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Abstract

Spatial scaling is of particular importance in remote sensing applications to terrestrial ecosystems where spatial heterogeneity is the norm.

Surface parameters derived at different resolutions can be considerably different even though they are derived using the same algorithms.

This article addresses issues related to spatial scaling of net primary productivity (NPP). The main objective is to develop algorithms for

spatial scaling of NPP using subpixel information. NPP calculations were performed using the Boreal Ecosystem Productivity Simulator

(BEPS). The area of interest is near Fraserdale, Ontario, Canada. It is found from this investigation that lumped (coarse resolution)

calculations can be considerably biased (by +14.9% on average) from the distributed (fine resolution) case. Based on these results, algorithms

for removing these biases in lumped NPP are developed using subpixel land cover type information. The correlation between the distributed

NPP and lumped NPP is improved from r2=0.16 to r2=0.59 after the correction. In addition, subpixel leaf area index (LAI) information is

used to reduce the remaining biases. After the LAI correction, the correlation is further improved to r2=0.90.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of scale is a subject to many studies of

modern science; however, the term has various meanings in

literature. It is of importance to distinguish the term of scale

related to data and to ecological processes (Csillag et al.,

2000). The data are characterized by both the size of

sampling (observational) units and the size of ecological

entities (e.g., tree), while the processes depend on size of

areas over which the ecological processes operate (Csillag et

al., 2000). Remote sensing characterizes the ecological

processes at certain spatial resolutions (Curran and Foody,

1994; Waring & Running, 1998). Inappropriate resolutions

lead to errors in assessing the ecological processes and,

through spatial scaling, these errors may be minimized.

Spatial scaling refers to a process of bridging gaps in

quantitative information retrieved at different spatial reso-
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lutions. In the process of scaling, information at one spatial

resolution deduces characteristics at another (Ehleringer &

Field, 1993). Major causes for the errors in a surface

parameter retrieved at coarse resolutions are associated with

the averaging process of a radiative signal received by a

sensor, and algorithms that define the relationship between

the averaged radiative signal and the surface parameter.

Transferring algorithms from one resolution to another

without incurring considerable errors is one of the greatest

challenges in remote sensing (Chen, 1999). Nonlinearity of

the algorithms and their dependence on land cover types are

two major issues in spatial scaling.

Spatial heterogeneity of the land surface introduces

major uncertainties in large-scale analysis (Ehleringer &

Field, 1993). It can, therefore, affect predictions of

ecosystem functioning (Tian et al., 2003). Two types of

measures can be used for quantifying spatial heterogeneity:

texture that is based on the variability in brightness of pixels

in an image (Hu & Islam, 1997), and contexture that is

defined by the size and shape of features displayed on an

image including the areas, distributions and patterns of the
ent 93 (2004) 246–258
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features (Chen, 1999). Image texture is often quantified by

variance and covariance (Friedl et al., 1995; Hall et al.,

1992), while contexture can be simply considered as the

fractions of land cover types in a pixel. The later approach

considers various land cover types as subpixel information.

The contexture-based approach was found to be successful

in improving leaf area index (LAI) mapping (Chen, 1999),

where the texture-based approach provided just approxima-

tions of the scaling effect in the same study. In other studies

(Bonan et al., 1993; Friedl, 1996; Rastetter et al., 1992),

textural approaches are generally used for characterizing the

surface heterogeneity.

The present research is an extension of work by Chen

(1999) who recognized the usefulness of contextural

information for spatial scaling of LAI. This extension

addresses spatial scaling of net primary productivity

(NPP), determined not only by remotely sensed parameters

but also meteorological and soil conditions. NPP is defined

as the net amount of carbon stock increase in living plant

tissues per unit time and space, and, therefore, it is the

foremost quantifier and predictor of the atmospheric carbon

budget regionally and globally. Recent studies involve

mapping NPP of large areas to understand the behavior of

the boreal ecosystem, which makes up a considerable

portion of the global terrestrial carbon stock (Solomon &

Shugart, 1993). Terrestrial biosphere dynamics plays an

important role in global climate and remote sensing can

provide useful data for quantifying the dynamics.

Spatial scaling of NPP is necessary for two reasons: (1)

the nonlinearity in the relationship between NPP and

remotely sensed parameters such as LAI and (2) pixels at

coarse resolution often contain more than one cover type.

