 1999). Scaling refers to the use of
information available at one scale to derive processes that occur
at a higher/finer (down-scale) or a lower/coarser (up-scale)
scale. Downscaling, on one hand, is generally required for the
use of available information at a given resolution to a system
where some processes operate at a higher resolution. For
instance, some scientists develop algorithms to downscale
meteorological data obtained from climate model simulations
made at coarse spatial resolutions (e.g., 5×5°), for their use in
ecosystem studies where analyses at higher spatial resolutions
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are desired (e.g., Price et al., 2000). Up-scaling, on the other
hand, is required to expand knowledge from a fine to a coarser
resolution. Scaling of photosynthesis from leaf to canopy in
ecosystem models is one of the most widely known up-scaling
examples.

The up-scaling of ecological processes requires necessarily a
simplification of the landscape complexity. Such a simplifica-
tion is a critical issue in land surface modeling as ecosystem
model simulations depend closely upon the representation of
land surface heterogeneity. In many of these models for
example, vegetation at each grid cell is represented by the
dominant vegetation type in that cell. This yields some
situations where the land cover of a grid cell might be
represented by a land cover type that cover less than half of the
total area of the grid cell, which may inevitably cause model
predictions to be significantly biased (e.g., Chen, 1999; Gower
et al., 2001; Rastetter et al., 1992, 2003; Strayer et al., 2003).
Several studies have illustrated for example that the overlook or
the oversimplification of land surface complexity may cause
ecosystem models simulations of surface hydrology to be
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considerably biased (Arora et al., 2001; Band et al., 1993;
Grant, 2004; Haddeland et al., 2002; Kimball et al., 1999;
Mackay et al., 2002; Mitchell et al., 2005).

To partially reduce the biases of ecosystem model simula-
tions, several approaches had been proposed during the last two
decades to improve the representation of land surface
heterogeneity in these models. This includes the so-called
explicit, statistical, and contributing area approaches. Explicit
approaches are those where each land pixel is divided into
multiple sub-pixels or patches to account for surface heteroge-
neity in model calculations (e.g., Avissar & Pielke, 1989; Koster
& Suarez, 1992; Seth et al., 1994; Verseghy et al., 1993; Walko
et al., 2000). Statistical approaches are those where probability
distribution functions are used to capture the variability of
surface properties/parameters within each grid cell [e.g., soil
physical hydrological properties] (e.g., Bonan et al., 1993;
Entekhabi and Eagleson, 1989; Wetzel and Chang, 1988; Wood
et al., 1992). In both explicit and statistical approaches, the
surface energy budget is solved for every sub-grid area to finally
yield a weighted solution for the entire grid cell, which might be
very costly in terms of computational time. The contributing
area method suggests on other hand that existing sub-grid land
surface information of soil properties and surface topography
may be used to calibrate model parameters (e.g., Band et al.,
1991; Douville, 1998; Dümenil & Todini, 1992; Famiglietti &
Wood, 1994; Pellenq et al., 2003). Additionally to the three
above approaches, Boone and Wetzel (1998) suggested an
approach where each grid cell is considered as a juxtaposition of
parallel soil columns. Soil hydrological parameters of each
column were determined thereafter using statistical relation-
ships (regressions) between the hydrological parameters and the
soil texture of these columns. Using their methodology for
climate model simulations, Boone and Wetzel (1998) found that
accounting for soil texture variability within each pixel reduced
global ET by 17% and increased total runoff by 48% and soil
wetness by 19%, compared to the case in which a homogenous
soil texture was assigned to the entire soil column.

Naturally, each of the three above approaches has limitations
and advantages. In practice, the adoption of one of them instead
of the others to represent “effective” surface heterogeneity must
be dictated by the particular purpose of use. Thus, because there
is no unique way to represent effectively surface heterogeneity
(Strayer et al., 2003), Simic et al. (2004) proposed a
methodology where ecosystem model simulations made at
any spatial resolution may be corrected if sub-grid information
of land heterogeneity exists. Indeed, rather than attempting to
adequately represent surface heterogeneity within the land
model, Simic et al. (2004) suggest the use of sub-grid
information on surface heterogeneity to directly correct model
estimates of net primary production (NPP). To map NPP at a 30-
m resolution, Simic et al. (2004) adjusted remote sensing based
ecosystem model estimates made at a 1-km resolution by
multiplying the simulated NPP at 1-km resolution by a function
that correct for land cover and LAI variability within each of the
1-km pixels. Simic et al.'s methodology was in fact built on the
logic that while it is difficult to perform calculations of NPP, or
any other variable, for large regions such as Canada at any
resolution higher than 1 km because of limitations inherent to
data availability and computational resources, it is nevertheless
possible to exploit sub-1-km pixel information whenever they
exist to correct calculations of the variable in question, made at
resolutions that may be lower than or equal to 1 km. The
emergence of that methodology to down-scale model estima-
tions made at coarse spatial resolutions had been encouraged by
recent progress in mapping land cover characteristics using
remote sensing observations. In fact, while land cover features
could be mapped over large regions using satellite observations
at a 1-km resolution, some emerging classification techniques
demonstrated an acceptable accuracy in using these 1 km maps
to extract the fraction of each land cover type present within
each pixel (e.g., Canters et al., 2002). At high resolutions in
practice, it is always much easier to map land cover types and
vegetation density than to model the complex surface process at
the same resolutions.

Accurate estimates of water budget components at regional,
continental, and global scales are critical for the establishment
of adequate land resources management strategies. Accurate
estimates of ET are, for example, important for the derivation of
soil moisture and runoff over large basins, and the prediction of
large river discharges (e.g., Nijssen, Lettenmaier et al., 1997).
At smaller scales, Liu et al. (2003) reported that adequate
estimates of regional ET should enhance the reliability of runoff
estimations for ungauged watersheds in support of hydroelectric
power generation. Investigating and reducing sources of
uncertainties that are associated with model predictions of ET
are therefore crucial issues. The objective of this study is to
develop a simple algorithm that could be used to correct and
down-scale ecosystem model estimates of ET. The philosophy
of our algorithm and the one developed by Simic et al. (2004)
are similar. However, while Simic et al.'s algorithm includes
one single corrective component where land cover and leaf are
index (LAI) corrections are dependants, our algorithm includes
four corrective components where each one of these compo-
nents is completely independent from the three others. The four
components of our algorithm are: land cover, LAI, soil texture,
and topography. In particular, the consideration of topography
in downscaling requires the use of a hydrological model that is
capable of simulating the lateral ground water flow influencing
the spatial ET distribution pattern, and results from this work
can be, therefore, potentially applicable not only to flat areas but
also to areas with a complex topography.

