
Inversion of terrestrial ecosystem model parameter values
against eddy covariance measurements by Monte Carlo
sampling

W O L F G A N G K N O R R * w and J E N S K A T T G E w
*QUEST Department of Earth Sciences, Wills Memorial Building, University of Bristol, Queen’s Road BS8 1RJ, UK,

wMax-Planck Institute for Biogeochemistry Hans-Knöll-Str. 10 07745 Jena, Germany

Abstract

Effective measures to counter the rising levels of carbon dioxide in the Earth’s

atmosphere require that we better understand the functioning of the global carbon cycle.

Uncertainties about, in particular, the terrestrial carbon cycle’s response to climate

change remain high. We use a well-known stochastic inversion technique originally

developed in nuclear physics, the Metropolis algorithm, to determine the full

probability density functions (PDFs) of parameters of a terrestrial ecosystem model.

By thus assimilating half-hourly eddy covariance measurements of CO2 and water fluxes,

we can substantially reduce the uncertainty of approximately five model parameters,

depending on prior uncertainties. Further analysis of the posterior PDF shows that

almost all parameters are nearly Gaussian distributed, and reveals some distinct groups

of parameters that are constrained together. We show that after assimilating only 7 days

of measurements, uncertainties for net carbon uptake over 2 years for the forest site can

be substantially reduced, with the median estimate in excellent agreement with

measurements.
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Introduction

Only about half of the increasing emissions of CO2 from

human activities currently remain in the atmosphere

(Prentice et al., 2001). The remainder is taken up by both

the oceans and the terrestrial biosphere, to roughly

equal amounts (Joos et al., 2003). This current carbon

sink in the terrestrial biosphere is, by some models at

least, predicted to turn into a source (Cox et al., 2000;

Cramer et al., 2001; Friedlingstein et al., 2003). Better

quantification of the exchange fluxes of CO2 between

the terrestrial biosphere and the atmosphere and better

understanding of the underlying processes are there-

fore of foremost importance for the design of efficient

climate protection strategies. Terrestrial ecosystem

models (TEMs) have been used extensively to study

the processes leading to either carbon loss or gain by

the land biota (McGuire et al., 2001; Prentice et al., 2001).

However, results still vary significantly because of

differences between models (Cramer et al., 1999). While

only very few studies using TEMs have considered

uncertainties in fluxes as a result of parameter

uncertainties, Knorr & Heimann (2001a, b) have shown

that uncertainties of TEM process parameters lead at

least to the same spread of simulated atmosphere–

vegetation carbon fluxes as intermodel differences.

More recently, Kaminski et al. (2002) have shown that

TEMs can be combined with atmospheric transport

inversion techniques. By using an additional process

model and a Bayesian approach to parameter inversion,

such inversions are both better constrained than

transport inversions and allow inferences about the

underlying processes. An example of a more complex

Carbon Cycle Data Assimilation System (CCDAS) is

given by Rayner et al. (2005). CCDAS requires one to

specify prior means and error covariance matrices of

model parameters, as an approximation of the prior

probability density function (PDF) of parameters. To
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generate and analyze such a PDF is one purpose of the

present study.

Few attempts exist at quantifying uncertainty ranges

based directly on experimental data (Knorr, 2000; White

et al., 2000; Knorr & Heimann, 2001a). It is, therefore, of

general interest to utilize the still growing amount of

eddy covariance measurements of CO2 and water

fluxes (FLUXNET, Global Carbon Project, 2003) for

ecosystem model parameter estimation. Wang et al.

(2001) used a non-Bayesian parameter optimization and

showed that for their model, up to five parameters

could be estimated on the basis of eddy covariance

measurements of CO2, water, heat and ground heat

fluxes. Prior knowledge of parameter values was used

to initialize the parameters that were optimized, to set

the parameters that remained unaffected by the

optimization, and to determine reasonable limits for

the space of parameter solutions allowed. The result is a

set of model parameters that are either based fully on

prior estimates, or fully on the inversion against

measurements.

Here, Bayesian methods offer a more consistent

approach by combining prior knowledge with the

additional information gained from the inversion. This

does not only allow the simultaneous determination of

all parameters, it also allows considering prior knowl-

edge consistently for all parameters. Weakly con-

strained parameters are, therefore, given an

appropriate uncertainty range instead of being ex-

cluded a priori from the optimization. The method can

be applied to global scale inversions (Rayner et al.,

2005), or to sites using flux measurements as a model

constraint.

With this contribution, we will demonstrate a general

method for Bayesian parameter estimation of complex,

process-based TEM, where parameter uncertainty

ranges are derived from systematic sampling of the

complete PDF. By comparing prior and posterior

uncertainty ranges of parameters, it will be deter-

mined which parameters can be constrained by -

eddy covariance measurements of CO2 and water

fluxes for a given set of prior parameter uncertainties

and for a given measurement error, using a particular

TEM. The analysis of covariances is then used to

determine which parameter values cannot be deter-

mined independently by the data. Finally, simu-

lations with the constrained model – using both the

complete PDF or its first two moments – are carried

out for much longer time series than those used

during the parameter estimation, to test the validity of

the parameterization across time. Here, we also assess

whether an approximation to the full PDF as used

by CCDAS (means and error covariances) sufficiently

represents uncertainties in net CO2 fluxes. The

method is thus presented as a prototype for an

initial step of CCDAS that allows the exploitation of

widely available site-specific flux data through con-

straining model parameters.

