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Abstract—Climate change studies require consistent, long time
series, surface reflectance data. The characterization of the bidi-
rectional reflectance distribution function (BRDF) is important
for normalizing the solar radiation reflected from the earth’s
surface. We evaluated four BRDF models to identify the preferred
approach to the normalization of multiyear National Oceanic and
Atmospheric Administration Advanced Very High Resolution Ra-
diometer (AVHRR) and SPOT4-VEGETATION (VGT) composite
images to a common illumination and viewing geometry. Four
models by the following authors were included: Walthall, Roujean,
Ross–Li, and a new nonlinear temporal angular model (NTAM).
NTAM accounts for hotspot effects and also responds to seasonal
changes in land cover properties (using vegetation indexes as
surrogate temporal measures). We compared the performance
of the models under different scenarios of coefficient derivation
and model application including model ability to reproduce theo-
retical BRDF curves, model consistency in single, multiyear, and
incomplete sampling schemes, and comparison of AVHRR and
LANDSAT Thematic Mapper surface reflectance prior and after
BRDF normalization. We found that in all the tests, NTAM yielded
the best fits between the observed and estimated values. NTAM
requires eight coefficients and a lengthier iterative procedure to
derive the coefficients, but the resulting coefficients are applied
to the entire growing season rather than one temporal window.
NTAM also performed well for different sensors (AVHRR, VGT)
and geographic areas (Canada, east Asia, southern United States).
Our results contradict the often-encountered perception that
semiempirical BRDF models for angular normalization are all
similarly effective, and the research on this topic is mature. We
also describe a procedure for routine normalization of satellite
optical data. For northern ecosystems, the NTAM coefficients
derived from AVHRR and VGT data for Canada are available via
ftp://ccrs.nrcan.gc.ca.

Index Terms—BRDF normalization, image processing, remote
sensing.

I. INTRODUCTION AND OBJECTIVES

T HE SUN-TARGET-sensor geometry effects inherent in
optical satellite measurements are a potential source of

biophysical information about terrestrial ecosystems [18]. To
realize this potential, it is necessary to obtain a sufficient number
of satellite measurements with a range of sun-target-sensor
geometries while the target remains unchanged. Although this
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is a desirable objective, and new programs are oriented in this
direction (e.g., the Polarization and Directionality of the Earth’s
Reflectances instrument, the Moderate Resolution Imaging
Spectroradiometer (MODIS)/Multi-angle Imaging SpectroRa-
diometer combination on Terra, the proposed European Space
Agency Panchromatic Remote Sensing Instrument for Stereo
Mapping mission), it is not always achievable. In particular,
sampling provided by previous and existing satellite systems
has been only marginally sufficient for this purpose. Our
experience with Advanced Very High Resolution Radiometer
(AVHRR) data from northern latitudes also indicates that, even
with multiple sensors and an enlarged temporal window, routine
acquisition of a sufficient number of clear-sky observations
remains a major challenge.

When the objective of a study is not retrieval of biophysical
parameters from bidirectional reflectance distribution function
(BRDF) characteristics but a comparative quantitative analysis,
the potential fluctuations due to BRDF limit the ability to mon-
itor ecosystems and track vegetation dynamics. An alternative,
although perhaps suboptimal, use of bidirectional information is
to employ multiple measurements of the same pixel at different
angles and times to remove bidirectional effects from the data
[20]. This approach does not directly generate new information
about the target, but it does provide at least one good measure-
ment for the time interval of interest that is free from directional
effects. It is achieved by characterizing the anisotropy of the
target, described by the BRDF. Various investigators have em-
ployed this approach in the past [5], [9], [12]–[14], [16], [28].
Because detailed multiangle measurements at desired spatial
and temporal resolutions are often not available, this approach
is useful for normalizing temporal series to a common viewing
geometry from archived data sources as well as for new data
acquired by coarse resolution sensors as SPOT/VEGETATION
(VGT) and MODIS.