2. Methodology

2.1. Model used

We used the distributed hydrology-vegetation model (Ter-
rainLab) described in details in Chen et al. (2005). TerrainLab
borrows its basic structure from Wigmosta et al.'s (1994)
model, but with several modifications to maximize its use for
remote sensing applications. It operates at a daily time-step, and
incorporates the effects of land topography on the hydrological
cycle, by simulating the water flow between neighboring pixels.
For that purpose, a moving window of 3×3 pixels is used to



Plate 1. Watershed characteristics at 30-m and 1-km resolutions: (A) Land cover at 30-m resolution; (B) Land cover at 1-km resolution; (C) Elevation at 30-m
resolution; (D) Elevation at 1-km resolution; (E) Soil type at 30-m resolution; (F) Soil type at 1-km resolution; (G) Leaf area index at 30-m resolution; (H) Leaf area
index at 1-km resolution.
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estimate the lateral saturated base flow according to the water
table as affected by surface topography and soil drainage. The
model subdivides vegetation into three layers, namely
overstory, understory and litter-moss. The soil is divided into
saturated and unsaturated zones; wherein the depth varies
accordingly with water table fluctuations. Following the
approach of Jarvis (1976), the stomatal conductance is
calculated as the product of its potential maximum and a set
of empirical functions to account for leaf's stomatal response to
the ambient conditions including air temperature, photosyn-
thetic photo flux density, air vapour pressure deficit, and soil
water content. Moreover, the model assumes that plant roots
can extract water either from unsaturated or/and saturated
zones. The root vertical distribution is modeled according to
Jackson et al. (1996), where a simple asymptotic equation is
used to represent the vertical root profile. The model does
include a routine that simulates the effect of topography on the
surface radiation budget by considering the geometry between
the solar beam and the normal to the slope according to
Campbell and Norman (1998).

Required meteorological inputs include mean air tempera-
ture, precipitation, solar radiation, and relative humidity.
Required soil data include soil depth, and soil texture, from
which associated soil hydrological properties including poros-
ity, saturated hydraulic conductivity, wilting point, and
saturated suction are estimated. To account for the influence
of topographical variations on the water budget components, a
digital terrain model (DEM) is also required, from which slope
and aspect are calculated. Needed vegetation information
include land cover type and LAI.

The performance of the model and its different components
is detailed in Appendix A.
Fig. 1. Scheme of the procedures that were followed
2.2. Site description and data preparation

The study area is a watershed located in the Southern Study
Area (SSA) of the Boreal Ecosystem-Atmosphere Study
(BOREAS). The hydrological modeling domain encompasses
the old black spruce (SSA-OBS) stand, about 30 km northeast
from Candle Lake, Saskatchewan (53.99°N, 105.12°W),
Canada. Monthly temperature varies from −16.9 °C in January
to about 16.7 °C in July, and the annual precipitation is
approximately 400 mm. The soil originates predominantly from
Glacial Lake Agassiz sediments and consists of sand, clay and
organic matter. The topography has low relief and poor drainage
(Nakane et al., 1997). The site for the present study comprises
360 by 360 pixels at 30 m resolution. The watershed studied
here is in a typical Canadian shield landscape with gentle and
moderate topographical variations on top of a shallow bedrock
(Branfireun & Roulet, 1998). In the landscape, slopes with
shallow overburden may be decoupled with receiving streams in
dry seasons (Devito et al., 1996). This particular watershed
drains to a small lake through saturated subsurface flows and
ephemeral streams.

The forests within the modeling domain (Plate 1A) are
typical of southern boreal forests, consisting primarily of black
spruce (Picea mariana (Mill.) BSP) with small patches of jack
pine (b2% in tree count) (Pinus banksiana Lamb.), and other
tree species (b3%) including tamarack (Larix laricina [Du Roi]
K. Koch) and willow (Salix spp.) (Gower et al., 1997). The
basal areas of the stands are 30 m2 ha−1 (Jarvis et al., 1997) and
the average leaf area index (LAI) at the OBS site is 4.5 (Chen et
al., 1997). The understory is composed of grasses of variable
densities and sparse shrubs above an extensive moss ground
cover. The growing season is normally limited to the summer
in the lumped and distributed calculations of ET.
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months between May and September when the daily temper-
ature is above 5 °C. Our study is, henceforth, limited to the
growing season of year 1994 (day number of the year from 150
through 250).

The procedures used to preprocess various spatial input
datasets are explained in Appendix B.

2.3. Simulation procedures

Two simulations were made to analyze the bias in coarse
resolution ET estimates. The first simulation was made at 30-m
resolution using input datasets at the same resolution (see
Section 2.2), while the second simulation was made at a 1-km
resolution after resampling the 30-m resolution datasets to a 1-
km resolution (see next paragraph). Obtained ET from the
simulation made at the 30-m resolution is referred to as
distributed ET, or ETd; while obtained ET from the simulation
made at the 1-km resolution is hereafter referred to as lumped
ET, or ETl. For comparison with ETl, ETd was resampled to 1-
km resolution as illustrated in Fig. 1. Each model run had its
own spin-up. In fact, the 30-m run spin-ups were not aggregated
to initialize the lumped 1-km runs.

To perform the 1-km simulation, input data available at the
30-m resolution were averaged (resampled) to obtain input
datasets at 1-km resolution (Fig. 1). As usual, however, land
cover and soil texture types of each 1-km pixel were assumed to
be the dominant type in the aggregated 30-m pixels. Therefore,
a distributed 1-km pixel contains a maximum of 1089 (33×33)
heterogeneous 30-m pixels, while a lumped 1-km pixel contains
unique homogeneous vegetation and soil types. Our choice of
these two resolutions was motivated by the following
considerations: (i) the 1-km pixel size corresponds to the
resolution at which land cover information from a satellite is
usually available at regional and global scales; (ii) the 30-m
pixel size represents the resolution beyond which it becomes
difficult to represent adequately the mosaics of soil and
vegetation found in the southern Canadian boreal forest
(Bonan & Shugart, 1989), where our watershed is located.

Separate analyses of the effects of the variability of land
cover, soil texture and surface topography within the 1-km
pixels on the ETd/ETl ratio were used to develop our algorithm.

3. Results

3.1. Aggregation effects on the watershed's characteristics

At the 30-m resolution, five land cover classes are
distinguished (Plate 1A). They include coniferous forest (CF),
broadleaf deciduous forest (DF), mixed (conifer-broadleaf
deciduous) forest (MF), grasses (Gr), and small patches of
open water (OW). CF is the dominant land cover type as it
occupies nearly 66% of the total watershed area, followed by
DF (28%), MF (3%) and Gr (2%), respectively. After
aggregating these land cover types to 1-km resolution, MF
and Gr classes disappeared, the proportion of CF became 72%,
and the proportion of DF (28%) remained unchanged (Plate
1B). Results of this aggregation are consistent with comparisons
of Landsat TM (30-m resolution) and NOAA-AVHRR (1-km
resolution) land cover maps of the BOREAS-southern study
area (Hall et al., 1997; Steyaert et al., 1997).