The focus of this study is on the effects of mixed cover types

and the nonlinearity on spatial scaling. Algorithms for

scaling from fine (30-m) to coarse (1-km) resolution, which

consider land cover type heterogeneity as subpixel informa-

tion, are developed and discussed. In addition, subpixel LAI

information is used to further improve the algorithms. A

Landsat TM image was used for this purpose. Fine scale

models provide the best tool in validation of global models

(Reich et al., 1999) since the collection of ground-based

data for large areas is impractical, time-consuming, and

often impossible. The area studied as an example is near

Fraserdale, Ontario. Both NPP calculations at 30- and 1-km

resolutions were performed using the Boreal Ecosystem

Productivity Simulator (BEPS), a process model for

estimating the carbon budget of terrestrial ecosystems (Liu

et al., 1997).
2. Theory

2.1. Spatial scaling by contextural approach

A contextural approach of spatial scaling uses area

fractions to derive surface parameters at different reso-
lutions. Remote sensing generally identifies only a

dominant land cover type in a pixel and ignores the

impacts of other land cover types in the pixel on derived

surface parameters. The fact that only one cover type is

labeled per pixel at a coarse resolution results in major

uncertainties of the final products (Chen et al., 2002).

Ideally, the surface parameters at a coarse resolution

should be calculated by averaging the same parameter

from the fine resolution pixels. These values and algo-

rithms are often considered to be ddistributedT. However,
remote sensing values generated at coarse resolutions are

often the only available data. They are often named

dlumpedT data and algorithms (Chen, 1999; Hu & Islam,

1997). Tian et al. (2002) discussed the mathematical

approach of these two methods in calculating of LAI.

Fig. 1 schematically represents the distributed NPP

(NPPD) and lumped NPP (NPPL) calculations for one

coarse mixed pixel. The fine resolution calculation closely

represents the reality, and the distributed NPP is assumed

to be correct (distributed case A) in our scaling studies.

The lumped case (B) is an actual approach simulating the

values retrieved from coarse resolution satellite sensors

such as AVHRR. We assume that a coarse pixel (1�1 km)

in the figure contains 1089 fine pixels (30�30 m), which

consist of different land cover types. In case A, unique

algorithms are applied to each land cover type for both

LAI and NPP calculations before the arithmetic averaging.

Four sets of algorithms are needed for four cover types in

this study. In case B, the averaging is performed before the

application of the algorithms. The coarse pixel is labeled

as one (dominant) land cover type and only one set of

algorithms specific to that cover type is applied. Ignoring

other land cover types and the related algorithms results in

considerable errors in NPPL. Ignoring the subpixel land

cover type information is prone to either positive or

negative biases. This depends exclusively on the type of

dominant cover type assigned as a unique label to a

lumped pixel. The differences between true parameter

values, derived at the fine resolution, and parameter values

derived at the coarse resolution are functions of subpixel

cover type area fractions (Chen, 1999). The process of

aggregation may maintain the mean values; however, the

variance of NPP is considerably reduced when input data

are averaged (Band & Moore, 1995). Chen et al. (2002)

developed a methodology to use known cover type area

fractions within a pixel in order to remove the biases in

LAI calculations.

2.2. Algorithms for spatial scaling using land cover type

area fractions and LAI subpixel information

The corrections of lumped NPPL for a pixel labeled as

cover type j (NPPLj) are based on the regression coefficients

Cij retrieved by correlating the correction factor Rj with

each nondominant cover type fraction Fij within the

uniquely labeled pixel. Let Rj be the ratio of known NPPDj



Fig. 1. Schematical (simplified) representation of the distributed NPP and lumped NPP calculations for one coarse pixel.
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and NPPLj values. The relationships are theoretically

developed as follows:

NPPDj ¼ NPPLjTRj ð1Þ

Rj ¼ 1�
Xn
i¼1

CijFij ð2Þ

where Fij is the fraction of a nondominant cover type i in a

pixel labeled as cover type j; Cij is a regression coefficient

for a particular nondominant cover type i in a pixel labeled

as cover type j; n is the number of nondominant types

within the same pixel.

For each land cover type, the correction coefficient Rj

can be plotted against all nondominant cover type fractions

simultaneously and against each nondominant type sepa-

rately. The later method, which involves multiple simple

linear regression statistical approach, is used to derive the

algorithms. To illustrate, in the case of a coniferous forest-

designated pixel ( j), the regression coefficients Cij from the

relationship between Rj and other than conifers fractions Fij

within the pixel are used in Eq. (2).

Based on the above relationships and known fractions of

nondominant land cover types within each pixel, the

following algorithm for correcting NPPLj can be developed:

NPPLj corrected ¼ NPPLj4 1�
Xn
i¼1

CijFij

! 
ð3Þ

Using the appropriate correction coefficients, the algo-

rithm is applied to each land cover type (conifer-,

deciduous-, mixed-, and open land-labeled pixels).
We found that the regression coefficients Cij in Eqs. (2)

and (3), determined through multiple simple linear

regressions, are similar to the same coefficients deter-

mined through one-step multivariate regression analysis,

suggesting that either multiple simple linear regression

approach or multivariate regression methods could be

used. One important assumption of the multiple simple

linear regressions is that each regressors (nondominant

fractions) must be linearly independent. When the method

of multiple simple regression is used, the slopes in the

regressions are of interest in the scaling process while the

intercepts, which includes the effects of other cover

types, could be ignored, e.g., in the case of Rj=1�
C1jF1�C2jF2j, the intercept in the Rj�F2j regression is

1�C1jF1j.