Methods

Monte Carlo inversion

The given task of this study is to determine the

probability distribution of a vector of model parameters

p, given a set of measurements f, in this case fluxes.

Whether a given vector p agrees with f is determined

by running the model M, such that

fMðpÞ ¼Mðp; c; sÞ: ð1Þ

fM is the vector of model-simulated measurements, and

c and s vectors of environmental boundary conditions

and model state variables, respectively. f, fM, c and s

contain values across both time and types of data (CO2,

water and heat fluxes; temperature, solar radiation,

humidity; soil moisture and leaf area index (LAI)),

while p is assumed invariable in time. For a process-

based TEM, M is usually nonlinear and too complex to

be expressed as a set of standard mathematical

functions. According to Mosegaard (1998), this amounts

to a general inverse problem that can most efficiently be

solved by direct sampling of the PDF in parameter

space using Monte Carlo techniques. Developed for

applications in nuclear physics (Metropolis et al., 1953),

and later geophysics (Mosegaard & Tarantola, 1995;

Mosegaard, 1998; Mosegaard & Rygaard-Hjalsted,

1999), it is now widely used in other fields of

environmental modeling. It consists of a stochastic

technique that generates a random set of points

p1, . . ., pN in parameter space with a distribution that

approximates any given function f(p) for large values of

N. For a Bayesian inversion, this function is chosen as

the posterior PDF of model parameters, given by

fðpÞ ¼ nLðpÞrðpÞ ð2Þ

with a normalization constant, n (Mosegaard & Sam-

bridge, 2002). L(p) is the likelihood function, which

expresses the misfit between model-derived values and

measurements in relation to measurement error, and

r(p) is the prior probability distribution of parameters.

Errors representing missing or incorrect processes were

neglected in this study. The likelihood function is

expressed as the negative exponential of the misfit

against measurements, Jf(p), such that

LðpÞ ¼ expf�JfðpÞg ð3aÞ

with

JfðpÞ ¼ 1
2ðMðpÞ � fÞTC�1

f ðMðpÞ � fÞ: ð3bÞ
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Cf is the error covariance matrix of the measurements,

and the superscript T denotes the transposed vector.

Similarly, the prior probability, r(p), can be written as

rðpÞ ¼ expf�JpðpÞg ð4aÞ

and

JpðpÞ ¼ 1
2ðp� p0Þ

TC�1
p ðp� p0Þ ð4bÞ

with p0, the vector of prior parameter values, and Cp,

the error covariance matrix of the priors. The formula-

tion assumes Gaussian uncertainties for both prior

parameters, p, and the assimilated data, f.

Standard inversion techniques aim at inferring the

global minimum of the function, J(p) 5 exp{–f(p)}. In

the case of Monte Carlo inversion, the generated series

of sample points, p1, . . ., pN, simply has a distribution

with its highest density in the vicinity of the maximum

of f(p). If the objective is to gain understanding of the

probability distribution of parameters rather than to

find the exact optimum, this technique has obvious

advantages. The sampled distribution can subsequently

be used to compute the expected value of any desired

variable or expression, x, under the predefined PDF,

f(p):

xh i ¼
Z

xðpÞfðpÞdp ffi 1

N

XN

i¼1

xðpiÞ: ð5Þ

To assess to what degree the distribution of model

parameters deviates from a Gaussian one, it is also

possible to compute the projection of the multidimen-

sional PDF onto the dimension of a single parameter

(importance sampling) from

fiðpÞ ¼
Z

fðpÞdp1 . . . dpi�1dpiþ1 . . . dpn

ffi 1

eN

XN

j¼1

Ip�e=2;pþe=2ðpjÞ: ð6Þ

Ia,b(x) denotes the interval function, which is 1 if

a � xob, else 0, and e an appropriately chosen

resolution parameter.

The complete method of Monte Carlo inversion is

described in detail by Mosegaard & Tarantola (1995)

and reviewed by Mosegaard & Sambridge (2002). We

always perform one iteration starting from the prior set

of parameters (i.e. p1 5 p0). For some cases (see

Results), we add an ensemble of Monte Carlo integra-

tions with varying starting points in the way suggested

by Gelman et al. (1995). To generate subsequent values

p2, p3, . . . in each series, a new point is tried by varying

all vector elements by some step, Dp, chosen with a

Gaussian distributed random number generator with

mean zero and standard deviation set for each para-

meter separately to the prior uncertainty times an

appropriately chosen step-length factor. The new point,

pi 1Dp at step i of the iteration, is accepted or rejected

according to a two-step version of the Metropolis

algorithm: The first step is always accepted, if

r(pi 1Dp)/r(p) � 1, and it is accepted with a prob-

ability of r(pi 1Dp)/r(p) if r(pi 1Dp)/r(p)o1. Accep-

tance with a probability of o1 – the latter case – is

carried out by generating a uniformly distributed

random number between 0 and 1. Only if this number

is less than the chosen probability, the first step is

accepted. The second step is assessed in the same way

as the first, except that the prior probability r(p) is

replaced by the likelihood function L(p). Only if both

steps are accepted, the next point in the series is

pi 1 1 5 pi 1Dp, else pi 1 1 5 pi (i.e. the previous point is

chosen again). We adjust the step length for each

parameter to values which lead to an average accep-

tance rate of the new points around 0.3 (Gelman et al.,

1995). Only the second step requires model execution.

