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Abstract. Remote sensing has been a useful tool to monitor net primary productivity (NPP) and evapotranspiration (ET). In
this paper, based on field measurements and Landsat enhanced thematic mapper plus (ETM+) data, NPP and ET are
estimated in 2001 in the Changbaishan Natural Reserve, China. Maps of land cover, leaf area index, and biomass of this
forested region are first derived from ETM+ data. With these maps and additional soil texture and daily meteorological data,
NPP and ET maps are produced for 2001 using the boreal ecosystem productivity simulator (BEPS). The results show that
the estimated and observed NPP values for forest agree fairly well, with a mean relative error of 8.6%. The NPP of mixed
forests is the highest, with a mean of 500 g C m–2·a–1, and that of alpine tundra and shrub is the lowest, with a mean of
136 g C m–2·a–1. Unlike the spatial pattern of NPP, the annual ET changes distinctly with altitude from greater than 600 mm
at the foot of the mountain to about 200 mm at the top of the mountain. ET is highest for broadleaf forests and lowest for
urban and built-up areas.

Résumé. La télédétection est un outil utile pour faire le suivi de la productivité primaire nette (PPN) et de
l’évapotranspiration (ET). Dans cet article, basé sur des mesures de terrain et des données ETM+ de Landsat, on fait
l’estimation de la PPN et de l’ET pour l’année 2001, dans la réserve naturelle de Changbaishan, en Chine. Des cartes du
couvert, d’indice de surface foliaire et de biomasse de cette région forestière sont dérivées au départ des données ETM+. À
l’aide de ces cartes, de données supplémentaires sur la texture du sol et des données météorologiques journalières, on a
produit des cartes de PPN et ET à l’aide du simulateur BEPS (« boreal ecosystem productivity simulator ») pour 2001. Les
résultats montrent que les valeurs estimées et observées de PPN de la forêt concordent plutôt bien, avec une erreur relative
moyenne de 8,6%. La valeur de PPN des forêts mixtes est plus élevée, avec une moyenne de 500 g C m–2·a–1, alors que la
valeur de PPN de la toundra alpine et des arbustes est plus faible, avec une moyenne de 136 g C m–2·a–1. Contrairement au
patron spatial de PPN, la valeur annuelle de ET change de façon marquée avec l’altitude à partir de 600 nm, au pied de la
montagne, à environ 200 nm au sommet de la montagne. La valeur de ET est plus élevée pour les forêts de feuillus et à son
plus bas pour les zones urbaines et construites.
[Traduit par la Rédaction]

742Introduction

As a major part of terrestrial ecosystems, vegetation plays an
important role in the energy, matter, and momentum exchange
between the land surface and the atmosphere. Through the
process of photosynthesis, plants assimilate carbon in the
atmosphere and incorporate it into the biomass, and part of the
carbon is emitted into the atmosphere again through plant
respiration (autotrophic respiration). The difference between
photosynthesis and autotrophic respiration is the net primary
productivity (NPP). As Changbaishan Natural Reserve is one of
the most productive and undisturbed areas in China, it is of
great interest in the studies of the terrestrial carbon cycle of the
region and is also of significance in global carbon cycle
research. A field experiment was conducted in 2002 to obtain
the spatial pattern of NPP in Changbaishan Natural Reserve.

Many models have been established to estimate regional and
global NPP and can be classified into three types: climate
models, process models, and energy use efficiency models.
Climate models estimate NPP by establishing the statistical
relation between NPP and climate data (Rosenzweig, 1968;

Lieth and Whittaker, 1975; Uchijima and Seino, 1985; Box,
1988). For example, the Miami model used the empirical
relationship among NPP, annual mean temperature, and
precipitation to estimate global terrestrial NPP (Lieth and
Whittaker, 1975).

Process models estimate NPP based on plant physiological
and ecological processes (Fung et al., 1987; Running and
Coughlan, 1988; King et al., 1989; Melillo et al., 1993; Foley,
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1994; Bonan, 1995; Liu et al., 1997). Photosynthesis,
evapotranspiration, autotrophic respiration, and dry matter
partition have to be considered, and there are usually many
parameters in these models. These models can be run at small
time steps. In combination with general circulation models
(GCMs), process models can be effectively used to evaluate the
effect of climate change on regional and global NPP.