At 30-m resolution, the loamy-sand, silty-clay and peat are
the three soil textural classes found in the watershed (Plate 1C).
As it may be expected, loamy-sand soil that occupies about 58%
of the total soil surface is generally found in regions where CF
dominates, while silty-clay soil that occupies 13% is generally
found in regions where DF dominates (Plate 1A and C). Peat
soil occupies about 29%, and is found in regions that contain
either CF or DF. After the aggregation to 1-km resolution
(Plate 1D), the proportion of the loamy-sand, silty-clay and peat
soils became only slightly different from those found at 30-m
resolution as they established to 59%, 12% and 29%,
respectively.

The elevation within the watershed varies between a
minimum of 549 m and a maximum of 648 m at the 30-m
resolution, and between a minimum of 552 m and a maximum
of 632 m at 1-km resolution. Logically, the elevation range
(maximum–minimum) is larger at 30 m (elevrange=99 m) than
at 1 km (elevrange=80 m) resolution (Plate 1E and F).
Minimum and maximum LAI are 1.7 and 5.4 at the 30 m
resolution, and are 3 and 4.7 at the 1-km resolution, respectively
(Plate 1G and H).

It is worth noting that the relatively small change in the
proportions of CF and DF land covers and soil types that
resulted from the aggregation from 30 m to 1 km, hide the fact
that some coarse pixels (1 km) may be dominated by some land
cover and soil types, while in reality, they encompass
substantial proportions of other land cover and soil types. For
instance, the 1 km lumped pixel located in line7-pixel3 (Plate
1B), is dominated by CF. In that pixel in reality, CF forms only
39% of the total land cover versus 35% for DF, and 26% for Gr.
Similarly, loamy-sand is the dominant soil texture (60%) in the
lumped pixel having the coordinates line3-pixel5 (Plate 1D),
while in reality, silty-clay and peat soils are present in
proportions of 36% and 4%, respectively.

3.2. Effects of aggregating input data on ET estimates

At the 30 m resolution, the average simulated watershed's
ET (ETd) over the entire period of the study (days of year 150–
250) varied between a minimum of 0.50 and a maximum of
3.74 mm/day, and averaged to 1.89 mm/day (Table 1 and Fig.
2A–C). For pixels dominated by conifer and deciduous forests,
ET averaged to 1.66 and 2.54 mm/day, respectively. For the
entire watershed area, lumped calculations yielded an average
ET (ETl) that is only 4% higher than ETd, but average ETl was
8% lower and 24% larger than ETd for CF and DF, respectively
(Table 1). Using the BIOME-BGC model and data from the
same region (BOREAS southern study area) to examine the
effect of spatial heterogeneity on average estimated ET, Kimball
et al. (1999) found fairly comparable results.

95% of this watershed area is either covered by CF or DF.
Because CF generally have a lower ET than DF and MF under
similar climatic and edaphic conditions, we may anticipate that
a lumped coniferous pixel would yield a lower average ET than



Table 1
Statistics of distributed and lumped ET

Distributed ET Lumped ET before correction Lumped ET after correction

Coniferous pixels Deciduous pixels All pixels Coniferous pixels Deciduous pixels All pixels Coniferous pixels Deciduous pixels All pixels

Average 1.66 2.54 1.89 1.53 3.16 1.98 1.75 2.33 1.91
MBE na na na −0.14 0.62 0.08 0.09 −0.21 0.02
Minimum 0.48 0.55 0.50 0.46 0.70 0.55 0.54 0.50 0.55
Maximum 3.29 5.00 3.74 2.98 5.84 3.77 3.45 4.33 3.69
Range 2.81 4.45 3.24 2.52 5.14 3.22 2.91 3.83 3.14

Shown are averaged values of ET obtained over all coniferous and deciduous pixels, and all pixels of the watershed; over the entire period of study (days of year from
150 to 250). MBE refers to the mean bias error. All values are expressed in mm/day.
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the corresponding distributed pixel covered by both CF and DF.
This is because only CF is considered in lumped calculations,
while both CF and DF are considered in distributed calculations.
Conversely, we may anticipate that a lumped deciduous pixel
would yield a higher average ET than the corresponding
distributed pixel covered by both CF and DF land cover types.
Obtained results shown in Table 1 and Fig. 2A,B confirmed
these anticipations as lumping negatively biased average ET of
CF pixels (−8%) and positively biased ETof DF pixels (+24%).
As a direct consequence, the negative bias of CF's ETl and the
positive bias of DF's ETl cancelled each other and yielded an
overall low positive bias (4%) for the entire watershed's average
Fig. 2. Regression between lumped (ETl) and distributed (ETd) daily values of
ET (day of year 150 through day of year 250), before correction. Each point
represents obtained average ETon a given day, over: (A) all pixels dominated by
the coniferous forest (CF pixels); (B) all pixels dominated by the deciduous
forest (DF pixels); (C) all pixels of the watershed.
ETl. Moreover, a more exhaustive exploration of the results
indicates that the inherent bias to lumping could be much more
substantial for single pixels regarding daily ET rates (Fig. 3A–
C). For instance, the correlation (r2, and also the slope and the
intercept) between daily ETd and ETl values obtained for each
pixel shown in Fig. 3A–C is much lower than r2 of the
watershed's average values of ETd and ETl (Fig. 2A–C). This
suggests that lumping induces a larger bias on the spatial
distribution than the temporal distribution of ET.

3.3. Correction of lumped ET: description and application of
the corrective algorithm

The starting point for our algorithm is based on the
assumption that ETd and ETl represent the correct and the
biased ET, respectively. This is because the surface heteroge-
neity is preserved in the distributed calculations, while it is not
in the lumped calculations (Fig. 1). Therefore, the objective is to
derive a multiplicative factor that may be used to correct ETl

values, and subsequently reduces the difference between ETd

and ETl. Thus, we expressed the relationship between ETd and
ETl merely as:

ETd ¼ ETl:R ð1Þ

where R represents the multiplicative factor that is needed for
the correction of ETl.