Simulations

As a demonstration of the Monte Carlo method, we

chose two different photosynthesis models and two

setups with a reduced and a more extensive part of the

Biosphere Energy-Transfer Hydrology (BETHY) model.

The reduced version of BETHY is used together with

the C4 photosynthesis model and excludes the hetero-

trophic respiration part. Compared with the C3 version

with heterotrophic respiration, this reduces the number

of free parameters from 23 to 14. The C4 version uses

eddy covariance measurements, by Kim & Verma

(1991), from the first ISLSCP field experiment (FIFE)

grassland experimental site in Kansas, and the C3

version data from the Loobos pine forest site in the

Netherlands (Dolman et al., 2002).

Input and flux data

The FIFE site in north-eastern Kansas, USA (391030N,

961320W) was dominated by the C4 tallgrass species

Andropogon gerardii, Sorghastrum nutans and Panicum

virgatum. The implementation of BETHY for this site is

also described by Knorr (1997). In this case, we

assimilated daytime data of net canopy assimilation

(gross primary productivity (GPP) minus total-canopy

leaf respiration) derived from eddy covariance mea-

surements of net ecosystem exchange (NEE) by

subtracting soil and plant, excluding leaf, respiration

rates derived from night-time CO2 fluxes, for 4 days

representative of the 1987 growing season: June 5, July

2, July 30, and August 20. July 30 was the only date

with severe drought. We also assimilated daytime

canopy conductance values for the same dates and

times that were obtained through inversion of the
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Penman–Monteith equation against daytime latent

energy flux measurements. Photosynthetically active

radiation (PAR), air temperature, vapor pressure deficit

(VPD) and relative plant available soil moisture (w/wm,

Eqns (A12) and (A17)) were used as input data. All data

were taken from Kim & Verma (1991). Global radiation

was computed from Julian day, longitude and latitude,

while wind speed and free-air CO2 concentration were

left constant at 3 m s�1 and 355 ppm, respectively. We

used a relative uncertainty of 20% for both net canopy

assimilation and canopy conductance, with a threshold

of 3.0mmol m�2 s�1 and 1.5 mm s�1, respectively.

The vegetation at the Loobos site (the Netherlands,

521100N, 51740E) was dominated by Pinus sylvestris with

an understory of the grass Deschampsia flexuosa (Dol-

man et al., 2002). Global radiation, PAR, air tempera-

ture, ambient CO2 concentration, wind speed, VPD and

total soil water content, wtot, were used as input data.

Soil water content at wilting point (2.5% vol.) and at

field capacity (12.4% vol.) were estimated from soil

texture information. We assimilated half hourly values

of NEE and latent energy flux (LE) from 7 days, 5 in

1997 (January 14, March 3, July 9, September 24,

October 25), and 2 in 1998 (May 15, August 9). Those

days were chosen to represent typical conditions of the

various seasons, have as complete data coverage as

possible, and at least some cloud-free conditions during

daytime. We also required that there was no rainfall

during the day and the day before so that soil and

canopy evaporation could be neglected. The uncer-

tainty of NEE was taken to be 20% of NEE during day

and 50% of NEE during night, accounting for low wind

speed and little turbulence during night-times. The

minimum uncertainty threshold was set to

3.0mmol m�2 s�1. Uncertainties of LE were considered

to be 20% of LE, with a threshold of 22.0 W m�2.

Uncertainties of input data were not considered for

either site.

Prior model parameter values and uncertainties

All model parameters and their prior values are listed

in Table 1. Their choice is based on the model

description of BETHY (Knorr, 2000), with a few

exceptions: the value for rJmVm was derived from data

by Wullschleger (1993), Medlyn et al. (2002) and

Leuning (2002); k25 and Ek follow Knorr (1997); ERd

was set to the value cited by Kim & Verma (1991); fR,leaf

was modified for one plant respiration rate instead of

separate maintenance and growth respiration; Rhet
0 was

set to a value for which the heterotrophic respiration

model (at a priori parameter values) driven with data

from the Loobos site reproduces the range of measured

soil respiration rates given in Raich et al. (2002) and

Reichstein et al. (2003); Q10 follows Raich et al. (2002);

wpwp was derived from soil texture information and soil

water potential relations from Schachtschabel et al.

(1992); and av was set to the upper bound of values

given by Knorr (2000).

We distinguish between model parameters (Table 1)

and parameters used by the Metropolis algorithm

written p 5 {p1, . . ., pN}. For the model parameters, we

assume a priori that (a) they are always greater than

zero and (b) that they have a log-normal distribution.

The parameters used by the optimization will be called

log-normal parameters and have a prior value of 1 and

a prior uncertainty of 0.125, 0.25, and 0.5. The log-

normalized parameters have a prior distribution that is

Gaussian (Eqn (4b)). To transform from log-normalized

parameter, p, to model parameter pi (see previous

section), we use the following equation:

p
i
¼ expðpi � 1Þp

i; 0
: ð7Þ

pi,0 is the prior value in model parameter space as listed

in Table 1. Note that throughout the remainder of this

analysis, we will show and discuss exclusively the log-

normalized parameters (with the exception of Table 3),

because their prior values are identical (1.0) and their

posterior values easier to intercompare.