The availability of multitemporal and multispectral remote
sensing information has enabled measurement and monitoring
of land surface parameters such as leaf area index (LAI),
phenology, and fraction of absorbed photosynthetic active
radiation (FPAR) by vegetation, which help us to study the
spatial distribution and seasonal and interannual changes in
NPP. The advanced very high resolution radiometer (AVHRR)
on the National Oceanic and Atmospheric Administration
(NOAA) satellite and moderate resolution imaging
spectrometer (MODIS) on the Terra and Aqua satellites provide
daily, global, red and near-infrared reflectance data, from
which cloud-free, near-nadir composite data can be formed at a
frequency of once every month or every 10 days. These data
have been widely used to estimate plant production. Because
there exist strong relationships between FPAR and vegetation
indices (Asrar et al., 1984; Gallo et al., 1985; Bartlett et al.,
1990), especially the simple ratio (SR = NIR/VIS, where NIR
and VIS are the reflectance in the near-infrared and visible
bands, respectively) and the normalized difference vegetation
index (NDVI = (NIR – VIS)/(NIR + VIS)), SR and NDVI have
been used to determine FPAR (Potter et al., 1993; Law and
Waring, 1994; Ruimy and Saugier, 1994; Field et al., 1995;
Prince and Goward, 1995; Sun and Zhu, 2001).

Energy use efficiency models use energy use efficiency and
the relationship between vegetation index and FPAR to
estimate radiation absorbed by plants and therefore NPP.
Because an energy use efficiency model is simple and uses
remotely sensed data, it is widely used. Meanwhile, remote
sensing data have also been used in process models to provide
input data, such as LAI and vegetation type (Sellers et al., 1996;
Liu et al., 1997; 2002).

In China, there has been much research on NPP models and
their applications. For example, Luo et al. (1998) and Li et al.
(1998) established relationships between NPP and air
temperature, rainfall, and evapotranspiration to estimate NPP.
Zhu (1993) and Zhou and Zhang (1996) improved the Chikugo
model (Uchijima and Seino, 1985) and analyzed the effect of
climate change on NPP in China. In recent years, process
models in conjunction with remote sensing data have also been
used to analyze the spatial pattern of NPP in China (Piao et al.,
2001; Sun and Zhu, 2001; Yu et al., 2001; Chen et al., 2002a;
Lu and Ji, 2002; Zhang et al., 2003). Because there are few
ground NPP data used to validate model results, however,
especially at the scale of remote sensing pixels, the magnitude
of NPP for China’s ecosystems and for any given region in
China varied greatly among the published results. To obtain
reliable values of NPP for a given region, it is necessary to carry
out field experiments to obtain NPP data for ground plots and
then scale them up to coarse-resolution remote sensing pixels

(�1000 m) using high-resolution (�30 m) imagery. The
objective of this paper is to produce high-resolution NPP and
evapotranspiration (ET) maps using the boreal ecosystem
productivity simulator (BEPS) model and Landsat enhanced
thematic mapper plus (ETM+) data based on field
measurements. These maps can then be used to validate and
improve other model results at coarser resolutions.

Field experiment
Experimental site

The experimental site is located in the north slope of
Changbaishan Natural Reserve and nearby areas in the
southeast of Jilin Province, China (41°42′N–42°10′N,
127°38′E–128°10′E) (Figure 1). The site has an elevation
varying from 720 to 2691 m above sea level and a temperate
continental mountainous climate. Annual rainfall is about
700 mm at lower elevations and increases to about 1400 mm at
Tianchi Lake, the top of Changbaishan Mountain. The mean
annual air temperature decreases from +4.9 °C at the foot of the
mountain to –7.3 °C at the top.