For the same cover type, LAI can vary greatly and cause

errors in lumped NPP calculations because of the non-

linearity in the relationship between LAI and NPP. To

correct for this nonlinearity effect, an additional correction

is developed based on the relative deviation of LAI values

of a dominant land cover type from the mean LAI value of a

lumped pixel:

NPPLj corrected ¼ NPPLj4 1�
Xn
i¼1

CijFijLij

!
4f Lj

�� 
ð4Þ

Lij ¼ LAI i�LAILÞ=LAILð ð5Þ

Lj ¼ LAI j�LAIL
�
=LAIL

�
ð6Þ
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where LAIi is the average of distributed LAI values for a

nondominant cover type i within a lumped pixel; LAIj is the

average of distributed LAI value for a dominant cover type

j; and LAIL is the mean LAI value of a lumped pixel. In Eq.

(4), the correction on the lumped NPP for LAI variability is

done in two steps. One is a linear correction as an

adjustment to the nondominant cover type fraction with an

assumption that the NPP–LAI relationship is linear. The

other considers the effect of the nonlinearity, which is based

on the NPP–LAI relationship calculated for a dominant land

cover type and includes a nonlinearity factor for the given

relationship. The later step is expressed as:

f Lj
�
¼ 1þ aLj

�
ð7Þ

where a is a nonlinearity factor within a dominant land

cover type. If the LAI–NPP relationships are linear, a is

zero. It should generally be between 0 and 1.
3. Data processing and modeling

Approximately a 50�50-km boreal forest study area

located near Fraserdale, Ontario, Canada was chosen in this

study. The area mostly consists of conifer forest (59.4%) of

high and medium crown density and open land (20.3%). In

addition, some parts of the area are covered with mixed

forest (12.3%), and to lesser extent with deciduous forest

(4.5%) of low crown density. The open land consists of

mostly regenerating areas that includes seedlings and fast-

growing grass and shrubs as documented by aerial photo-

graphs. It also includes recently burned areas, barren soil/

rock and wetlands.

The NPP calculations by BEPS comprise five steps (Liu

et al., 1997). Soil water balance estimation in step 1

includes the calculations of rainfall input, snowmelt,

canopy interception, evapotranspiration, and overflow. Soil

water content is used in step 2 to calculate the mesophyll

conductance and the stomatal conductance for sunlit and

shaded leaves. In step 3, the daily gross photosynthesis

and daily autotrophic respiration of leaves, stems, and

roots are computed. Daily NPP was calculated in step 4 as

the difference between daily gross photosynthesis and

daily autotrophic respiration. The final step involves the

derivation of annual NPP (Liu et al., 1997). BEPS input

data consist of land cover, LAI, biomass, soil, and daily

meteorological data.

The remote sensing data include surface reflectance

images for three TM bands (R, NIR, and SWIR) for

Fraserdale scene acquired on 25 August 1998. LAI and land

cover images of 30 m resolution were generated from the

TM images by CCRS (Chen et al., 2002). The LAI

algorithms were developed by Chen et al. (2002) and are

based on the reduced simple ratio (RSR). The RSR is a

vegetation index based on three bands (red, NIR, and

SWIR), developed by Brown et al. (2000) after Nemani et
al. (1993) who made a similar modification to NDVI, and is

defined as follows (Brown et al., 2000):

RSR ¼ qNIR

qred

4 1�
qSWIR � qSWIRmin

qSWIRmax
� qSWIRmin

��

where qNIR, qred, and qSWIR are the reflectances in NIR, red,

and SWIR bands, respectively; qSWIRmax
and qSWIRmin

are the

maximum and minimum SWIR reflectances determined

from the images as the 1% low and high cutoff points in the

histogram.

The LAI algorithms are cover type-dependant. The

relationship between LAI and RSR is based on linear

regression for coniferous forest and open land (cropland,

grassland, tundra, barren), and nonlinear regression for

deciduous and mixed forests (Chen et al., 2002). In addition

to the LAI image, which represents the growing season, a LAI

winter image, for the non-growing season, was created and

incorporated in the calculations. Biomass calculations were

based on the LAI values and algorithms developed by Liu et

al. (2002). Available water-holding capacity of soil (AWC)

and meteorological data were generated from the regional

data of Canada (Liu et al., 1997). AWC is defined as the

volume of water that is available to plants when the soil is at

the field capacity. Since the meteorological data do not vary

considerably (1% variations for air temperature, humidity,

and radiation, and 6% for precipitation) across the study area

and the topography is generally flat, the meteorological

variables were assumed to be uniform across the site.