An exceptional model parameter is fCi , for which we

require 0 � fC � 1. Instead of a log-normal distribution

in model parameter space, we choose a probability

distribution that is defined by a normal distribution but

is cut off at 0 and 1. fCi;0
is the prior estimate of fCi

, and

fCi
¼ pkfCi; 0

replaces Eqn (7), where k is the parameter

index for fCi.

The vector of prior log-normalized parameters is thus

p0 5 {1, . . ., 1}, and Cp, the error covariance matrix of the

priors:

Cp i; j
¼ x2 if i ¼ j

0; else;

�

where x is 0.125, 0.25, or 0.5, as above. Covariances for

priors are assumed to be zero. For the prior probability

distribution, r(p) (Eqns (4)), we have the additional

condition

rðpÞ ¼ 0 if pk � 0 or pk � 1=fCi;0
;

expf�JpðpÞg else:

�

Results

We will, first, show results to demonstrate convergence

of the algorithm. Next, optimized parameter values will

be described by their means, standard errors, and

covariances, all in the space of log-normalized para-

meters (cf. Eqn (7)). Comparison with prior means and

errors indicates about how many parameters we have

learned something through the assimilation of the eddy
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covariance data. We also assess for which parameters

the posterior PDF differs from the Gaussian distribu-

tion assumed for the prior PDF. For the Loobos site, we

eventually compute the cumulative NEE with and

without optimized parameters over a period of 2 years

to test the validity of parameterizations across time and

to assess to what degree the inversion has lead to a

constraint on the modeled longer-term ecosystem

carbon balance.

Convergence of the algorithm

To insure convergence, we performed rather long

integrations with 500 000 iterations (and more in one

case). For the two cases with 0.25 prior uncertainty, we

produced a series of six independent simulations

starting from different points in parameter space: the

prior parameter vector, p0 5 {1, . . ., 1} in the space of

log-normalized parameters, and points shifted away

from the estimated posterior optimum, p0, by one to

several times the posterior standard deviations,

r05 {r01, . . ., r0n} estimated from preliminary simula-

tions. For FIFE, the starting points were p0, p01 r0,

p01 2r0, p01 3r0, p0�r0, p0�2r0, for Loobos p0, p01 2r0,

p0�2r0, p01 4r0, p01 4{ 1 r01,�r02, 1 r03, . . .} and

p0�4{ 1 r01,�r02, 1 r03, . . .}. Sampling was done at

every 10th iteration to avoid correlations between

subsequent samplings (i.e. 500 000 iterations yielded

50 000 samplings of parameters of interest sampled

according to Eqn (5)). To determine at which iteration

the sequences have converged to a common maximum,

as opposed to sampling around local maxima, we

applied Gelman’s criterion of convergence (Gelman et

al., 1995) for all parameters. This test of convergence,

Table 1 Parameters of BETHY that were used as priors in the inversion against eddy covariance measurements

Symbol Description Value Unit Eqn C3 C4

Photosynthesis

aq Quantum efficiency of photon capture (C3) 0.28 mol(e�) mol�1 A1c X

Vm
25 Maximum carboxylation rate at 25 1C (C3) 29 mmol m�2 s�1 A2 X

Vm
25 Maximum carboxylation rate at 25 1C (C4) 8 mmol m�2 s�1 A2 X

EVm
Activation energy of Vm 58 520 J mol�1 A2 X X

rJmVm
Ratio of Jm to Vm at 25 1C 1.79 – A3 X

G
*
25 CO2 compensation point without dark respiration at 25 1C 42.5 mmol mol�1 A4 X

KC
25 Michaelis–Menten constant for carboxylation at 25 1C 460 mmol mol�1 A5 X

EKC
Activation energy of KC 59 356 J mol�1 A5 X

KO
25 Michaelis–Menten constant for carboxylation at 25 1C 0.33 mol mol�1 A6 X

EKO
Activation energy of KO 35 948 J mol�1 A6 X

ai Quantum efficiency of photon capture (C4) 0.04 mol(CO2) mol�1 A7 X

k25 CO2 specificity at 25 1C 0.14 mol m�2 s�1 A8 X

Ek Activation energy of k 50 967 J mol�1 A8 X

Carbon balance

fRd
Ratio of leaf dark respiration at 25 1C and Vm

25 (C3) 0.011 – A10 X

fRd
Ratio of leaf dark respiration at 25 1C and Vm

25 (C4) 0.042 – A10 X

ERd
Activation energy of leaf dark respiration 45 000 J mol�1 A10 X X

fR,leaf Ratio of canopy to total plant respiration 0.5 – A11 X

Rhet
0 Heterotrophic respiration at 0 1C and field capacity 2.07 mmol m�2 s�1 A12 X