ETl is biased because only the dominant land cover and soil
texture in coarse (1 km) pixels are used in its calculation, and
because input data of LAI and topography represent only
average conditions within each coarse pixel. It is known,
however, that the responses of ET to LAI and topographical
variations are non-linear (e.g., Campbell & Norman, 1998;
Kenward et al., 2000). In fact, because of the non-linear ET–
LAI relationship, ET rate calculated as the average of ETs of
two adjacent pixels having different LAIs (distributed calcu-
lation) will most likely be different than the ET rate calculated
using the average LAI of the two pixels (lumped calculation).
Similarly, under similar soil and vegetation conditions, ET of a
pixel located on an abrupt slope is likely (a-priori) to be lower
than ET of a pixel located in a flat region, even though the two
pixels have similar average elevations. This is because the
fraction of precipitation that may be partitioned into runoff
could be much larger over bumpy than over flat surfaces,



Fig. 3. Lumped (ETl) versus distributed (ETd) ET, before correction. Each point
represents ETof a single 1-km pixel on a given day (day of year 150 through day
of year 250). Are represented: (A) all pixels dominated by the coniferous forest
(CF pixels); (B) all pixels dominated by the deciduous forest (DF pixels); (C) all
pixels of the watershed.
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causing soil moisture and ET to be larger over flat than over
bumpy surfaces. Thus, to account for the four effects (land
cover, LAI, soil texture, topography), we expressed R as
follow:

R ¼ RlcdRlaidRsoildRtop ð2Þ

where Rlc, Rsoil, Rtop, and Rlai are functions that correct ETl

rates as biased following the simplification of land surface
complexity within each coarse pixel to a representation of that
pixel by the dominant land cover and soil types, and by the
average topography and LAI conditions, respectively.
The form of Eq. (2) ensures that each of the four components
of R is totally independent from the other three components. It
also ensures that we do not need the sub-pixel information of all
the four variables (land cover, LAI, soil texture, topography) to
be available at the same time to make an ET correction. If for
example only land cover sub-pixel information is available to
us, Rwill be reduced to Rlc. Similarly, if for example the location
for which we want to make an ET correction is completely flat
and do not present any topographical variations, R in this case
will encompass only three components (Rlc, Rlai, and Rsoil) as
Rtop will be equal to 1 and hence eliminated. Another example is
that if the location for which we want to make an ET correction
is entirely covered by the same vegetation type, R will
encompass only three components (Rlai, Rsoil, and Rtop) as Rlc

will be equal to 1 and hence eliminated.
The independence of the four components of R in Eq. (2)

offers us the possibility to determine each one of them
separately by isolating the exclusive effect of the heterogeneity
of one of the four variables (e.g., topography) on ET, as we
show in the following three sub-sections (Sections 3.3.1, 3.3.2
and 3.3.3).

3.3.1. Land cover correction
If the region or pixel for which we want to correct ETl is

completely flat, having a uniform soil texture and LAI, but an
heterogeneous land cover, Eq. (1) will be reduced, as we
explained above, to:

ETd ¼ ETldRlc ð10Þ

Within each distributed pixel, ETd may be expressed as:

ETd ¼ ET1df1 þ ET2df2 þ N þ ETjdfj þ N þ ETndfn

¼
Xn
i¼1

ETidfi ð3Þ

where ETi is the rate of evaporated water by the land cover type
i that have a fraction cover fi.

If each distributed pixel contains a mixture of land cover
types, and land cover type j dominates, j will be the land cover
of the lumped pixels. Thus, ETj will represent the evaporation
rate of the lumped pixel, and may be replaced by ETl in Eq. (3).
Thereafter, combination of Eqs. (1') and (3) gives:

ET1dRlc ¼ ET1df1 þ ET2df2 þ N þ ETldfj þ N þ ETndfn

ð4Þ
Because

P
i fi ¼ 1, Eq. (4) may be rewritten as:

ETldRlc ¼ ET1df1 þ ET2df2 þ N

þ ET1dð1−f1− N −fj−1−fjþ1− N −fnÞ þ N þ ETndfn

ð5Þ

Rearranging Eq. (5) yields:

Rlc ¼ 1− 1−
ET1

ETl

� �
df1− 1−

ET2

ETl

� �
df2− N − 1−

ETn

ETl

� �
dfn ð6Þ
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or:

Rlc ¼ 1−
Xn
i¼1

Cif dfi where Cij ¼ 1−
ETi

ETl
; ipj ð7Þ

Cij is a regression coefficient for a non-dominant land cover
type i, present in a coarse pixel (1 km in this study) labeled as
(or dominated by) land cover type j, and n is the number of non
dominant land cover types within that coarse pixel.

The relationships between Rlc and land cover type fractions
are shown in Fig. 4A–C for the 1-km pixels dominated by CF,
and in Fig. 4D–F for the 1-km pixels dominated by DF. It can be
seen that for pixels dominated by CF, ETd/ETl increases with
the increase of the DF fraction (Fig. 4A); presumably because
ET of DF is higher than ET of CF, so that the elimination of DF
fraction in the lumped calculations negatively biases ETl of CF
pixels. For the same reasons, ETd/ETl decreases in pixels
dominated by DF with the increase of the CF fraction (Fig. 4D).
Furthermore, Fig. 4E shows that ETd/ETl increases with the
increase of the MF fraction. This indicates that in this boreal
system, the model predicted, in agreement with field observa-
tions (Fluxnet-Canada, 2003, p. 39), that a mixed forest may
have a higher ET than a deciduous forest as a result of the
combined effect of multiple environmental factors (e.g., soil,
topography, or other factors).
Fig. 4. Variation of average ETd/ETl as a function of the fraction of non-dominant la
(D–F) pixels dominated by the deciduous forest (DF pixels).
The coefficients Cij derived from the regressions shown in
Fig. 4A–F are given in Table 2, while an example of their
derivation is given in Appendix C.1.

3.3.2. LAI correction
Rlai was derived based on ET's sensitivity to LAI, as

predicted by our model (Fig. 5). Other studies, where other
models were used (El Maayar et al., 2002; Pitman, 1994),
reported a fairly similar response of ET of coniferous and
deciduous forests to LAI variations. We found that the function
that best represents the shape of the curves shown in Fig. 5 is:

Rlai ¼
Xn
i¼1

fi 2−exp K
LAIi−LAIl

LAIl

� �� �
ð8Þ

where LAIl is the leaf area index of the coarse pixel (average
leaf area index within the 1-km pixel), LAIi is the leaf area index
of a land cover i within the coarse pixel, fi is the fraction of the
land cover type i within the coarse pixel, and n is the number of
existing land cover types within the coarse pixel. K is a
parameter that should be adjusted to match the response of ET
to LAI variation of a particular land cover type. Our analyses
showed that −0.35 represents a reasonable approximation for K,
for both coniferous and deciduous forests, although −0.4 and
−0.28 would be better approximations for CF and DF,
respectively. If only one cover type is present in the coarse
nd cover types in: (A–C) pixels dominated by the coniferous forest (CF pixels);



Fig. 5. Sensitivity of ET to changes in leaf area index (LAI) of coniferous (CF)
and deciduous (DF) forests.