Methods for NPP spatial scaling were investigated on

NPP images of 1 km resolution derived in two ways: (A)

from distributed calculations (NPPD), where NPP was

calculated first at 30-m resolution and resampled (i.e.

averaged) to 1-km resolution and (B) from lumped

calculations (NPPL), using input maps produced at 1-km

resolution. The study area consists of 1650�1650 pixels at

30-m resolution and 50�50 pixels at the coarse resolution

(c1 km). All calculations were performed for a calendar

year of 1998. The same algorithms were used for both the

distributed and lumped calculations.

Step A. BEPS was run for 30-m resolution with daily

meteorological, seasonal LAI and biomass,

annual land cover and long-term AWC input

data. The generated NPP image was further

resampled to 990-m~1-km resolution. Arithmetic

averaging was performed on the NPP map at the

30-m resolution to generate NPPD.

Step B. The NPPL map was based on the input maps

produced at 1-km resolution. The lumped LAI

calculations were based on the lumped values of

RSR, which was generated by averaging RSR of

fine resolution (30 m).

The land cover type for the study area was resampled by

most dominant cover type into a 1�1-km resolution image.
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The classes within the original land cover map (12 classes)

were regrouped into four basic land cover types (coniferous,

deciduous, and mixed forest, open land) and water. The

generated NPPL map was at 1-km resolution.

Simple linear regression analysis was used to inves-

tigate the relationship between NPPD and NPPL for all

land cover types and for each land cover type separately.

Since NPPD has been assumed to represent the reality, any

deviation of NPPL from NPPD is taken as an indication of

the error produced at the coarse resolution modeling.

Cover type area fractions within each 1-km pixel were

calculated based on known cover type subpixel informa-

tion from the 30-m resolution data. This sequence of the

statistical analysis is the most vital in the scaling analysis,

since the scaling algorithms could not be derived without

knowledge of cover type area fractions. Since water

percentages within the coarse pixels were generally low

(3.4% on average), the impact of water was excluded from

detailed analysis. Algorithms for correcting the NPPL
developed in this study (Eqs. (1)–(7)) were applied to

NPPL.
Fig. 2. (a) Net primary productivity map (30-m resolution). (b) Land cover map (CC

low crown density, respectively); DH and DL, deciduous forest (high and low

deciduous, respectively); BR, recent burns; RG, regeneration; BA, barren soil and

(d) Spatial distribution of lumped NPP. Note: black color on the figures denotes
4. Results

Fig. 2a illustrates the distribution of NPP over the study

area in 1998 calculated at fine resolution (30 m). Forest,

which occupies most of the area (Fig. 2b), is most

productive. Mixed and deciduous forests demonstrate

slightly higher photosynthetic rates than conifers.

Maps of NPPD and NPPL over the study area are shown in

Fig. 2c and d, respectively. Overall, NPPL values are higher

than NPPD values. The NPPL image appears to be more

variable than the NPPD image, particularly within open land.

4.1. Statistical characteristics of distributed and lumped

NPP

Table 1 exemplifies the overall input (RSR, LAI, LAI

winter, and biomass) and output data (NPP at 30-m

resolution, NPPD and NPPL) statistics calculated at the fine

and coarse resolutions.

The overall mean NPPD for the entire study area is 212 g

C m�2 year�1 (Table 1). This value falls in the lower range
RS, 1998). W denotes water; CH, CM and CL, conifers (high, medium and

crown density, respectively); MC and MD, mixed forest (coniferous and

rocks; WT, wetland; CL, clouds. (c) Spatial distribution of distributed NPP.

water.



Table 1

Statistics of the RSR, LAI (for growing and non-growing season), biomass

(BM), and NPP images of fine and coarse resolutions for entire study area

Parameters Units Mean Min Max S.D.

Fine resolution

RSR—30 m – 4.1 0 25.5 2

LAI—30 m – 2.9 0 10 1.7

LAI winter—30 m – 2.5 0 10 1.9

BM—30 m tons ha�1 40 0 284.8 31.8

NPP—30 m g C m�2

year�1

213.5 0 740 117

NPPD
a—1 km g C m�2

year�1

211.77 10 360 62.62

Coarse resolution

RSR—1 km – 4.07 0.2 8.1 1.28

LAI—1 km – 3.1 0 5.9 1

LAI winter—1 km – 2.7 0 5.7 1.6

BM—1 km tons ha�1 38 0 103.4 22.9

NPPL
a—1 km g C m�2

year�1

243.32 15 610 61.67

NPPD denotes distributed NPP for 1 km based on averages of 30-m

resolution NPP values. NPPL denotes lumped NPP.
a Water fraction excluded.