k Soil moisture factor of heterotrophic respiration 1 – A12 X

Q10 Temperature dependency of heterotrophic respiration 1.72 – A12 X

Stomatal control

wpwp Soil water content at permanent wilting point 2.5 vol% – X

fCi
Non water limited ratio of Ci,0 and Ca (C ) 0.87 – A14 X

fCi
Non water limited ratio of Ci,0 and Ca (C4) 0.67 – A14 X

cw Maximum water supply rate of root system 1 mm h�1 A17 X X

Energy and radiation balance

o Single scattering albedo of leaves 0.12 – – X X

av Albedo of close vegetation surface cover 0.2 – A18 X X

as Fraction of solar radiation absorbed by soil under close canopy 0.05 – A18 X X

es Sky emissivity factor 0.64 – A19 X X

ga,v Vegetation factor of atmospheric conductance 0.04 – A20 X

BETHY, Biosphere Energy-Transfer Hydrology.
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designed for practical purposes, yields a reduction

factor defined as the square root of the ratio of the mean

variances of the various sequences divided by the

variance of the means yielded by each sequence. This

reduction factor is sampled from exactly the second half

of the series up to the iteration indicated (see below the

discussion of ‘burn-in time’, and Fig. 1e, f). If all

sequences sample the same area of the parameter space,

the reduction factor will approach a value of one,

values much greater than one indicate sampling of

different regions around local minima by the different

sequences.

The parameters that took longest to reach a common

maximum, according to Gelman’s criterion, were ai for

FIFE and fCi
for Loobos. The evolution of the estimated

mean values is shown in Fig. 1a and b, respectively,

again for every 10th iteration. Also shown are one fast

converging parameter, and the parameter that was

most highly correlated to the first. Note that in Fig. 1b,

EVm appears to be converging more slowly than fCi . The

explanation is that EVm remains highly uncertain and,

as we will see later, assumes an extremely non-

Gaussian distribution within the posterior PDF. In

general, parameters for the FIFE site seem to converge

faster than for Loobos, which would be expected for an

inversion with 14 instead of 23 parameters.

A more convenient way to visualize convergence of

the sampling sequences is a phase diagram using the

costs of the prior probability (Eqn (4b), costs of

parameters) and the misfit in the Likelihood function

(Eqn (3b), costs of diagnostics) as the two axes (Gelman

et al., 1995). As Fig. 1c and d shows for both sites and

0.25 prior uncertainty, all sequences appear to converge

against a common global cost function minimum

(maximum of the PDF), despite widely varying starting

points. The convergence, however, is less straight for

FIFE, where a local minimum with a cost of diagnostics

of around 500 is initially reached by some of the

simulations. Analysis of the other simulations (not

shown) reveals that the sequence with 0.125 prior

uncertainties remains even longer in a similar local

minimum until it reaches a region with costs of

diagnostics and parameters both around 200. The

simulation with 0.5 prior uncertainty does not seem to

find a local minimum and converges more rapidly, with

costs of diagnostics around 100, and costs of parameters

around 35.

The ratio of the costs of diagnostics over parameters

in the region of the global minimum gives an indication

of how strongly the inversions are constrained by

observations. For the FIFE site, this ratio varies between

around 1, 2, and 3 for 0.125, 0.25, and 0.5 prior

uncertainties. For Loobos, the costs of diagnostics

decrease only about 10% from 0.125 to 0.5 prior

uncertainties, and the costs of parameters all lie around

40, giving an almost constant ratio of around 10.

Apparently, the more reduced model version with 14

parameters needs rather weak constraints on para-

meters to converge efficiently, and is still less con-

strained by observations than the more direct inversion

against NEE and LE. Note, however, that the FIFE

inversion used only 4 days and only data from daytime

fluxes.

To determine a practical initial cut-off for iterations

before convergence to the global PDF maximum, the so-

called ‘burn-in time’ with length n iterations, we used

again Gelman’s test (Gelman & Rubin, 1992; Cowles &

Carlin, 1996). It requires that the reduction factor

computed for the ensuing n iterations (i.e. iterations

n 1 1 to 2n) reaches a value of around 1.2–1.4 for all

sampled quantities of interest. Figure 1e and f show this

reduction factor for the same parameters as Fig. 1a and

b, together with the values of the product of the slowest

converging parameter with the two others, as a

function of the total number of simulations, variable

burn-in time plus ensuing iterations of the same length.

Products are required to compute parameter covar-

iances and appear to converge at least as rapidly as the

slowest parameter. (The reduction factor is always

applied to the second half of the iterations up to the

number indicated. A burn-in time of n 5 50 000 thus

corresponds to 100 000 iterations.) To be on the safe

side, we chose a burn-in time of length n 5 50 000

iterations.