To normalize remote sensing data to a standard geometry, a
sound model of the bidirectional reflectance behavior of various
surfaces is required. This is an area of very active research (see
[18] for review). The primary objectives of this study were: 1) to
identify a suitable BRDF model for northern ecosystems appli-
cable to AVHRR and similar data and 2) to define a procedure
for deriving the model parameters for an area to accurately cor-
rect multiyear series of composite images. The desired model
should be applicable to the entire growing season, should be ro-
bust in terms of wide range of sun and viewing angles as well as
phenological changes, and should reproduce actual satellite ob-
servations as closely as possible. In addition, the model should
be temporally consistent, i.e., model parameters derived from
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previous growing seasons should be extendable to the subse-
quent seasons so the normalization may be performed in near
real time. It should also be relatively simple so that model pa-
rameters may be easily updated. The model needs to be robust
in terms of the variable spatial footprint, e.g., as insensitive as
possible to the mixed land cover nature of satellite pixels. The
model should perform well in operational processing of large
data volumes representing a variety of conditions (e.g., signif-
icant data noise or other limitations, strong hotspot effects, or
heterogeneous and temporally variable surfaces).

Ideal BRDF model characteristics are difficult to derive with
physically based models. Physical BRDF models are complex,
and inversion procedures must be used to estimate values of their
parameters. They are also computationally demanding and are
impractical for frequent processing of large images. A signif-
icant number of parameters are required for physical models,
which assumesa priori information about the scene. It is, there-
fore, desirable to derive parameters required in simple models
from the data itself.

In an attempt to provide accurate corrections for multiyear
series of AVHRR composite data for northern ecosystems, the
Canada Centre for Remote Sensing conducted several studies
aimed at characterizing the BRDF behavior of boreal landscapes
[2], [3], [16], [28]. This research generally followed the mod-
eling approach of the semiempirical kernel driven BRDF model
originated by Roujeanet al. [24] in which the reflectance is as-
sumed to consist of three additive kernels describing isotropic
scattering, geometric shadowing, and volume scattering, respec-
tively. The kernels were derived from approximations to the
principles of geometrical optics and from simplifications of ra-
diative transfer theory, defining the BRDF shape in terms of
solar illumination and sensor viewing angles. Kernel-based ap-
proaches have also been employed by various other investiga-
tors [1], [17], [21], [22], [26], and they have become the main
strategy employed for Earth Observing System Terra products
through inversion of multiple measurements [1], [30]. In addi-
tion to testing several well-known models, we have also devel-
oped a new model by combining aspects of existing models and
found a way to account for seasonal variability in BRDF.

II. M ETHODOLOGY

The overall methodology consisted of selection of several
candidate models, preparation of the AVHRR and VGT datasets,
derivation of model coefficients and statistics for each model,
and comparison of the measured and predicted AVHRR and
VGT values.

A. Models

We have selected three kernel-based models that represent
the range of currently used approaches to BRDF modeling,
and added a model called the nonlinear temporal angular
model (NTAM). Models selected for the comparison are
1) modified Walthall model (MWM) [27] (an empirical BRDF
kernel-driven model with basic trigonometric expressions as
kernels), 2) semiempirical Roujean model (RM) [24] with two
kernels, and 3) Ross–Li Model (RLM) [20], [25] based on
randomly placed spheroids. Each model has been designed to
address some specific BRDF characteristics. For example, the

MWM is a statistically based model, which, while it can be
optimally adjusted to match a sample dataset, does not have
a strong physical basis for its assumptions, and thus makes
it more difficult to extrapolate beyond the sample space. The
Ross–Li and Roujean models are semiphysical models but do
not account for seasonality or hot spots. The basic equations
for the models are provided below.