Fig. 3. Relationship between distributed NPP and lumped NPP for all land

cover types before the correction.
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of NPP values for the globe (200–600 g C m�2 year�1)

summarized by Liu et al. (1997). Mixed forest is found to be

the most productive with the mean value of 275 g C m�2

year�1, and it is closely followed by deciduous (254 g C

m�2 year�1) and coniferous forest (227 g C m�2 year�1).

The mean value of conifers is similar to that reported by Liu

et al. (1999). Due to the high latitude of the study area,

deciduous and mixed forests in this study have much lower

NPPD values than the same cover types for the whole

Canada, as found by Liu et al. (1999). Similarly, deciduous

and mixed forests in the study area are unproductive by far

compared with findings of Running and Coughlan (1988)

and Reich et al. (1999) for temperate forests. A relatively

high mean NPPD (130 g C m�2 year�1) and high range and

variability of open land indicate that fast-growing grass and

shrubs within the open land area are very productive.

The mean NPPL for the study area was found to be 243 g

C m�2 year�1 (Table 1). The difference between the mean

NPPD and mean NPPL is mostly due to the open land area,

which has a mean NPPL of 281 g C m�2 year�1. A minor

increase between the mean NPPD and mean NPPL is seen

within coniferous and mixed forest. The mixed forest and

open land are highly variable in the lumped calculations.

Generally, the mean values of the corresponding datasets

shown in Table 1 are very similar, and the variability is

reduced with decreasing resolution, as suggested by Tian et

al. (2002). Different from other datasets, the mean LAI at

the coarse resolution and NPPL are slightly higher than the

equivalent datasets at the fine resolution. Turner et al.

(1996) found that although the mean values are generally

similar, some variables result in reductions of the mean

values with increasing resolution, and some behave differ-

ently (e.g., LAI). The ranges are reduced for all datasets at

the coarse resolution, except for NPPL, which, however, has
a range smaller than that of NPP calculated at 30-m

resolution, before the resampling to NPPD.

4.2. Relationship of distributed and lumped NPP

It is found from this investigation that the lumped NPP

values compare poorly with the distributed values (r2=0.16)

(Fig. 3), although the mean NPP values averaged for the

whole area are reasonably close. For the total area, the

lumped NPP is biased by +14.9%. There are about 10%

pixels with a positive bias of larger than 100%. Fig. 4 shows

the relationship between NPPD and NPPL for each cover

type separately. The strongest relationship and similar

ranges are observed within conifer-labeled pixels

(r2=0.84). Deciduous-labeled pixels also have a relatively

strong relationship (r2=0.68). More variability is found

within mixed forest and open land with r2=0.42 and

r2=0.47, respectively. The open land-labeled pixels show

positive biases when they contain substantial percentage of

conifer forests. This indicates the invasive characteristics of

conifer species, and the open land as relatively old disturbed

areas. High variability in NPP values, particularly for open

land, can be related to the unique reflectance and, ultimately,

different LAI values of conifer forests when combined with

non-forest cover types (Tian et al., 2003). The bias is

negative when conifer-labeled pixels (at 1-km resolution)

contain considerable deciduous forests. Due to relatively

high and variable NPP values of open land areas, and

unproductive deciduous forest, the bias is often negative

when deciduous-labeled pixels are mixed with open land.

As it is commonly assumed that open land is of low

productivity, these trends are unforeseen, suggesting a

different case from that studied by Chen et al. (2002). The

overall relationship between NPPD and NPPL in this study is

found to be weaker than the relationship between BEPS-

derived and measured NPP values in the study of Liu et al.

(1997) (r2=0.40). This suggests the difficulty in using



Table 2

Statistical values of LAI for each land cover type derived from fine and

coarse resolutions

Variables Statistics Conifers Deciduous

forest

Mixed

forest

Open

land

LAI (fine

resolution)

Mean 3.7 2.6 3 0.6

S.D. 0.6 0.9 0.7 0.5

Min 1.3 0.5 0.6 0

Max 6.3 10 4.9 3

LAI (coarse

resolution)

Mean 3.6 1.9 2.5 1.6

S.D. 0.7 0.4 0.7 0.5

Min 1.6 1.1 1.3 0

Max 5.7 3.2 5.9 3.6

Fig. 4. Relationship between distributed NPP and lumped NPP before the correction for pixels designated as (a) coniferous forest, (b) deciduous forest, (c)

mixed forest, and (d) open land.
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ground NPP data for coarse resolution NPP map validations

without rigorous spatial scaling, particularly within areas

that have a high NPP within-class variability. Other studies

also suggested bias of the productivity when calculated at

coarser resolutions (Pierce & Running, 1995; Reich et al.,

1999; Waring & Running, 1998).