Table 2
Cij coefficients used in the land cover correction component (Rlc) of the
algorithm

Lumped pixels labeled as
coniferous forest

Lumped pixels labeled as
deciduous forest

Cdec-con Cmix-con Cgr-con Ccon-dec Cmix-dec Cgr-dec

−0.73 −3.64 −1.22 0.56 0.41 3.55

The subscripts con, dec, mix, and gr refer to coniferous forest, deciduous forest,
mixed forest, and grasses, respectively.
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pixel, fi will be equal to 1, and the term inside the exponential
function becomes null (LAIi equals LAIl). Consequently, Rlai

will be equal to 1.
We opted for the use of Eq. (8) rather than the one proposed

in Simic et al. (2004) because it expresses better the non-
linearity of the response of ET to LAI variations.

3.3.3. Soil correction
As Earth's distributions of vegetation and climate are

strongly correlated, it is well known that a strong correlation
between distributions of natural land covers and soil types also
exists. In Canada for example, temperate conifer trees most
commonly grow further in regions where soil texture contains
high proportions of sand materials (Farrar, 1995). Hence, by
imposing in lumped calculations a unique (dominant) soil
texture for pixels that contain in reality a mixture of land cover
types, we inevitably run the risk of associating that dominant
soil texture with a land cover type that normally grows further
only in locations that are characterized by the presence of
another soil texture. For example, if a coarse pixel is dominated
by a land cover type A that grows further only in regions of a
dominant soil type A, but contains also a non-dominant land
cover type B that grows further only in regions of a non-
dominant soil type B. Lumped calculation of ET in that pixel
will ignore both land cover and soil types B. The use of Rlc (Eq.
(7)) to correct ETl will act as an inclusion of the non-dominant
land cover type B fraction in ETl calculation. However, that first
ETl correction (Rlc) will need to be further completed by an
additional function that links the presence of land cover type B
to the presence of soil type B.

In the proposed algorithm, soil correction is driven by the
response of ET of each land cover type to different soil textures.
In other words, we examined the sensitivity of ET of each land
cover type to all the existing soil textural classes within our
watershed, to derive a simple methodology that reduces the ET
bias due to the use of a unique (dominant) soil type in the
lumped calculations. Here, our analyses are limited to the soil
texture types present in our studied watershed, but the
methodology itself can be applied to any other regions, where
sub-pixel soil texture information is available. Thus, we
expressed Rsoil (Eq. (2)) as follows:

Rsoil ¼
Xn
i¼1

Csoil
ij d f soili;

X
i

f soili ¼ 1 ð9Þ

where fsoili is the fraction of soil type i (dominant or non-
dominant) found within the coarse pixel, and Cij

soil is the ratio of
ET estimated using a non-dominant soil texture i to the
estimated ET using the dominant soil texture j. n is the number
of soil types present within the coarse pixel. For our watershed
(Fig. 6A–D), our analyses yielded the average values of Cij

soil

given in Table 3. A discussion on Cij
soil coefficients is given in

the last section of this paper.
An Example of calculation of Cij

soil coefficients is given in
Appendix C.2.

3.3.4. Topography correction
Topography has a major influence on surface water budget

components, such as precipitation (Daly et al., 1994), snow
cover distribution (Essery, 2003; Walland & Simmonds, 1996),
available soil water capacity and soil moisture (Grant, 2004;
Zeng et al., 1996), runoff generation (Haddeland et al., 2002),
and evapotranspiration (Kang et al., 2004). TerrainLab
simulates the transfer of water between adjacent pixels that
have different elevations. The amount of water and the
required time for its transfer from one pixel to the other are
non-linear functions of the difference between their elevations
and aspects (Chen et al., 2005). Consequently, the use of
average topography in lumped calculations is similar to
imposing a linear relationship between ET and surface
topography, which is incorrect (an example is given in the
2nd paragraph of Section 3.3). Therefore, our objective is the
derivation of a simple function that reduces the bias that results
from the use of average topography in lumped calculations of
ET. We also seek that the proposed function will be simple and
flexible enough to be easily applicable under contrasting
environmental conditions.

To isolate the effect of topography on ET, we firstly made
three runs at a 1-km resolution for the pixels dominated either
by CF or DF. In each of the three runs, the latter vegetation types
were assumed to grow on one of the three soil textural types
found within the watershed area (loamy sand, silty clay or peat).
Secondly, we performed three other runs at a 30-m resolution
for the same corresponding distributed pixels (1 km), assuming
again an unique soil texture in each run. In the 30-m resolution
runs furthermore, a unique vegetation cover was prescribed for
each distributed pixel. CF and DF were prescribed for the
distributed pixels where CF and DF dominate, respectively. As



Fig. 6. Sensitivity of ET to soil texture as predicted by TerrainLab, for: (A) coniferous forest (CF); (B) deciduous forest (DF); (C) mixed forest (MF); (D) grasses (Gr).

42 M. El Maayar, J.M. Chen / Remote Sensing of Environment 102 (2006) 33–51
land cover and soil texture were similar in both lumped (1 km)
and distributed (30 m) runs, their effects were thus eliminated.
Our choice of making three separate runs where each run
corresponds to a soil type was dictated by the fact that CF and
DF grow up over all the three soil types found in our watershed
(silty-clay, loamy-sand, and peat) (Plate 1), although the two
vegetation types are mainly found in areas where loamy-sand
(for CF) and silty-clay (for DF) soils dominate.

Our results illustrate that the response of ETd/ETl to
topographical variations depends on the soil texture (Fig. 7A–
F), which is not surprising. While ETd/ETl decreases as the
elevation range within the coarse pixels increases when CF and
DF grow further on silty-clay soils (Fig. 7C,D) and peat soils
(Fig. 7E,F), its variation remains very low when the two
vegetation types grow on the loamy-sand soil (Fig. 7A,B).
Elevation range refers to the difference between the highest and
the lowest elevations of the 30-m pixels found within each
coarse pixel (1 km). The decrease of ETd/ETl as a function of the
elevation range in silty-clay and peat soil cases was more or less
Table 3
Cij
soil coefficients used in the soil correction component (Rsoil) of the algorithm

Csc-ls
soil Cp-ls

soil Clc-sc
soil Cp-sc

soil Cls-p
soil Csc-p

soil

Lumped pixels labeled
as coniferous forest

1.02 0.92 0.98 0.91 1.09 0.98

Lumped pixels labeled
as deciduous forest

1.14 1.30 0.88 1.14 0.77 0.88

i and j represent the non-dominant and the dominant soil types, respectively. The
subscripts sc, ls, and p denote silty-clay, loamy-sand and peat soils, respectively.
Csc-ls
soil represents the ratio of obtained ET when the soil is silty-clay to the

obtained ET when the soil is loamy-sand; and so on (see text for explanation).
Csc-sc
soil , Cls-ls

soil , and Cp-p
soil are all equal to 1.
expected because lumping results in soil moisture to be more
uniform than reality, which reduces moisture stress and causes
ETl to be positively biased. Furthermore, the rank coefficient
correlation test of Spearman at the 95% level (Keller &Warrack,
1997) applied to the results shown in Fig. 7C–F confirmed the
existence of a statistically significant relationship between ETd/
ETl and elevation range. rð