RM:

(1)

MWM:

(2)

RLM:

(3)

NTAM:

(4)

where

and

(for the visible band)

(for the near-infrared band)
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where
, , solar zenith angle, view zenith angle, and the dif-

ference in azimuth angles between the sun and the
sensor;

volume scattering component, which describes the
“shape” of the BRDF due to the scattering of radi-
ation within the “volume” of the surface material
and a weighting factor for this kernel that is ex-
pressed in terms of ( ) and is related to bio-
physical parameters;

surface scattering component, which accounts for
the shadowing and occlusion effects based on geo-
metric optics; a weighting factor for this kernel is
expressed in terms of , which is in turn related to
biophysical parameters. The introduction of to
the model makes it possible to track seasonal vari-
ations of BRDF shapes with a set of time-invariant
coefficients ;

Li sparse kernel with an assumption of a sparse
ensemble of surface objects casting shadows on
the background; the kernel is derived from the
geometric-optical mutual shadowing BRDF model
[17];

overlap between the view and solar shadows;

, , crown height and shape parameters.

NTAM is designed specifically to facilitate normalization of op-
tical satellite measurements to a standard geometry. For this pur-
pose, it is desirable that the same model handles different land
cover types and different time periods equally effectively, and
that its coefficients be easily obtained for a given dataset. NTAM
geometric and volume scattering components are modeled using
the kernel approach of Roujeanet al. [24], the hot spot expres-
sion proposed by Chen and Cihlar [2], and a replacement for the

parameter of Roujeanet al.[24], which quantifies the relative
importance of geometric and volume scattering. The temporal
dimension is approximated by polynomials, which account for
1) the varying amount of green leaf area in the course of the
growing season and 2) the temporal patterns of geometric and
volume scattering as influenced by land cover characteristics.
The spatial pattern of BRDF retrievals shows that open land
cover types (urban, suburban, and interurban regions) exhibit di-
rectional scattering that is well modeled by geometric optics of
shadow casting. The directional reflectance of continuous forest
areas is dominated by volume scattering [10]. Therefore, the
temporally variable proportions of geometric and volume scat-
tering are directly related to the amount of vegetation described
by a polynomial function of a vegetation index (VI). We used
the normalized difference vegetation index (NDVI) for the vis-
ible bands, and the difference between near-infrared (NIR) and
red reflectances for NIR band. These two indexes yielded the
highest coefficients of determination () between model esti-
mated and observed AVHRR data.

A preliminary evaluation of NTAM’s potential to reproduce
theoretical BRDF functions in comparison to other models was
performed on simulated data obtained with the 4-Scale geo-
metric-optical canopy radiative transfer model [2]. The 4-Scale
model has been shown to closely reproduce measured BRDF

Fig. 1. Comparison of BRDF models’ capability to match a “theoretical”
BRDF shape, derived with 4-Scale, a detailed canopy BRDF model.

behavior of forest canopies [15]. The curve in Fig. 1 shows
BRDF values for high-density coniferous forest simulated with
4-Scale. The coefficients were derived for each of the four
models after sampling the 4-Scale curve (sampling 80 points);
each model and its coefficients were then used to reproduce the
original curves. The results confirm the well-known inability of
linear models to describe the hotspot near the solar illumination
direction. This has been achieved in NTAM with the relatively
simple formulation of the hotspot effect at the cost of a larger
number of model coefficients and model nonlinearity.

A further evaluation of NTAM was carried out by com-
paring uncorrected and corrected reflectance values of
AVHRR composite data from 1998 with eight spatially and
temporally coincident LANDSAT Thematic Mapper (TM)
scenes. Fig. 2 compares an AVHRR ten-day composite image
(channel 1, 1998/08/01–10) and LANDSAT TM (NIR band,
path 15/row 29, 1998/08/02) before and after normalization.
The TM data were atmospherically corrected [4] and resampled
to equivalent 1-km pixels by applying an approximate modu-
lation transfer function (MTF) for AVHRR sensor but without
considering sensor spectral response differences. The NIR
AVHRR measurements prior to BRDF normalization (axis),
when plotted against the corresponding LANDSAT TM values
[Fig. 2(a)], show two distinct distributions. As evidenced by
Fig. 2(b), these distributions reflect the origin of the AVHRR
pixels from two orbits with different view zenith angles. After
normalizing BRDF to a common viewing geometry ( 45 ,

0 , 0 ), the differences disappeared, and the
estimated AVHRR reflectance values correspond more closely
to the simulated ones with TM data [Fig. 2(c)].