The reason for the high productivity and NPP variability

of the open land pixels could be investigated by exploring

the reflectance, RSR and LAI values. In lieu of this need, we

explored the LAI values for each land cover type derived

from the fine and coarse resolutions (Table 2). The mean

LAI at the coarse resolution, derived from lumped RSR

values, is smaller than that at the fine resolution for all land

cover types with the exception of open land, which is not in

accordance with findings of Chen (1999) and Tian et al.

(2002). Variations within LAI values are commonly affected

by the changes in open land, which acts as the background

and consists of different vegetation but mostly fast-growing

grass and shrubs (Chen et al., 2002). Turner et al. (1996)

found that shrubs significantly contributed to total LAI in

the NPP simulations in one of their study areas, resulting in
much higher NPP than in other forest areas. In this study, the

difference in LAI between the lumped and distributed cases

for open land contributes to the large difference in NPP

between these two cases. In principle, one could separate the

productive subclasses from the open land area according to

the LAI value and possibly reduce the NPP estimation error.

As NPP is calculated in the same way in BEPS for the same

cover type regardless of the LAI values, it is theoretically



A. Simic et al. / Remote Sensing of Environment 93 (2004) 246–258 253
unnecessary to create these subclasses. This also allows us

to demonstrate the importance of LAI variations within

same cover type in the scaling process.

4.3. Correction of lumped NPP using land cover type area

fractions

The relationships between the correction factor R and

cover type area fractions demonstrate how NPPL diverges

from NPPD in dependence of nondominant fractions. For

conifer-labeled pixels, it is evident that the factor becomes

more variable with increasing non-coniferous fractions, i.e.

NPPL diverges more from NPPD with increasing hetero-

geneity (Fig. 5a). Differences between NPPD and NPPL of

conifer pixels are less variable with increasing both

deciduous (FDEC) (Fig. 5b) and mixed forest area fractions

(FMIX) (Fig. 5c) than in the case for open land fraction

(FOL) (Fig. 5d). This suggests that open land fraction

accounts for the variability seen in Fig. 5a. Similar to the

conifer-labeled pixels, the greatest portion of the variability

in R can be explained by high open land fractions within the
Fig. 5. Regression analysis for pixels labeled as coniferous forest: relationship bet

deciduous fraction ( FDEC), (c) mixed fraction ( FMIX), and (d) open land fraction
deciduous-labeled pixels and by high conifer area fractions

and/or open land area fractions within mixed-labeled pixels

(not shown). For open land-labeled pixels, the variability in

R decreases with the increase in non-open land fractions

(Fig. 6a). The variability in R decreases with the increase in

coniferous (FCON) (Fig. 6b), deciduous (Fig. 6c), and mixed

forest (Fig. 6d) fractions. Regression coefficients used in the

algorithms for scaling in this study are listed in Table 3.

Overall, the variability in R is positively correlated to

open land fractions within each land cover type. This is

most apparent in Fig. 6a in particular. The trend of the

relationship between R and all nondominant fractions

indicates that R does not converge to 1 as the open land

fraction increases toward 100%. This is because non-

dominant cover types (mostly conifer and mixed) generally

have considerably higher LAI than that in grass (open land).

When the forest LAI is treated as grass LAI in the lumped

calculations, the NPP of the lumped pixel can be positively

biased. For the same LAI, NPP for grass is much higher than

that in forest for the following reasons: (1) maintenance

respiration in grass with small biomass is lower than that in
ween the correction factor R and (a) non-coniferous fraction (1�FCON), (b)

( FOL).



Fig. 6. Regression analysis for pixels labeled as open land: relationship between the correction factor R and (a) non-open land fraction (1�FOL), (b) coniferous

fraction ( FCON), (c) deciduous fraction ( FDEC), and (d) mixed fraction ( FMIX).
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forest with large biomass (Reich et al., 1999) and (2) leaves

in grass canopies are more evenly distributed than that in

forests allowing for more radiation absorption and higher

NPP (Liu et al., 2002).