Influenced by the climate, the Changbaishan Natural
Reserve has obvious vertical vegetation zones, including
Korean pine and broadleaf mixed forest at elevations from 720
to 1100 m, spruce and fir forest at elevations from 1100 to
1800 m, Betula ermanii forest in the subalpine zone at
elevations from 1800 to 2100 m, and alpine tundra at elevations
above 2100 m. The Korean pine and broadleaf mixed forest is
the dominant vegetation type. The vegetation density varies
with height, providing a large natural range for developing
remote sensing algorithms of biophysical parameters. It is
therefore also ideal for validating NPP and ET models.

LAI measurements

LAI was measured using a tracing radiation and architecture
of canopies (TRAC) instrument, which can acquire the
clumping index, an important factor in the calculation of LAI of
coniferous forest. Taking into account the vegetation
representation, vertical zones, and road access conditions, we
chose 34 stands to carry out the LAI measurements. These
stands are distributed evenly in each vertical zone (Figure 2).
The main vegetation types include Korean pine and broadleaf
mixed forest, poplar and birch forest, B. ermanii forest, spruce–
fir forest, Korean pine forest, and transitional forest.

The LAI sampling area is 30 m × 30 m, which is equal to the
grid size of the Landsat ETM+ data. In each stand, the canopy
gap fraction and gap size distribution of four 30 m long lines
were measured using TRAC. Auxiliary data such as longitude
and latitude were obtained by global positioning system (GPS).
After taking into account the element clumping index derived
from the gap size distribution, LAI was calculated according to
the measured canopy gap fraction.
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Biomass and NPP measurements

The relative growth method was used to measure the biomass
(Feng et al., 1999). The biomass of each part of a tree (stem,
branch, leaf, root) was estimated from the tree height and the
diameter at breast height (DBH) using a formula derived from
the field measurements.

In our measurements, we selected 10 stands for measuring
biomass (Figure 2), with a sampling area of 30 m × 30 m for
each stand. The stands include Pinus sylvestriformis forest (one
stand), Korean pine and broadleaf mixed forest (two stands),
poplar and birch forest (two stands), spruce and fir forest (three
stands), and B. ermanii forest (one stand). Structural
parameters including DBH, height of each tree, and number of
trees in each sampling area were measured. The biomass of
each tree was then acquired based on species-specific relative
growth formulas (Chen and Zhu, 1989). Lastly, the biomass for
each sampling area was calculated from the measured structural
parameters.

NPP includes three components: change in live biomass,
mortality, and biomass eaten by animals. The last component
occupies a small proportion in the total NPP, so it was ignored
in our research. Tree mortality varies with stand age and can
account for a significant fraction of annual biomass increment.
As remote sensing based estimation does not include the
reduction of NPP due to mortality, we have not included this
component in our current study. The exclusion of this
component enables us to use ground data for validating remote
sensing based estimates. It is therefore necessary to consider
this component in full carbon cycle modeling (Chen et al.,
2003). Biomass increment data derived from the increment of
DBH were used to calculate the NPP. The data of the increment
of DBH were obtained from the tree ring samples (about 10
trees per stand were sampled, and two tree cores were taken for
each tree). These DBH increment data were then used to

estimate the increment of each biomass component of each tree
from 2000 to 2001 acquired according to the relative growth
formula. The NPP of a stand, i.e., the change of biomass
between 2 years, was then estimated according to the number of
trees in each sampling area. Lastly, the NPP of each stand in
2001 was calculated using this method.

Model description
The BEPS model was used in this study to estimate NPP and

ET. BEPS was developed by Liu et al. (1997) based on the
forest biogeochemical cycles (Forest-BGC) model of Running
and Coughlan (1988). It implemented an advanced
photosynthesis model with a new temporal and spatial scaling
scheme (Chen et al., 1999). LAI and land cover needed in the
model can be obtained from remote sensing data. This
improvement successfully addressed the scaling problem from
individual leaves to canopy by separating the canopy into sunlit
and shaded leaf groups. An analytical solution was also
developed to determine a simplified daily integral of the model
of Farquhar et al. (1980) by considering the general diurnal
patterns of meteorological variables. Therefore, the new daily
canopy photosynthesis model not only captures the main
effects of diurnal variations on photosynthesis, but also is
computationally efficient for large-area applications.