The following (Sections II-B and C) describes the compo-
nents needed in using a BRDF model to normalize multiangle
seasonal measurements to a standard geometry. First, the coef-
ficients are obtained for individual land cover categories. We
have used a land cover map for this purpose, but this is not a
strict requirement as will be discussed later. Subsequently, nor-
malization to a standard geometry is performed for any image
composite of the area using land cover information, a lookup
table (LUT) containing model coefficients for each cover type,
and the pixel imaging geometry.
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(a)

(b)

(c)

Fig. 2. Performance evaluation for the nonlinear model (NTAM). (a) Scatter
plot of AVHRR NIR reflectance (1998/08/01–10) against TM NIR reflectance
(scene path 19, row 29, 1998/08/02) prior to BRDF normalization. (b) Scatter
plot of AVHRR NIR reflectance against satellite zenith angle in the AVHRR
composite. (c) Scatter plot of AVHRR NIR reflectance composite against TM
NIR reflectance after BRDF normalization.

B. Data Description

To derive coefficients and compare BRDF models, we
employed Canada-wide National Oceanic and Atmospheric
Administration (NOAA) AVHRR composite images. The initial
dataset consisted of 20 ten-day image composites, between
April 11 and October 31, including growing seasons from 1993
to 1999. The composite data were produced by the Geocoding
and Compositing (GeoComp) system [32]. GeoComp performs
calibration for the five AVHRR bands using time-dependent
gain and offset coefficients [31] for channels 1 and 2 and

onboard calibration data for channels 3 to 5. Satellite data
are registered to ground control points using high-resolution
image chips and resampled by a modified Kaiser 16-point
kernel. The registered images are further used in a compositing
procedure based on the maximum NDVI criterion. For each
ten-day composite, GeoComp generates ten channels of data in
Lambert conformal conic projection (LCC) (49N and 77 N
as the standard parallels, 95W as the reference meridian). For
the selected pixels, composite channels include five AVHRR
radiance bands, NDVI, view zenith angle, solar zenith angle,
relative azimuth angle between the sun and the satellite, and
the satellite acquisition date.

The initial composite datasets were further processed using a
postseasonal processing chain based on ABC3v2 methodology
[6]–[8], which performs the following:

1) generation of a quality mask with missing pixels, view
zenith, and sun zenith angle restrictions;

2) data recalibration using the latest AVHRR calibration co-
efficients (http://www.ccrs.nrcan.gc.ca);

3) computation of the top-of-the-atmosphere (TOA)
reflectance;

4) atmospheric correction of AVHRR channels 1 and 2 using
SMAC algorithm [23];

5) identification of cloudy, partly cloudy and snow covered
pixels.

The simplified method for atmospheric corrections (SMAC)
[23] was employed for atmospheric correction of the satellite
measurements. SMAC accounts for gaseous transmission as
well as for absorption, aerosol, and Rayleigh scattering. The
method requires vertically integrated amounts of different
gaseous components, sun zenith angle, view zenith angle

, relative azimuth angle , and the value of aerosol optical
depth at 550 nm for each pixel. For atmospheric parameters,
we used daily (total column) ozone data obtained by the Total
Ozone Mapping Spectrometer on Meteor 3 [35] for atmospheric
pressure, and integrated column water data from the National
Center for Atmospheric Research reanalysis [36] estimates for
6-h periods on a 2.5by 2.5 grid. A constant value was used
for aerosol optical depth. This was necessitated by the lack of
better data and was justified by sunphotometer measurements
acquired at several sites across Canada over several years by
the AEROCAN aerosol network. The value of 0.06 at 550 nm
gives a good single-value representation of the aerosol optical
depth [11].