The outcome of the corrections for all land cover types is

shown in Fig. 7. The figure illustrates that the corrected

NPPL values are reduced substantially and the correlation

between the corrected NPPL and NPPD values is consid-

erably improved (r2=0.59) from the non-corrected case
Table 3

Regression coefficients Cij used in the algorithms for scaling in this study

( FCON denotes coniferous nondominant fraction, FDEC deciduous non-

dominant fraction, FMIX mixed nondominant fraction, and FOL denotes

open land nondominant fraction)

Nondominant

fractions

Labels of lumped pixels

Coniferous Deciduousa Mixedaa Open land

FCON – �0.7374 �0.5019 �0.8067

FDEC 0.9871 – 1.2156 0.7462

FMIX 0.2403 �0.6027 – 0.4659

FOL �0.031 1.688 2.0985 –

a Statistical approach was used to reduce the impact of extreme values.
(r2=0.16) shown in Fig. 3. Although the mean corrected

NPPL (240.4 g C m�2 year�1) is not considerably reduced

from NPPL (243.3 g C m�2 year�1) as expected, the major

corrections can be observed within the highest values. The

range is reduced from 15–610 to 14–522 g C m�2 year�1,

and is closer to the NPPD range (10–360 g C m�2 year�1).

The overall standard deviation is reduced from 61.7 to 56.5

g C m�2 year�1 in the corrected results. The r2 value of the

NPPD–NPPL relationship for each land cover type ranges

from 0.36 to 0.91 after applying the correction (Fig. 8),

while it ranges from 0.42 to 0.84 before the correction (Fig.

4). The correction results in better agreement for conifer-

labeled (r2=0.91) (Fig. 8a) and deciduous forest-labeled

pixels (r2=0.74) (Fig. 8b). The correction is less effective

for mixed forest-labeled pixels. Although most points fall

closely to the regression line, a number of points,

containing high conifer fractions in particular, are widely

scattered. This reduces the overall correlation of mixed

forest-labeled pixels from r2=0.42 to r2=0.38 (Fig. 8c). The

correction is most obvious for open land- labeled pixels

with a marked improvement in the correlation from r2=0.47



Fig. 7. Distributed NPP and lumped NPP after the correction for land cover

type area fractions as subpixel information (all land cover types).

Fig. 8. Relationship between distributed NPP and lumped NPP after the correction

forest, and (d) open land.
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to r2=0.65. The regression line also becomes close to the

1:1 line (Fig. 8d). Even though the correction appears to be

most effective for the open land-labeled pixels, a majority

of all rebelliant points after the correction are seen within

this land cover type. This indicates that the effectiveness of

the spatial scaling based on the land cover type fractions

may be suppressed by within-class NPP variability, which

is, as discussed above, related to LAI variability of the

class.

4.4. Application of LAI correction

Fig. 9 shows the relationship between NPPD and NPPL
after the additional LAI correction (Eq. (4)) for all land

cover types together. The results are substantially improved

mostly due to the LAI correction applied to open land-

labeled pixels. The nonlinearity factor a is based on the

NPP–LAI relationship and according to BEPS simulations it
for pixels designated as (a) coniferous forest, (b) deciduous forest, (c) mixed



Fig. 9. Distributed NPP and lumped NPP after the correction for land cover

type area fractions and LAI (all land cover types).
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was found to be 0.78. The effect of the NPP–LAI

nonlinearity within open land pixels is also apparent in

Fig. 6a, when linear regression is compared with data. As

the differences in LAI within the other land cover types are

not substantial, no significant improvements are found for

them. The correction for the open land LAI alone results in a

strong agreement between the NPPD and corrected NPPL
values (r2=0.90). All points in Fig. 9 are located close to 1:1

line with the exception of some points of mixed-labeled

pixels. The results suggest that the high LAI variability of

open land plays an important role in scaling process for this

study area.
5. Discussion

The spatial scaling process here is implemented as

corrections to lumped values. Although the meaning of

spatial scaling goes far beyond changes in spatial resolution,

the scaling procedure proposed here is nevertheless a

practical solution to improving the accuracy of mapping a

complex surface parameter NPP. The importance of spatial

scaling for NPP, a parameter of much concern in climate

change and carbon cycle studies, is seen from (i) the large

variability in the difference between distributed and lumped

NPP values; (ii) the seemingly random errors in lumped

pixels do not cancel each other when the average of the

whole study area is taken and the overall bias in the lumped

calculations is considerable (about 15%); and (iii) simple

corrections using subpixel land cover and LAI information

are effective in reducing the random and bias errors.

Two main issues arise when the scaling procedure is

considered for application in other areas and/or for other

sensor types: (i) is the scaling procedure derived between

two fixed resolutions applicable to images of other

resolutions? and (ii) how can we obtain the needed subpixel

information?
To address issue (i), we should realize that the

contextural approach of scaling is only sensitive to the

fractions of cover types within lumped pixels and, in theory,

it should be independent of the scale of concern. In other

words, the methodology should be applicable to images of

any resolutions. However, the basic assumption in using

contextural information, as the major scaling vehicle, is that

variability within a given cover type is smaller than the

differences among cover types. While this assumption is

generally true, it can be violated in some cases, especially

when several cover types are combined into one, such as the

case in our present study where open land refers to a wide

range of residual cover types (bare soils, new burned scars,

old burned areas with productive grasses and shrubs, etc.).