Convergence of parameters for the cases with 0.125

and 0.5 prior uncertainties was evaluated by plotting

expected values of all parameters against the length of

the burn-in time. The same burn-in time of 50 000

iterations was found to be sufficient for all cases except

for FIFE with 0.125 prior uncertainty, where 1 000 000

iterations were chosen instead. For the case of 0.25 prior

uncertainty, we carried out six sequences, for the other

only one. For each sequence, we continued with

another 450 000 iterations after burn-in (including the

FIFE 0.125 case). Because only every 10th iteration was

sampled, this yielded 45 000 parameter samplings for

0.125 and 0.5 prior uncertainties, and 270 000 samplings

from six sequences for 0.25 prior uncertainties. Each

sequence of 500 000 iterations took ca. 5 h central

processing unit time on a Linux PC workstation with

1.9 GHz clock speed.

Parameter change and uncertainty reduction from
constraining with eddy covariance data

Means and standard deviations can be estimated

directly from the samplings of the posterior PDF in

the space of the log-normalized parameters. As the
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Fig. 1 Convergence of the Monte Carlo inversion for 0.25 prior uncertainty of the log-normalized parameters, for the FIFE (left: a, c, e), and

the Loobos site (right: b, d, f). (a, b) Estimated mean of selected parameters depending on number of iterations; (c, d) phase diagram of the two

contributions to the total cost function, measuring deviation from prior parameters and between measured and modeled diagnostics

( 5 fluxes), for sequences with varying starting points; (e, f) Gelman’s reduction factor for the same parameters as above, and for two parameter

products. The selected parameters are: the slowest converging, one fast converging, and the one most highly correlated with the first.
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parameters represent different processes, comparison

with prior means and uncertainties provides valuable

information on those processes about which we

can learn most through the use of eddy covariance

data. The means and ranges corresponding to one

standard error are shown in Fig. 2 for all prior and

posterior parameter values. For the non-Gaussian

prior distribution of fCi
, we show the corresponding

percentiles.

For the C4 FIFE site, patterns of parameter change are

consistent between versions 0.25 and 0.5, with version

0.125 being similar for most parameters, except for

those two of the CO2 specificity, k. The standard rate,

k25, and its activation energy, Ek, are decreased by a

large amount when prior uncertainties are large, while

they are not affected by the inversion when prior

uncertainties are small. We interpret this result in the

following way: both parameters describe one of three

co-limiting rates that determine C4 photosynthesis (Eqn

(A7)). In one case, the priors are set in such a way that

the rate Jc, is never limiting the actual rate A. Once prior

uncertainties are increased, the inversion gains more

freedom and finds a solution where all three rates, Je, Jc,

and Ji, are limiting and agreement with observations is

significantly improved (see lower cost of diagnostics

between the local and the global minimum in Fig. 1c).

For the Loobos C3 site, patterns of parameter changes

are similar for versions 0.125 and 0.25. The pattern of

version 0.5 differs from these for at least five para-

meters: G
*
25, KC

25, ERd
, k and av. For the photosynthesis

parameters, there is a consistent pattern of lower

quantum efficiency, aq, with little change in maximum

carboxylation rate, Vm
25, and an increase in the carbox-

ylation rate’s activation energy, EVm . For others, there is

no consistency: the direction of change depends on the

prior uncertainty (for rJmVm
, G

*
25, KC

25), or changes are

small overall. For the respiration parameters, there is a

consistent increase in Q10, and a decrease in the overall

heterotrophic respiration expressed through Rhet
0 (ex-

cept for 0.125 prior uncertainty). As for FIFE, the

posterior values of the stomatal parameters cw and fCi

are almost independent of the prior uncertainty ranges,

2.0

1.5

1

0.5

1.5

1

0.5

0

2

1.5

1

0.5

0

−0.5

−1.0

Photosynthesis Photosynthesis RespirationResp.
Stomatal
control

Stomatal
control

Energy balance Energy balance

L
og

-n
or

m
al

iz
ed

 p
ar

am
et

er
 v

al
ue

s

2.72

1.65

1

0.61 

1.65

1

0.61 

0.37

2.72

1.65

1

0.61

0.37

0.22

0.14

M
od

el
 p

ar
am

et
er

 v
al

ue
s 

re
la

tiv
e 

to
 p

ri
or

�i Ek ERd
cw av

as ga,v

εs

εs

�q

k25

Vm
25

Vm
25 rjmVm fR,leafEVm

EVm

fRd
fCi

fCi

ω
ωΓ

*
25

Kc
25 Ko

25

EKC Rhet
0 Q10

fRd
wpwp cw av

as ga,vEKO
ERd

κ

Fig. 2 Prior and posterior parameter values and uncertainties for the log-normalized parameters (transformation to model parameters

see Eqn (7)). The boxes show means and one standard deviation of assumed prior parameters (SD 5 0.125, 0.25, 0.5). Crosses show the

posterior means, and error bars 1 SD of the posterior parameters. Left: Biosphere Energy-Transfer Hydrology (BETHY) model C4 version

constrained with data from FIFE site; right: BETHY C3 version constrained with data from Loobos site. The axis on the right hand side

shows the model parameter values divided by their respective priors for comparison (does not apply to parameter fCi
).

1340 W. K N O R R & J . K A T T G E

r 2005 Blackwell Publishing Ltd, Global Change Biology, 11, 1333–1351



and there is a universal downward adjustment of the

third, wpwp.

Another quantity that measures the gain in informa-

tion after inversion against the eddy covariance data is

the relative reduction in uncertainty, defined as

1�sposterior/sprior, where s is the parameter’s standard

deviation. For fCi, with its non-Gaussian prior distribu-

tion, we again use the equivalent percentile range

for sprior. If this value comes close to one, we have

gained almost complete knowledge of the particular

parameter concerned. Because s is derived from the

complete PDF, cases where this value is less than 0 are

also possible. The relative reduction in uncertainty is

shown in Fig. 3.