In addition to the AVHRR data, we also evaluated models
using VGT composite images over Canada. The ten-day syn-
thesis data (S10 product) were provided by the VITO Centre
(http://www.vgt.vito.be). As provided, each ten-day VGT
composite contains apparent surface reflectance in four spectral
bands. The S10 product also includes NDVI, sun-target-sensor
geometry, reference date and time of the selected pixel, and
quality information on the composite status map. For this
study, the images were reprojected from the original Plate
Carree projection into LCC. The initial composite datasets
were further processed using the correction procedure designed
for VGT composite data. The following preprocessing steps
were carried out:
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TABLE I
LAND COVER TYPESUSED IN THE BRDF MODELING

1) identification of cloudy, partly cloudy and snow-covered
pixels to produce a pixel contamination mask;

2) BRDF model coefficients derivation;
3) normalization to common sun-target-sensor geometry;
4) replacement of contaminated pixels through temporal

interpolation.

C. Computation of BRDF Model Coefficients

The analysis was conducted on the AVHRR image compos-
ites for the Canadian landmass and the growing seasons of 1993
to 1994 (acquired by NOAA 11) and 1995 to 1999 (acquired by
NOAA 14). As a second sensor, VGT S10 products from 1998
and 1999 were used. The BRDF model coefficients were com-
puted for each year combination separately, using a sample of
surface reflectance observations. The sampling procedure was
implemented to ensure that all the datasets used in the calcu-
lation have a representative range of sun and view zenith an-
gles, a similar number of pixels for each land cover type, and an
even spatial and temporal distribution. The sampling procedure
used the land cover map of Canada [33] and quality masks to
extract clear-sky pixel surface reflectance in each spectral band,
and the corresponding angles (solar zenith angle, viewing zenith
angle, and the relative difference azimuth). The original 31 land
cover types were grouped into 14 categories (Table I) to repre-
sent major structural and surface cover combinations. For each
land cover type, the clear-sky pixels were sampled using a reg-
ular grid, its size depending on the total number of clear-sky
pixels for that land cover type. The total number of pixels per
growing season was 40 000 (2000 per composite). For multi-
year analysis (AVHRR, 1993 to 1996), 25% of the pixels in
each of the above samples were selected and combined into
one set. Different procedures were developed to derive model
coefficients for each time period, land cover type, and spec-
tral band. In the case of linear models (MWM, RM, RLM), a
matrix inversion-based procedure solved the set of linear equa-
tions by minimizing an error function that measures the dif-
ference between estimated and observed values. It was imple-
mented using LUT decomposition [34]. For NTAM, the non-
linear least square fit was computed using the modified Powell’s
minimization method [34]. Powell’s iterative algorithm solves a
multidimensional minimization problem as a sequence of oper-

Fig. 3. Average (for 14 cover types) coefficients of determinationr between
observed (independent variable) and estimated surface reflectance in AVHRR
composite data.

Fig. 4. Average (for 14 cover types) standard errorse of AVHRR surface
reflectance estimated by RM, MWM, RLM, and NTAM.

ations that minimize function along some vector direction
using Brent’s bracketing method (see also [29]). The four BRDF
models were compared for their ability to predict surface re-
flectance for a given viewing geometry. We used the coefficient
of determination ( ) and the standard error () to quantify the
residual difference between predicted and observed surface re-
flectances. Predicted surface reflectances were computed using
model parameters derived for three sampling periods: individual
growing season, multiyear, and a ten-day period.

III. RESULTS AND DISCUSSION

A. Individual Growing Seasons

Fig. 3 shows average values obtained using data from five
growing seasons with the four models and two spectral bands;
each is an average for all 14 land cover types. The three linear
models were very consistent but did not match the data as well
as the nonlinear model. This is true for both AVHRR bands,
although the linear models performed considerably better with
NIR reflectance than with red. Fig. 4 shows the average stan-
dard error of the estimated surface reflectance(1993 to 1996,
1999; all cover types) by spectral band.