The NPP is modeled in five steps. Step 1 is to estimate soil
water balance based on the “bucket” model, which includes the
calculations of snowmelt, canopy interception, ET, and
overflow. A vegetated area is divided into three layers:
overstory, understory, and soil. Evaporation and transpiration
are calculated using the Penman–Monteith equation for each
layer. Step 2 calculates the mesophyll conductance and the
canopy stomatal conductance according to radiation, air
temperature, vapor pressure deficit, leaf nitrogen concentration,
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Figure 1. Location of the field experiment site.



and leaf water potential. Daily gross photosynthesis or gross
primary productivity (GPP) is calculated in step 3 as follows:

GPP = [∆CO2 × CC × CM/(CC + CM)]

× LAI × DAYL (1)

where CC is the canopy stomatal conductance, CM is the
mesophyll conductance, ∆CO2 is the CO2 gradient between leaf
and air (calculated based on the model of Farquhar et al., 1980),
LAI is the leaf area index, and DAYL is the day length.
Equation (1) is implemented for sunlit and shaded leaf groups
separately. Daily maintenance respiration is calculated and
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Figure 2. Locations of LAI and biomass measurement sites. The background is a color
composite image of Landsat ETM+ data from 4 September 1999.



subtracted from daily gross respiration in step 4. Based on
respiration coefficients, biomass, and temperature, daily
maintenance respiration of stems, leafs, and roots is calculated
separately in step 4. The final step is to sum the daily results in
step 4 for the whole year and subtract 20% (Raich et al., 1991;
Ryan, 1991) of the yearly total for the growth respiration,
leading to annual NPP.

The outputs of the BEPS model include annual and daily NPP,
respiration, gross primary productivity (GPP), transpiration, and
evaporation.

Input requirements for the model
The inputs to the BEPS model include land cover type,

available soil water capacity, biomass, LAI, daily maximum
and minimum air temperature, vapor pressure deficit,
precipitation, and incident solar radiation. The meteorological
data were obtained from meteorological stations, and LAI and
land cover type maps were derived from remote sensing data.

Meteorological data and available soil water capacity

Meteorological data, including daily maximum and
minimum air temperature, vapor pressure, and precipitation in
2001, were obtained from 28 meteorological stations in Jilin
Province. The vapor pressure and precipitation data were
interpolated to 30 m grids using the Kriging method. Air

temperature varies largely with topography. Thus, when air
temperature is interpolated to the grid data, the effects of
topography must be taken into account so that the error
associated with the interpolation can be minimized. The air
temperatures from weather stations were first converted to “sea
level air temperature” according to the altitude of the weather
stations and then interpolated to 30 m grids using the Kriging
method. With digital elevation model (DEM) data digitized
from 1 : 50 000 scale topographic map, the gridded sea level air
temperature images are further converted to the actual air
temperature. The results of Weng and Sun (1984) showed that
the lapse rate of air temperature in the Changbaishan Mountain
area ranged from 0.4 °C/100 m in January to about
0.6 °C/100 m in July. We simply assumed that the lapse rate of
air temperature is 0.5 °C/100 m throughout the year. The daily
incident solar radiations were calculated from the DEM data,
daily gridded precipitation, and maximum and minimum air
temperature using the relationship established by Winslow et
al. (2001).

The 1 : 250 000 scale soil texture map was used to produce
the soil available water capacity (AWC) map. In this paper, we
adopted the empirical relationship established by Saxton et al.
(1986) between soil water content and soil grain size
distribution to estimate AWC.
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Remote sensing data processing

Landsat ETM+ data were acquired on 25 August 2002
during the time the field experiment was conducted. Because
part of the image is contaminated by clouds, Landsat ETM+
data on 4 September 1999 were also selected to replace the data
influenced by clouds. The two images were first georeferenced
by the selected ground-control points from 1 : 50 000 scale
maps. The accuracy of georeferencing is 0.8 pixels.
Atmospheric correction was then performed using 6S software
(Vermote et al., 1997) with near-realtime inputs of the
precipitable water content, aerosol optical thickness from
National Aeronautics and Space Administration (NASA)
MODIS data product, and ozone data from total ozone mapping
spectrometer (TOMS) data. After the atmospheric correction,
the reflectance for each band is calculated and then used to
produce the map of land cover, LAI, and aboveground biomass.