ffiffiffiffiffi
R2

p
Þ values for CF (Fig. 7C,E) and

DF (Fig. 7D,F) were found to be larger than the critical values. In
the loamy-sand soil case (Fig. 7A,B), ETd/ETl was almost
insensitive to the elevation range changes as it was also
confirmed by the rank coefficient correlation test of Spearman
at the 95% level, although the lumping caused a small negative
bias (ETdbETl). The latter response resulted from the
combination of two effects: (i) Firstly, the high hydraulic
conductivity of loamy-sand soils causes water to infiltrate during
rainy events very quickly, which dramatically decreased the
effect of topographical variations on ETd/ETl; (ii) Secondly, soil
moisture was generally lower in lumped runs than in distributed
runs because the infiltrated water was more efficiently
distributed throughout the soil profile in the distributed case.
This difference in soil water distribution resulted from a longer
period of water transfer from the surface to the deep soil in the
distributed case than in the lumped case, as soil in some areas
with high elevations within the distributed coarse pixels could be
significantly deeper than average. In the distributed case, soil in
depressed areas also tends to accumulate water, giving rise to
higher ET at these locations, and this spatial process is missed in
the lumped calculation. Interestingly, using another hydrological
model (RHESSys) that accounts for topographical effects on
surface hydrology, Mitchell et al. (2005) have also reported that
distributed calculations yielded larger ET rates than those
obtained from lumped calculations in a grassland ecosystem



Fig. 7. Variation of ETd/ETl as a function of elevation range within the 1-km pixels, when both conifer and deciduous forests grow further on: (A,B) loamy-sand soil;
(C,D) silty-clay soil; (E,F) peat soil.
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located in the Prairies Grasslands Natural Region of Canada,
where soil contains a high proportion of sand.

Based on these results (Fig. 7A–F), we used the following
simple equation to express Rtop to correct for the effects of
topographical variations within the coarse pixels on ET
calculations:

Rtop ¼ aln½elevrange� þ b ð10Þ
where elevrange is the elevation range within the coarse pixel
which can be obtained from high resolution DEMs, ln is the
natural logarithm, and a and b are coefficients to be adjusted for
each land cover and soil type, as illustrated in Fig. 7A–F.
Approximate values of a and b are those shown in Fig. 7A–F.
Note that for small values of elevrange, Rtop converges toward 1.
Eq. (10) is therefore considered to be equal to 1 for values of
elevrange that are equal or smaller than e (∼2.71). A discussion
on a and b coefficients can be found in the Section 4 of this paper.

We choose the elevation range rather than other variables for
the topographical correction for the following reason: (i) Our
objective is to provide the simplest and the most practical
possible algorithm to the user. If, for instance, we consider the
slope variable in the topographical correction, we necessarily
need to add another additional component of this topographical
correction that includes effect of the aspect on ET. This is
because water flows between two points with different
elevations could depend as much on slope as on aspect. After
several analyses, we found that the use of a single simple
component in the topographical correction that takes into
account the elevation difference (or range when we talk about a
watershed) is straightforward because it implicitly includes all
the combined effects of slope and aspect; and (ii) In practice, it
is very often much easier to find elevation data than aspect and
slope data, especially if we are interested in correcting ET
estimates made at regional or larger scales.

3.3.5. Corrected versus uncorrected ET
Regressions between daily values of watershed-average ETd,

ETl, and corrected ETl are shown in Figs. 2A–C and 8A–C.
While before correction, ETl of CF pixels differs only slightly
from ETl after correction (Figs. 2A and 8A), a noticeable



Fig. 8. Regression between lumped (ETl) and distributed (ETd) daily values of
ET (day of year 150 through day of year 250), after correction. Each point
represents obtained average ET in a given day, over: (A) all pixels dominated by
the coniferous forest (CF pixels); (B) all pixels dominated by the deciduous
forest (DF pixels); (C) all pixels of the watershed.

Fig. 9. Lumped (ETl) versus distributed (ETd) ET, after correction. Each point
represents ET of a single 1-km pixel in a given day (day of year 150 through day
of year 250). Are represented: (A) all pixels dominated by the coniferous forest
(CF pixels); (B) all pixels dominated by the deciduous forest (DF pixels); (C) all
pixels of the watershed.

44 M. El Maayar, J.M. Chen / Remote Sensing of Environment 102 (2006) 33–51
improvement was obtained for DF pixels (Figs. 2B and 8B). In
terms of percentage, the application of algorithm yielded a
reduction in the mean bias error (MBE) of average ETl from 8%
to 5% for the coniferous forest, from 24% to 8% for the
deciduous forest, and from 4% to less than 1% for the entire
watershed (Table 1).

Regression analyses made using daily values of ETl and ETd

as obtained for every 1-km pixel of the watershed (58 pixels)
through the entire period of the study (101 days) show that the
algorithm considerably reduced the ETl bias of both coniferous
and deciduous forests (Fig. 3A–C vs. Fig. 9A–C), which
indicates a significant improvement of the spatial variability of
ETl within the watershed. For illustration, the spatial variability
of time-average (days of year 150–250) values of ETd, and the
corresponding uncorrected and corrected ETl along all the
watershed coarse pixels (58 at 1-km resolution) are shown in
Fig. 10A–C. These figures (Fig. 10A–C) indicate an important
improvement of the spatial variability of ETl as the coefficients
of variation established for ETd, uncorrected ETl and corrected
ETl to 0.25, 0.40 and 0.22, respectively.

Our analyses indicate that lumping causes a larger bias
during the dry period than during the wet period (Fig. 11A–C).
Early in the growing season (around day number 50 in Fig.
11A–C), the ET bias is low even though the weather is dry,
because the soil moisture is still high due the important soil
water recharge by snow melt that occurs during that period.
Furthermore, Fig. 11A–C shows that the algorithm operates
better during the dry period.

Fig. 12A illustrates the contribution of each algorithm
component to R (Eq. (2)). In our watershed case study, the soil
texture and LAI corrections were minimal, and land cover and
topography corrections were almost of equal importance. In
average, Rsoil and Rlai had only a minor effect on ETl (less than
1% correction) on both coniferous and deciduous forests. On



Fig. 10. (A) Comparison of the spatial variability of ETd and ETl before and after correction, for coniferous (CF pixels) and deciduous (DF pixels) forests. (B) and (C)
show the regressions between lumped (ETl) and distributed (ETd) values of ET obtained at each of the 1-km pixels of the watershed before and after correction,
respectively.
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average, Rlc increased ETl of coniferous forest by 16% and
decreased ETl of deciduous forest by 19%, while Rtopo

decreased ETl of coniferous and deciduous forests by 1% and
7%, respectively.