For both sites, most information is gained for the

stomatal parameters, in particular fCi. This is not a great

surprise, as stomata regulate water-use efficiency, (i.e.

the ratio of lost water to gained carbon dioxide

molecules), and the fluxes of both (or derived quan-

tities) are just the information that is assimilated. The

next best-constrained process is photosynthesis, with

most information gained for quantum efficiency (ai or

aq for C3 or C4), maximum carboxylation rate, Vm
25, and

for C4 the functionally similar CO2 specificity, k25

(except, again, for FIFE 0.125). Within the energy and

radiation balance, most information is consistently

gained for the sky emissivity parameter, es. Only in

some cases, information is gained about albedo (av) and

aerodynamic conductance (ga,v). For FIFE, the two

respiration parameters are consistently constrained,

while for Loobos, only very little can be learned about

either autotrophic or heterotrophic respiration. There

seems to exist a principle difficulty to distinguish

between autotrophic and heterotrophic respiration on
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the basis of net CO2 flux measurements. This result

should caution us against the use of night-time CO2

flux data to derive GPP from NEE, here implicit in the

data from the FIFE site.

Covariances between parameters

Covariances between parameters, given in their log-

normalized form in Table 2 for 0.25 prior uncertainties

and both sites, can be used to find groups of parameters

that tend to be constrained together. For FIFE, we

rather do not find such distinct groupings of para-

meters. Instead, we find that 11 of the 14 parameters

from different parts of the model are strongly correlated

with other parameters, with a log-normalized covar-

iance ( 5 correlation coefficient) of up to 0.91 for the

pair cw and es. Two parameters, fRd
and es, have a

correlation of over 0.30 to four other parameters.

For Loobos, however, we can identify some distinct

groups of parameters for which errors are correlated.

The first such emerging group consists of the six

first photosynthesis parameters (aq, Vm, EVm , rJmVm , G
*
25,

KC
25) plus the stomatal parameter, fCi . These are linked to

a second energy balance group consisting of es and

ga,v via fCi
, EVm

and aq. fCi
is only weakly correlated

to the other, soil moisture-related stomatal parameter,

cw. This latter parameter cannot be separated from

the wilting point parameter, wpwp: the covariance in

log-normalized space reaches 0.75, which indicates

that the effect on NEE and LE of changes in one

parameter is compensated by changing the other

parameter in the same direction. A third group is

formed by the three heterotrophic respiration para-

meters, Rhet
0 , k, and Q10: these are linked to the first

group by a high log-normalized covariance between

Q10 and EVm .

There is one important difference between the two

sites that affects parameter correlations: for FIFE,

canopy conductance is assimilated, whereas for Loobos

it is (through latent heat flux) the measured transpira-

tion rate. For example, the correlation between cw and es

is 0.91 for FIFE, but –0.12 for Loobos. Also, cw at Loobos

is highly correlated with wpwp, a parameter that is

absent at FIFE. For both sites, increasing cw leads to a

higher root supply rate and an increase in the canopy

conductance and transpiration rate, all other para-

meters being equal. Increasing es, through increasing

net radiation, increases atmospheric demand (D in the

model description, see Appendix), and through this the

transpiration rate. As stomata respond to atmospheric

demand by closing (Eqn (A17)), increasing es, leads to a

decrease in canopy conductance. To match the quantity

that is assimilated, both cw (or wpwp) and es have either

opposing effects (FIFE: on canopy conductance) and are

correlated, or have an effect that goes in the same

direction (Loobos: on transpiration) and must therefore

be anticorrelated to compensate each other.

Analysis of the posterior PDF

So far, we have only analyzed means and covariances

derived from the PDF of the posterior parameters. Table

3 lists the prior and posterior means of both the model

and the log-normalized parameters. We will now assess

whether the assumption of Gaussian posterior distribu-

tions is adequate – the advantage would be easy use of

the PDF in a global CCDAS (see Introduction). The

analysis is based on the medium case of 0.25 prior

uncertainty of log-normalized parameters. The skew-

ness and kurtosis of the PDF projected onto each log-

normalized parameter is also listed in Table 3. Skew-

ness measures whether a distribution is ‘leaning,’ or

skewed, towards either the left (i.e. values smaller than

the mean, negative skewness), or the right (positive

skewness). Kurtosis indicates ‘peakedness’ relative to a

Gaussian distribution, where distributions flatter than

Gaussian have negative values (Storch & Zwiers, 1999).

Most parameters show only small deviations from a

Gaussian distribution, with skewness often slightly

negative.

A few parameters, however, are more negatively

skewed and some have a markedly ‘pointed’ distribu-

tion (high positive kurtosis): es for FIFE, and EVm , ga,v

and wpwp for Loobos (see Fig. 4). EVm , ga,v also show an

increase in the standard deviation from prior to

posterior. If the distribution of a parameter is much

different from Gaussian, then estimation techniques

that use the gradient in parameter space to find the cost

function minimum, and second derivatives of the cost

function to derive parameter uncertainties, will give

erroneous results. For fCi (FIFE), this would lead to a

mean of 1.11 instead of 1.09, and a slight underestimate

of the uncertainty. The effect would not be large for

wpwp (Loobos), either, and still quite acceptable for ga,v,

given the generally large uncertainties.