Land cover map
Integrating DEM data and using the maximum likelihood

classification method, we classified the land cover of
Changbaishan Natural Reserve and its surrounding area into
seven types (Figure 3). The main land cover includes broadleaf
forest, coniferous forest, mixed forest, crop, alpine tundra and
shrub, urban and built-up, and water. As shown in Figure 3,
mixed forest is the major vegetation type, occupying about 46%
of the study area. Coniferous forest is the next most common
vegetation type, occupying 29% of the study area. The
broadleaf forest distributed at high altitude is B. ermanii forest,
which is the transition vegetation between spruce–fir forest and
alpine tundra.

LAI data
According to the reflectance data of bands 3, 4, and 5, two

kinds of vegetation indices were computed, namely the simple
ratio SR (SR = R4/R3, where R3 and R4 are the reflectances of
bands 3 and 4, respectively) and the reduced simple ratio RSR
(Brown et al., 2000), defined as follows:

RSR = SR[1 – (R5 – R5min)/(R5max – R5min)] (2)

where R5 is the reflectance of band 5; and R5min and R5max are
the minimum and maximum reflectances of band 5 and are
defined as the 1% minimum and maximum cutoff points in the
histograms of band 5 reflectance. The major advantages of RSR
over SR are (Chen et al., 2002b) as follows: (i) the difference
between cover types is very much reduced, so the accuracy of
LAI retrieval for mixed cover types can be improved; and
(ii) the background influence is suppressed using RSR because
the SWIR band (band 5) is most sensitive to the amount of
vegetation containing liquid water in the overstory.

The 3 pixel × 3 pixel averaged SR and RSR values for those
pixels where LAI was measured were extracted and correlated
with observed data (Figure 4). Figure 4 shows that the
relationship between LAI and RSR is better than that between
LAI and SR. The relationship between LAI and SR is more

sensitive to the background than that based on RSR, and the
data are more scattered. Data points 1 and 2 in Figure 4b are
obviously outliers and belong to P. sylvestriformis forest
located in the centre of a town. The LAI value of this forest is
above 5. The soil is very wet here, however, which decreases
the band 4 reflectance, and the SR value is very low. By
integrating reflectance data from band 5, the relationship is
markedly improved. Thus the following relationship was used
to estimate LAI of forest:

RSR = 14.57 – 14.57 exp(–0.13LAI) (3)

The LAI values of crop and tundra were estimated using the
following equation (Chen et al., 2002b):

SR = 14.5 – 13.5 exp(–LAI/1.6) (4)

By using Equations (3) and (4), the LAI map on 25 August
2002 was produced (Figure 5). Figure 5 shows that the LAI of
forests increases with an increase in altitude, and the highest
LAI value appears in the coniferous forest vegetation type.

To estimate NPP in 2001 using BEPS, we assume that the
vegetation type and LAI on 25 August do not change between
2001 and 2002, so the LAI image was used directly to calculate
NPP in 2001. Nevertheless, the annual NPP cannot be modeled
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using a single LAI image. To resolve this problem, we
determined the period of vegetation growth and the period
when LAI maintained the highest value for each pixel after
analyzing the MODIS LAI data product in 2001. Lastly, we
obtained the multitemporal LAI for the whole year using the
temporal trends of MODIS LAI for each vegetation cover type.