4. Discussion and conclusion

Remote sensing-based ecosystem models are emerging as
powerful tools capable of estimating ET over large regions, at
relatively high resolutions. These models that are able to
assimilate a mixture of information on surface boundary
conditions, can now provide us with regional, continental or
even global ET maps at spatial resolutions as high as 1 km (Liu
et al., 2003; Running et al., 2000). However, because landscape
heterogeneity could still be considerable even at that resolution,
a simple algorithm that correct estimated ET at coarse spatial
resolutions by using sub-pixel information on land surface
heterogeneity was proposed in this study. In our case study, a
watershed located in the Canadian boreal forest, the algorithm
demonstrated its ability to improve significantly temporal and
spatial averages of estimated ET, and most importantly, ET's
spatial distribution. One may ask, however, whether our
approach that was derived based on two fixed resolutions, is
applicable to images with varying resolutions. The proposed
algorithm is, in fact, scale-independent, and is intended to be
exclusively sensitive to the distribution of surface character-
istics within coarse pixels. Furthermore, although the perfor-
mance of our algorithm depends closely on the judicious choice
of some coefficients derived using a single model results such as
Cij (Eq. (7)), Cij

soil (Eq. (9)), and a and b (Eq. (10)), values of
these coefficients may be easily adjusted for any other model by
following the simple procedure we adopted for their derivation
(i.e., sensitivity analyses). Adjustment of Cij, Cij

soil, and a and b
coefficients to correct coarse resolution ET estimations made by
other models is even mandatory and could be referred to as a
calibration of the algorithm. For example, to correct coarse
resolution ET calculations made by any ecosystem model over a
region as large as Canada, Cij

soil coefficients could be inferred by
looking at ET's sensitivity of a particular land cover type to
different soil textures within that model (see Fig. 6), in few
specific points distributed within that region. It is worth noting,
however, that most process-based models use very similar set of
relationships to describe ecosystem physical and physiological
processes. We, therefore, anticipate that Cij, Cij

soil, and a and b
should not vary substantially between that class of models.
Furthermore, with the proliferation of tower flux measurements
over the major world's biomes, some of these measurements
could be used in the near future to derive accurate values of Cij

soil

coefficients. Potentially, a and b coefficients (Eq. (10)) might be
also much more refined by testing the proposed algorithm over



Fig. 11. Effect of wetness/drought conditions on lumped ET, for conifer forest pixels (A), deciduous forest pixels (B), and the entire watershed (C). Square and triangle
symbols refer to the difference between ETd, and uncorrected and corrected ETl, respectively. Circle symbols are for precipitation. The day number in the x-axis refers
to days of years 150–250 sorted out by ascending precipitation rates.
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regions with more complex topography (e.g., mountains) than
the watershed studied here. It may be effective to refine two sets
of a and b coefficients that could be applied separately to
relatively flat and mountainous regions. More generally,
consistently with results of other studies (e.g., Wood, 1997),
this study showed that lumping may yield more or less
important ET bias depending on the wetness/drought condi-
tions. That is, in regions with pronounced precipitation cycle, it
might be more appropriate to use two sets of parameters
relatively to the wet and dry periods. Moreover, because the
four components of the algorithm are completely independent,
its application does not require that sub-pixel information on the
four surface characteristics investigated in this study should be
available at the same time. For instance, if only sub-pixel
information on soil cover is available, only Rsoil would be used
to correct lumped ET estimates, as R in Eq. (2) will be reduced
to Rsoil. Similarly, if only sub-pixel information on land cover is
available, only Rlc would be used to correct lumped ET. This
term independency contributes to the practical aspect of the
proposed algorithm.

For our analyses, two separate simulations (distributed [30-m
resolution] and lumped [1-km resolution]) were made to
examine the effects of the simplification of land surface to a
juxtaposition of uniform coarse pixels on ET calculations over
large areas. The ratio ETd/ETl derived from results of the two
simulations gave us an idea on the relative ETl bias. Most of



Fig. 12. Illustration of (A) the contribution of each algorithm component (Eq. (2)) to the total correction (R) at each 1-km pixel. A zoom of the [0.85, 1.15] portion of
the y-axis is also shown (inset figure) to better illustrate Rsoil and Rlai contributions; (B) the comparison of calculated ETd/ETl using available data at 30-m and 1-km
resolutions, and estimated ETd/ETl (R) by the algorithm.
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time in practice, however, only ETl calculations are possible.
Thereby, the objective of our algorithm could be referred to as
“the modelling” of ETd/ETl ratio, using subpixel information. In
Fig. 12B, we compared the average “real” (ETd/ETl) and the
average “modelled (R; Eq. (2))” ratios along all the watershed
pixels. It is shown that our algorithm (R) reproduced reasonably
well the expected ETd/ETl ratio, although differences between
these two ratios still exist for several potential reasons.
Additionally, we should note that our modeled results and the
subsequent derived coefficient (e.g., Cij) are not affected by the
fact that the measured meteorological data in our study were
provided from one station only, for the following reasons: (a)
the watershed is small (10.8 km×10.8 km). Thus, only marginal
meteorological changes might be expected 5.4 km away in each
direction from the meteorological station that is located in the
center of the watershed; (b) the topography of the watershed (as
we mentioned in Section 2.2) has low relief (Nakane et al.,
1997), which ensures homogeneous meteorological conditions
within the watershed area.

One may also ask about the applicability of the proposed
approach in different Earth's locations in conjunction with the
ability of current remote sensing techniques to provide us with
land cover maps at very high spatial resolutions (e.g. 30 m).
Currently, in fact, this remains an important challenge, though
the work of DeFries et al. (1997) brought up the possibility for a
better land cover characterization at very high spatial resolu-
tions, using what they had named the soft-labeling (also known
as fuzzy-labeling) approach. The latter approach that allows for
the derivation of the fractions of major land cover types within a
given pixel, contrasts with the hard-labeling (or discrete-
labeling) procedure that forces a pixel to a unique land cover
type. Recently, Canters et al. (2002) demonstrated the
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applicability of the soft classification through the derivation of a
1-km resolution land cover map of Europe, where the fraction
cover of each land cover type within each pixel is given.
Nevertheless, the soft classification approach still suffers an
important limitation inherent to the difficulty to achieve spectral
unmixing as the unique dimensions of optical remote sensing
are generally smaller than the dimension of surface variability
(Verstrate et al., 1996). Therefore, as pointed-out by Chen
(1999), a greater effort in remote sensing science should address
the question of mapping land surface characteristics at spatial
resolutions comparable to surface variability, if we take the
spatial scaling as a serious issue in quantitative remote sensing
applications. An additional effort should focus on the
development of high resolution maps of soil texture and surface
topography.