Again, the standard error values were similar among the
linear models, but higher than for NTAM. The same trends
persisted in all years (not shown), although the absolute values
differed. These results are not too surprising, since each sample
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Fig. 5. Distribution of solar zenith, view zenith, and relative azimuth angles
in the multiyear (1993 to 1996) sample of AVHRR composite data.

encompassed data from the entire growing season, and the
linear models were not able to cope with the changing target
characteristics. Fig. 3 also shows that the interannual variations
in were less pronounced for NTAM than for the three linear
models. For MW, RLM, and RM, the amplitude of variations
was greater in the red band than in NIR.

The reasons for the above trends are not fully clear, but in gen-
eral, two principal causes may be considered: 1) deficiencies in
the model formulation relative to the actual BRDF behavior and
2) noise in the observed reflectance. Regarding the second, the
possible sources of the residual error could be variable accuracy
of the georeferencing procedures, inaccuracies of input param-
eters applied in atmospheric corrections, and inaccurate cloud
screening procedures. However, the relatively high and stable

obtained for all seasons by NTAM (Fig. 4) suggests that dif-
ferences in model formulation play a significant role. This does
not support the often-encountered perception that semiempirical
BRDF models for angular normalization are all similarly effec-
tive and that the research on this topic is mature.

B. Multiyear Data and Temporal Consistency

The four BRDF models were also evaluated by deriving
model parameters from multiyear (1993 to 1996) data. The
1993 to 1996 period was selected because it encompasses a
wide range of imaging geometries (including near-hotspot in
1994), and it also comprises two AVHRR sensors (onboard
NOAA-11 and -14). In the combined dataset, the solar zenith
angle values varied between 20and 80 (Fig. 5), while the
viewing zenith and relative azimuth angles spanned the full
range of values. The behavior of the models in comparison to
the observations is illustrated in Fig. 6 asbetween predicted
and observed reflectances by land cover type. All models
showed higher for the NIR compared to the visible band.
Moreover, in the NIR, all four models yielded somewhat higher

for forest cover types compared to open land. As for single
years, NTAM yielded significantly higher values in both
bands, for all cover types.

In addition to deriving model coefficients from a longer time
series, we also considered the temporal stability of the model co-
efficients. This is a desirable characteristic because it facilitates

Fig. 6. Coefficients of determinationr for the plots of observed (independent
variable) and estimated surface reflectance; the sample represents multiyear
AVHRR composites of Canada for the 1993 to 1996 growing seasons.

Fig. 7. Differences inr between observed and estimated AVHRR surface
reflectance caused by a temporal mismatch between data to be normalized
and the model coefficients used in the normalization. Each linear regression
represented by anr is indicated by a symbol Y1dY2c, where Y1 is the period
to which the coefficients were applied (e.g., 93d), and Y2 is the period from
which they were derived (e.g., 93c).

near-real-time BRDF corrections after obtaining model coeffi-
cients from an existing dataset.

The model parameters were derived using a multiyear sample
(1993 to 1996) and tested against model parameters derived for
specific years, 1993 and 1999 (“target year”). The coefficients
of determination ( ) and standard errors () were computed
for each land cover type between surface reflectance observed
in the target year and reflectance estimated using parameters de-
rived from: 1) the 1993 to 1996 sample or 2) the target year
sample. Linear regressions were computed for 1993 data using
1993 model coefficients ( ) and similarly using the 1993
to 1996 coefficients ( ). Figs. 7 and 8 illustrate the
behavior of RM (typical for the linear models) and NTAM in
the above tests. Lower predictive power (corresponding to re-
duced ) is expected when model parameters derived from pre-
vious growing seasons are applied to subsequent periods. The
decrease in values varied with year (Fig. 6): for NTAM, these
were between 3% and 5% while for RM, they varied between
4% and 16%. The NTAM standard error increased by 0.01 [vis-
ible (VIS)] and 0.02 (NIR), while for RM, it increased by 0.04
(VIS) and 0.08 (NIR).
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Fig. 8. Differences in the standard error of the estimated AVHRR surface
reflectance caused by a temporal mismatch between data to be normalized
and the model coefficients used in the normalization. Each linear regression is
indicated by a symbol Y1dY2c, where Y1 the period to which the coefficients
were applied (e.g., 93d), and Y2 is the period from which they were derived
(e.g., 93c).