Aboveground biomass
Aboveground biomass of forest is also needed for calculating

maintenance respiration. Liu et al. (2002) analyzed the biomass
and LAI data for Canada. The results demonstrated that the
biomass could be estimated from LAI for different forest types.
To acquire the spatial distribution of biomass in the study area,
we compared the observed biomass data and 3 pixel × 3 pixel
averaged LAI data from Figure 5 (Figure 6). As shown in
Figure 6, although there are two points considerably below the
simulated curve (the two points are young disturbed stands: one

point is P. sylvestriformis forest, which has been planted by
man; and the other point is poplar and birch forest, which is
secondary deciduous broadleaf forest), the determinant
coefficient is high (R2 = 0.7498). Thus, the aboveground
biomass was estimated from LAI using the following equation:

Wg = –0.9944LAI2 + 42.481LAI (5)

where Wg is the aboveground biomass (t DW hm–2). The units
for Wg are further converted to t C hm–2 by multiplying by a
factor of 0.5.

Results and discussion
Annual NPP and ET in 2001 were estimated using BEPS and

the data described previously.
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Figure 5. Spatial pattern of LAI in Changbaishan Natural Reserve on 25 August 2002.
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Figure 6. Relationship between LAI and aboveground biomass for forest vegetation.

Figure 7. Spatial pattern of annual net primary productivity (NPP) on the north slope of
Changbaishan Natural Reserve in 2001.



Annual NPP

Figure 7 shows the spatial pattern of annual NPP in the north
slope of Changbaishan Natural Reserve in 2001. The annual
NPP of forest mainly ranges from 400 to 600 g C m–2·a–1, with
the highest values greater than 800 g C m–2·a–1. The highest
NPP located in the west part of the study area, where the forest
is Korean pine and broadleaf mixed forest, NPP is higher than
700 g C m–2·a–1. The NPP of coniferous forest within the
Changbaishan Natural Reserve is also high, with values ranging
from 500 to 700 g C m–2·a–1, whereas outside the reserve (e.g.,
in the lower right corner of the image in Figure 7) the NPP is
low (less than 400 g C m–2·a–1, which may be caused by human
activities). Affected by the cold climate, NPP around Tianchi
Lake is very low, and it is mostly less than 100 g C m–2·a–1.

Among all vegetation types, mixed forest has the highest
NPP, with a mean annual NPP of up to 500 g C m–2·a–1;

coniferous forest has the next highest NPP, and broadleaf forest
has the lowest NPP (440 g C m–2·a–1) among the forest types
(Table 1). NPP of alpine tundra and shrub is the lowest in the
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Vegetation type
Mean NPP
(g C m–2·a–1)

Standard
error of NPP
(g C m–2·a–1)

Ra/GPP
(%)

Broadleaf forest 440 141 53.4
Coniferous forest 451 92 46.7
Mixed forest 500 141 48.9
Crop 232 108 55.8
Alpine tundra and shrub 136 111 31.8

Note: Ra is autotrophic respiration, including the maintenance respiration
and growth respiration. GPP is gross primary productivity.

Table 1. Annual NPP for different vegetation types on the north
slope of Changbaishan Natural Reserve in 2001.

Figure 8. Spatial pattern of annual evapotranspiration (ET) on the north slope of Changbaishan
Natural Reserve in 2001.



area, having a mean value of 136 g C m–2·a–1. The NPP of crops
is 232 g C m–2·a–1, which is a little lower than the results of
Chen et al. (2002a). There may be two reasons for the low NPP
values for crops. First, the climate here is cold and the growing
season is short. Second, a large part of the cropland is used for
planting ginseng. The plastic sheds covering the ginseng
increase the reflectance and add a negative bias to the LAI
derived from remote sensing data, resulting in the low
estimation of NPP. In addition, we used Equation (4) to
estimate LAI of crops, even though the equation was developed
based on Canadian crop data. Different soil backgrounds may
induce biases in the LAI estimation.

Annual ET

Figure 8 shows the spatial pattern of annual
evapotranspiration (ET) in the study area. Because ET of a
water body was not calculated in the BEPS model, we use black
to represent water bodies. Figure 8 shows that the annual ET
changes distinctly with changes in altitude. It is different from
the rainfall distribution. ET changes from greater than 600 mm
at the foot of the mountain to about 200 mm at the top of the
mountain, whereas the rainfall changes from less than 700 mm
at the foot of the mountain to more than 1100 mm at the top of
the mountain. For different vegetation types, ET of broadleaf
forest is the highest, with a mean of 566 mm·a–1 (Table 2). The
mean annual ET of mixed forest decreases to 510 mm, whereas
the ET for coniferous forest is just 333 mm. ET for crops is
relatively high, with a mean annual value of 469 mm. However,
the ET of crops is lower than that of forests in the same zone.
The ET of urban and built-up areas is the lowest, with a mean
annual value of just 110 mm.