We have therefore made a further step to reduce the impact

of the variability within the same cover type between

lumped pixels. This second step of correction is useful when

the application is limited to only a small number of cover

types and can address the issues of within-cover type

variability.

Issue (ii) may be most critical to make the scaling

procedure practical. If we only have coarse resolution

images for an area, we are severely limited in our ability

to perform meaningful spatial scaling. Although procedures

of scaling using textural information have been proposed

assuming the scale-invariance among resolutions (Hall et

al., 1992; Hu & Islam, 1997), these can only result in weak

accuracy improvement (Chen, 1999). However, to meet the

scaling requirement, the traditional practice in land classi-

fication with dhard labelingT, i.e. forcing a pixel to a unique

cover type, may be replaced with dsoft labelingT approaches,
i.e. giving the percentage of major cover types within each

pixel. This soft classification approach has been success-

fully demonstrated by DeFries et al. (1997). We realize that

it is generally difficult to do the soft classification for

multiple cover types through spectral unmixing as the

unique dimensions of optical remote sensing are generally

smaller than the dimensions of surface variability (Verstrate

et al., 1996). We therefore suggest that we should pay a

great attention to regional and global land cover mapping at

high resolutions, i.e. at a resolution which is comparable to

surface variability, if we take the spatial scaling as a serious

issue in quantitative remote sensing applications. This is in

agreement with the suggestion by Chen (1999) that we at

least need a high-resolution water area mask for spatial

scaling of surface parameters.

We realize that to some extent the results presented here

can suffer from sources of errors due to treatments of data,

assumptions used and inaccuracy in the NPP model. High-

resolution LAI data were acquired one time in the growing

season and the values are assumed to be constant for each

conifer pixel and follow a square wave (i.e. zero before and

after the growing season but constant during the growing

season) for each deciduous pixel. Mixed and open land

pixels were treated as the intermediate cases between

conifers and deciduous. These simple treatments can cause
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biases in both distributed and lumped calculations, and it is

believed that these biases are greatly reduced when the

analysis is based on the ratio of distributed and lumped

values as the biases are in the same direction in these two

cases. The major assumption that could potentially affect the

scaling analysis is that fine-resolution pixels truly capture

the surface heterogeneity and vegetation is uniform within

each pixel. The degree to which this assumption is true is

unknown, but we believe that the mean errors should be

much smaller than 15% found between 30 m and 1 km

resolutions and are mostly removed in the process of taking

the ratio between distributed and lumped values. The

accuracy of the BEPS model in simulating the differences

in NPP among cover types can have considerable effects on

determination of the actual values of the scaling coefficients.

As BEPS NPP results have been carefully calibrated for

conifer and deciduous boreal species against tower flux data

(Chen et al., 1999), we believe that the model used here has

captured the main differences among the major cover types

in the study area.
6. Conclusions

It is demonstrated that NPP mapping at coarse

resolutions can have large random errors and considerable

bias errors when the subpixel heterogeneity is not

considered. In the current study, the relative random errors

in NPP are found to exceed 100% for about 10% pixels at

1-km resolution. The relative bias errors for the whole

study area at 1-km resolution are about 15%. These errors

may be common in our current regional and global NPP

maps. These errors can be greatly reduced when a spatial

scaling procedure is used based on the subpixel informa-

tion. The subpixel information required in the scaling

procedure includes the area fractions and LAI of major

cover types within each pixel at a coarse resolution. The

results of the scaling process suggest the following: (i)

contextural-based spatial scaling based on subpixel cover

type area fractions is an effective approach to reduce the

errors in coarse resolution NPP estimation; and (2) The use

of subpixel LAI values within a coarse-resolution pixel can

further improve the estimation of the NPP value of the

pixel.

Advances in remote sensing technology results in multi-

ple sensors with various spatial and temporal resolutions.

This accentuates the importance of the spatial scaling

process in quantitative analysis of remote sensing. The

availability of space-based imagery with a high spatial

resolution is in constant increase, which will allow further

exploration of the relationship between measurements at

different spatial resolutions. Since land cover is generally

stable with time, a long-term investment to create land cover

maps for a given region and for the globe using high-

resolution images such as from Landsat would be useful.

However, constant attention should be given to the regions
with natural disasters such as forest fires where land cover

maps should be generated at a frequency comparable to the

speed of surface changes. The most practical conclusion of

this study is that we need to make efforts to produce

regional and global land cover maps at a high resolution as

masks for spatial scaling of surface parameters between

various spatial resolutions.
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