Finally, we anticipate that the use of our approach would
allow for improving estimates of regional carbon fluxes as
several studies illustrated that the use of coarse spatial
resolutions in ecosystem models introduce much larger biases
on carbon fluxes calculations (e.g., NPP and respiration) than on
ET calculations (Kang et al., 2003; Kimball et al., 1999; Turner
et al., 1996). Moreover, while our study explicitly accounted for
important factors that affect scaling behaviour such as land
cover and surface topography, other potentially important
factors such as spatial distributions of stand age, disease and
soil nutrients were ignored, but these factors could be addressed
in similar manners in future investigations.
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Appendix A. Performance of TerrainLab

The ability of the model to reproduce key hydrological
processes, such as ET, soil moisture and water table fluctuations
at our watershed is discussed in details in Chen et al. (2005),
where the importance of modeling hydrological processes as
influenced by topography is shown. Over the 1994 growing
season, Chen et al. (2005) found that the model predicted an ET
(2.1 mm/day) that is in good agreement with the measured ET
(2.07 mm/day) as reported by Jarvis et al. (1997). Predicted ET
rates are also in good agreement with the measured rates during
three intensive field campaigns of the 1994's growing season
period (Patty et al., 1997). Predicted values are 2.31, 2.71, and
1.5 mm/day while measured values were 2.26, 3.32, and
1.44 mm/day during the May 24–June 4, July 19–July 29, and
September 8–17 periods, respectively. Furthermore, Chen et
al.'s analyses showed that there was no statistically significant
difference between the temporal patterns of measured and
predicted data. Comparison of predicted and measured soil
moisture near the flux tower (Peck et al., 1997) yielded also
good agreement as the predicted values were within 10% range
of the measured values. Interestingly, moreover, water loss
through saturated subsurface flow during the period of our study
accounted for about 6% of total precipitation near the flux tower
with a very moderate topographical variation within 150 m of
the tower. Further analyses also showed that the model predicts
adequately water table fluctuations, and spatial and temporal
variations of soil water regimes at both lowland and upland
locations (Chen et al., 2005).

During the last decade, several studies have focused on the
test and the application of the different components of the
model, under different environmental conditions. For instance,
Storck et al. (1998, 1999) and Whitaker et al. (2003) showed
that the Distributed Hydrology Soil Vegetation (DHSV)
component (Wigmosta's component) that forms the central
structure of TerrainLab predicts successfully streamflow in
temperate forests and mountainous regions of the South-
Western Canada (British Columbia) and North-Western United
States (Washington). Nijssen, Haddeland et al. (1997) demon-
strated the ability of that same component (DHSV) to predict
accurately the surface hydrology of a boreal forest. Alila and
Beckers (2001) went further by using that sub-component of
TerrainLab for hydrologic forest management issues in Western
Canada (British Columbia), while VanShaar et al. (2002) used
that component to examine the effects of land use changes on
the hydrology of the Columbia river basin. There exist nearly
thirty studies that have devoted to the validation and the
application of the different components of the model. Therefore,
we are using a model that has been very carefully and
intensively tested and validated by different research groups
over contrasting environmental conditions, including our
watershed conditions.

Appendix B. Data preprocessing

Various spatial datasets are preprocessed as inputs to the
model. They include: (i) slope and aspect derived from a digital
elevation model (DEM) dataset (16-bit unsigned integer raster
file) for each pixel of the watershed with a spatial resolution of
30 m×30 m using ARCGIS; (ii) meteorological data including
precipitation, maximum, minimum and mean air temperature,
humidity, and radiation. These variables were measured at the
OBS flux-tower site (Jarvis et al., 1997) and treated the same for
all pixels within this small watershed; (iii) land cover and LAI
maps derived from a Landsat imagery which was geometrically
and radiometrically corrected. As part of the image processing,
the digital numbers (DN) of the visible and infrared bands are
converted into radiance and reflectance after an atmospheric
correction procedure. Cihlar et al.'s (1999) land cover classifi-
cation was used, and LAI was calculated using the algorithms of
Chen andCihlar (1996); and (iv) soil attributes, including texture
andwater holding capacity, obtained from a soil map at a scale of
1:1,000,000 (Acton et al., 1991; De Jong et al., 1984).
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The water table and soil moisture fields before the growing
season were initialized using the TOPMODEL principle (Beven
& Kirkby, 1979; Kirkby, 1975). The wetness index (Wi,j) for a
pixel (i,j) (Beven & Kirkby, 1979) was first calculated as:

Wij ¼ ln
Aij

tanbij þ 0:05

 !
ðA1Þ

where Ai,j is the contributing area calculated from the DEM
using the ARCGIS FLOWACCUMULATION command, and
βi,j is the slope. ln is the natural logarithm.

The initial water table (Wt,i,j) was then linearly related to the
wetness index:

Wti;j ¼ W̄t þ mðWi;j−W̄ Þ ðA2Þ

where W̄t is the mean water table taken as 0.35 m determined
through a spin-up calculation for one year; and W̄ is the mean
wetness index determined to be 4 from theW image, and m was
set at 0.7 m (Beaujouan et al., 2002). The soil moisture content
in the unsaturated zone is set to 70% of the field capacity at the
beginning of the growing season for all pixels.

In this study, all input data were spatially re-sampled to a
common 30 m×30 m spatial resolution, to be compatible with
Landsat TM images.

Appendix C

C.1. Example of calculation of land cover coefficients,
Cij (Eq. (7))

In Fig. 4A (CF is the dominant land cover type),
Rlc =0.84fdec+0.98. Eq. (7) indicates, moreover, that Rlc is
expressed as: Rlc=1−Cdec-con·fdec. Combination of the two
above equations yields: Cdec-con= (1/fdec)·[1− (0.84.fdec+0.98)].
Cdec-con (−0.73; Table 2) is the average Cdec-con calculated for
fdec that varies between 0 and 0.49; i.e., all values that fdec may
have within a coarse pixel where CF dominates. All other Cij

values were derived in a similar manner.

C.2. Example of calculation of soil coefficients, Cij
soil (Eq. (9))

Assuming: (i) within a 1-km pixel, CF and loamy-sand
texture are the dominant land cover and soil types, respectively;
and (ii) within that coarse pixel, the fraction of loamy-sand,
silty-clay and peat soils are 0.7, 0.2 and 0.1, respectively.

In lumped calculations, the non-dominant soil types (silty-
clay and peat) will be ignored, which would bias the calculation
of ET. To apply the soil correction, by taking into account the
real fraction of each soil type that is present within the coarse
pixel (1 km), Rsoil will be calculated using Eq. (9) as:

Rsoil ¼ Csoil
ls−ls: f soills þ Csoil

sc−ls: f soilsc þ Csoil
p−ls: f soilp

which yield using Table 3:

Rsoil ¼ 1� 0:7þ 1:02� 0:2þ 0:92� 0:1
1, 1.02 and 0.92 represent the Cls-ls
soil , Csc-ls

soil and Cp-ls
soil values,

respectively.
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