Fig. 9. Frequency distributions of solar zenith angle values in 1994 and 1995
AVHRR composite data.

C. Model Behavior With Incomplete Sample

Two aspects were considered in this evaluation: an inadequate
sampling of the measurement space and too few samples. The
model’s ability to extrapolate in the measurement space beyond
the range of sampled values was tested using data from 1994
(NOAA-11, obtained around 1700 LST) and 1995 (NOAA-14,

1400 LST). The 1994 sample had a narrower range of sun
zenith angles ( 50 to 80 , Fig. 9) than in 1995 ( 30 to 60 ).
Because of the difference in the range between these two
years, the models are required to extrapolate well beyond the
values with which the coefficients were estimated when 1995
data are simulated using model coefficients derived from 1994
dataset. Two sets of coefficients were derived for each model
using samples from the 1994 and 1995 datasets, respectively.
Surface reflectance observations in 1995 were estimated using
these two sets of coefficients. To quantify the differences,
and were computed between surface reflectances observed in
1995 and the reflectances estimated by each set of coefficients
(1994 or 1995).

NTAM was found to replicate both NIR and visible re-
flectance observations fairly well, with an overall of 0.79
for visible reflectance values based on 1994 coefficients

Fig. 10. Average coefficients of determinationr between observed and
estimated AVHRR surface reflectance for 1993/08/1–10. Model parameters
were derived for two sampling periods in 1993: ten days (1993/08/1–10) and
the entire 1993 growing season.

Fig. 11. Average standard errorse for estimated AVHRR surface reflectance
(period 1993/08/1–10). Model parameters were derived for two sampling
periods in 1993: ten days (1993/08/1–10) and the entire 1993 growing season.

( ). For NIR, NTAM was 0.77 with 1994
coefficients ( ). The linear models were
similar in magnitude but considerably lower, with a mean
of 0.40 in NIR with 1994 coefficients ( ). The
standard error for NTAM for 1994 increased by 10% in the
visible and 19% in the NIR, while the average increase for the
linear models was 33% in the visible and 51% in the NIR band.

The majority of linear empirical models are not designed to
cope with changing target characteristics. For most vegetation,
reflectivity changes significantly during the growing season.
Such models are then applied over short measurement periods
so that the target remains approximately invariant while a
sufficient number of samples are being collected. We compared
the effectiveness of the four models using a ten-day (August
1–10, 1993) sampling period. To quantify the differences
in performance, and were computed between surface
reflectances observed in 1993 (August 1–10) and reflectances
estimated by each model using coefficients derived from 1) the
ten-day sample and 2) the multiyear full-season sample (1993
to 1996). For both (Fig. 10) andse (Fig. 11), the results
improved when the coefficients were derived for the short time
period. The improvements were better for the linear models,
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Fig. 12. Agreement between model predictions and observations in NIR and
VIS band time series. A pixel, labeled as broadleaf mixed land cover type, is
represented by AVHRR 1993 to 1999 time series.

Fig. 13. Coefficients of determinationr for the plots of observed
(independent variable) and estimated surface reflectance. The sample
represents SPOT4/VGT composites of Canada for the 1999 growing season.

but not substantially so. As before, the highestwas found for
NTAM. On the other hand, all four models yielded comparable
standard errors (Fig. 11).

Fig. 12 illustrates use of NTAM on a pixel basis. The figure
shows an AVHRR surface reflectance time series of a randomly
selected broadleaf mixed forest pixel in the VIS and NIR bands
through the 1993 to 1999 growing seasons. Observations reveal
a wide range of NDVI temporal variation due to phenological
changes during the growing season as well the presence of vari-
able sun-target-sensor geometry. One-half of the 140 available
observations were used to derive the model coefficients. Fig. 12
shows good agreement between model predictions and observa-
tions in the NIR ( ) and VIS ( ) bands, which
ensures normalization of the seven-year time series to a nominal
viewing geometry: a crucial requirement for any multitemporal
study.