The spatial distribution of ET does not show the same pattern
as NPP across this large elevation range, especially in the forest
region. Several processes can cause the difference in the spatial
patterns of NPP and ET:

(1) Autotrophic respiration, which is highly dependent on
temperature and biomass — Because the annual
temperature distribution is significantly affected by the
elevation, the ratio of autotrophic respiration (Ra) to
gross primary productivity (GPP) also varies greatly with
elevation. This ratio is shown in Table 1. Table 1 shows
that the ratio of Ra to GPP decreases with an increase in
elevation. The ratio is highest for crop and broadleaf
forest, which are mainly located at low elevations. The
ratio for coniferous forest, which is mainly located at
high elevations, is the lowest of the forest vegetation
types. Both Ra/GPP and GPP for coniferous forest are
lower than those for broadleaf forest, which results in the
difference of spatial pattern between NPP and GPP. As
the water and carbon flows through stomata in leaves are
controlled by consistent stomatal conductances (1.6 times
smaller for the carbon flow) in the BEPS model, the
transpiration and GPP are tightly coupled. Therefore, the
transpiration obviously decreases with an increase in
elevation.

(2) Interceptional water loss and evaporation from soil
surface — The interceptional water loss depends on
precipitation and LAI. Because the precipitation and LAI
increase with an increase in elevation in the forest region,
evaporation from the canopy also increases with an
increase in elevation. Evaporation from a soil surface
varies little with elevation because the forest region is
fully covered by the canopy. The evaporation modeled
from BEPS increases slightly with an increase in
elevation in the forest region. Because the change range
of evaporation is small, the spatial pattern of ET mainly
depends on transpiration.

Validation of NPP

Comparing the modeled NPP with ground-based data
(Figure 9; Table 3), we found that, although the modeled NPP
of forest is higher than the observed NPP, with a mean relative
error of 8.6% and the largest error of 36.8%, they are consistent
with each other. The correlation coefficient is up to 0.90. The
results demonstrate that the NPP map (Figure 7) has a
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Vegetation type
Mean ET
(mm)

Standard
error (mm)

Broadleaf forest 566 124
Coniferous forest 333 35
Mixed forest 510 70
Crop 469 128
Alpine tundra and shrub 216 82
Urban and built-up 110 5

Table 2. Annual ET for different land cover types
on the north slope of Changbaishan Natural Reserve
in 2001.

Figure 9. Comparison between observed NPP and NPP estimated
using the BEPS model.



reasonable accuracy of at least better than 75% for remote
sensing applications (Liu et al., 2002).

Conclusion
Based on field data and Landsat ETM+ images, the BEPS

model was successfully used to produce net primary
productivity (NPP) and evapotranspiration (ET) maps in
Changbaishan Natural Reserve, China. The results show that
the modeled and observed NPP of forests agree fairly well, with
a mean relative error of 8.6%, demonstrating that BEPS can be
effectively used to estimate NPP of forests using high-
resolution images. As BEPS has only been applied to coarse-
resolution images, our study further confirms that remote
sensing images are indeed useful for the study of terrestrial
water and carbon cycles.

The NPP of forests in the study area mainly ranges from 400
to 600 g C m–2·a–1. The NPP of mixed forest is the highest, with
a mean of 500 g C m–2·a–1, and that of alpine tundra and shrub is
the lowest, with a mean of 136 g C m–2·a–1.

Unlike the spatial pattern of NPP, the annual ET changes
distinctly with a change in elevation. ET decreases from greater
than 600 mm at the foot of the mountain to about 200 mm at the
top. ET is highest for broadleaf forest and lowest for urban and
built-up areas.
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