D. Application of NTAM to VGT Data

The above comparison tests have shown that NTAM was able
to account for the BRDF dependence of AVHRR surface re-
flectance more accurately than linear models. To test its suit-
ability for other spectral bands and sensors, we have also used
the procedure described in Section II-C for SPOT4 VGT data
of Canada (1998 and 1999 seasons) and east Asia (1999).

Fig. 14. Scatter plot of observed (SPOT4/VGT) and estimated (NTAM) NIR
reflectance for broadleaf land cover over the 1999 growing season.

We derived the coefficients for RM and NTAM and compared
the values for the 14 land cover types (Fig. 13). In general,

values for both models were similar to those obtained for
AVHRR data. The NTAM was consistently lower (by 0.15)
in the blue spectral band, possibly due to an increased effect
of atmospheric scattering and attenuation. However, its perfor-
mance in the SWIR band was as good as for the NIR band.

Fig. 14 shows close correspondence between observed and
estimated NIR reflectance values of pixels across Canada for
the whole 1999 growing season (broadleaf cover type).

IV. DISCUSSION ANDCONCLUSION

The exploration of BRDF characteristics of land cover has
three main applications: normalization of multiangle observa-
tions to a common viewing geometry, derivation of albedo from
an angular integration of the BRDF, and derivation of biophys-
ical and land cover properties from BRDF characteristics [20].
In this study, we compared the performance of recent linear
BRDF models and a new nonlinear BRDF model (NTAM) for
the normalization of multiangle observations. Based on several
tests involving growing season AVHRR composite images over
Canada between 1993 and 1999, we found relatively small
differences among the linear models, but substantially better
results for the nonlinear model. In all the tests undertaken,
the nonlinear model yielded substantially better and more
consistent results. NTAM also performed well for different
sensors (AVHRR, VGT), geographic areas (Canada, east Asia),
and spectral bands (blue to shortwave infrared). NTAM, thus,
appears well suited for seasonally variable land cover types
and a wide range of viewing geometries. The main reasons for
NTAM’s good performance ar 1) NTAM has sufficient number
of coefficients to capture seasonal and interannual changes in
targets and 2) the effects on BRDF of changes in the viewing
geometry are well represented through the incorporation of a
simplified hotspot function. The larger number of coefficients
in NTAM compared to linear models is necessary if we are
to normalize a time series of images with variable target
characteristics.

In normalizing surface reflectance to a common geometry,
there is a need for a consistent model with a defined set of coef-
ficients that may be systematically applied to any dataset over a
given geographic domain. We have demonstrated that this need
can be met with NTAM or a similar nonlinear model that ac-
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counts for temporal and spatial (within cover type) variability
of the satellite signal. The “vegetation index surrogate” appears
to be very effective in representing these factors.

In deriving NTAM model coefficients, we have employed a
land cover map. However, knowledge of land cover is not nec-
essary, as the basic requirement is for stratification of the pixels
into a limited number of categories with distinct BRDF be-
havior. This could also be accomplished in other ways, such as
through spectral clustering based on a vegetation index [19].

The temporal formulation of NTAM allows a time-invariant,
single set of coefficients to be used in normalizing BRDF
images acquired at any time during the growing season. Re-
sults of this study, thus, provide one approach to normalizing
coarse- or medium-resolution data from instruments such as
the NOAA AVHRR, SPOT/VEGETATION, MODIS, and the
Medium Resolution Imaging Spectometer. For northern cover
types, NTAM coefficients have been derived for AVHRR and
VGT using the procedures described above, and they may be
accessed atftp://ccrs.nrcan.gc.ca. Since the model coefficients
may be derived for any particular dataset, the procedures
described here are readily applicable to other regions of the
globe.
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