Extrapolation of results in time

We have obtained a constrained parameter PDF for the

BETHY C4 and C3 models from 4 or 7 selected days of

eddy covariance data, respectively. The question to ask

now is how the gained process knowledge, expressed

through reduced parameter uncertainty, translates into

reduced uncertainty about the quantity of highest

interest: the net sink at the site over a longer time

period. For that purpose, we have computed the

cumulative NEE over a period of 2 years at the Loobos

site, complete with 95% confidence ranges, from the
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prior, the posterior Gaussian, and the full-posterior

PDF. The posterior Gaussian PDF approximates the full

PDF by using only the means and the error covariance

matrix. As Fig. 5 shows by the green area, prior

uncertainties about parameter values of BETHY were

consistent with the Loobos site being both a strong sink

(positive NEE), or a moderate source of carbon

(negative NEE) over the 2 years. After constraining

the model, the 95% confidence range lies outside of the

median prior estimate and Loobos is now very

Table 3 Prior and posterior parameter values in model space for FIFE (above, BETHY C4 version), and Loobos (below, BETHY C3

version); prior parameter and standard deviation (SD) in log-normalized space; posterior parameter with SD, skewness and

kurtosis, also in normalized space (strongly non-Gaussian parameters highlighted)

Parameter

Model parameter Log-normalized parameter

Prior po Posterior Prior SD Posterior SD Skewness Kurtosis

Vm
25 8.00E�06 1.59E�05 0.25 0.15 0.33 0.33

EVm
5.85E 1 04 5.54E 1 04 0.25 0.23 �0.07 �0.03

ai 4.00E�02 3.05E�02 0.25 0.08 0.30 �0.25

k25 1.40E�01 4.94E�02 0.25 0.07 0.28 0.29

Ek 5.10E 1 04 2.59E 1 04 0.25 0.17 �0.04 �0.01

fRd
4.20E 1 02 5.62E�02 0.25 0.20 �0.01 �0.04

ERd
4.50E 1 04 9.47E 1 04 0.25 0.09 �0.17 �0.02

fCi 6.70E�01 7.82E�01 0.24* 0.02 �0.28 0.30

cw 1.00E 1 00 9.26E�01 0.25 0.05 �0.33 0.10

o 1.20E�01 9.27E�02 0.25 0.22 �0.11 �0.02

av 2.00E�01 1.03E�01 0.25 0.17 �0.27 0.07

as 5.00E�02 3.87E�02 0.25 0.22 �0.09 0.00

es 6.40E�01 3.17E�01 0.25 0.07 �0.57 0.32

ga,v 2.43E�02 6.43E�03 0.25 0.19 �0.10 �0.20

aq 2.80E�01 1.60E�01 0.25 0.12 0.13 �0.14

Vm
25 2.90E�05 3.13E�05 0.25 0.18 �0.01 �0.12

EVm
5.85E 1 04 7.99E 1 04 0.25 0.26 �1.10 1.01

rJmVm
1.79E 1 00 1.89E 1 00 0.25 0.22 0.15 �0.18

G
*
25 4.25E 1 01 4.33E 1 01 0.25 0.27 0.01 �0.16

KC
25 4.60E�04 4.56E�04 0.25 0.20 �0.23 0.20

EKC
5.94E 1 04 6.01E 1 04 0.25 0.27 0.06 0.03

KO
25 3.30E�01 3.31E�01 0.25 0.24 0.05 0.00

EKO
3.60E 1 04 3.77E 1 04 0.25 0.28 0.14 0.16

fRd
1.00E�02 9.69E�03 0.25 0.23 �0.01 �0.05

ERd
4.50E 1 04 4.35E 1 04 0.25 0.24 0.01 0.00

fR,leaf 5.00E�01 4.77E�01 0.25 0.23 0.01 0.11

Rhet
0 2.07E 1 00 1.77E 1 00 0.25 0.21 0.00 0.00

k 1.00E 1 00 9.91E�01 0.25 0.24 �0.01 �0.07

Q10 1.72E 1 00 2.11E 1 00 0.25 0.18 �0.21 0.22

wpwp 2.50E 1 00 1.98 1 00 0.25 0.12 �0.55 0.54

fCi
8.70E�01 9.05E�01 0.20* 0.02 �0.11 �0.12

cw 1.00E 1 00 5.82E�01 0.25 0.08 0.02 �0.05

o 1.20E�01 1.23E�01 0.25 0.26 0.03 0.06

av 2.00E�01 1.89E�01 0.25 0.24 �0.04 �0.02

as 5.00E�02 4.95E�02 0.25 0.25 �0.01 0.14

es 6.40E�01 4.82E�01 0.25 0.13 0.16 0.32

ga,v 4.00E�02 2.92E�02 0.25 0.28 �0.39 0.71

Prior distribution is Gaussian in the log-normalized space, and log-normal in model parameter space. The posterior model

parameter value is the transformed log-normalized prior using Eqn (7).

*Prior distribution is a Gaussian function with a cutoff at 0 and 1 in model space. Shown is the 68.3 percentile range which is

equivalent to 1 SD.

BETHY, Biosphere Energy-Transfer Hydrology; FIFE, First ISLSCP Field Experiment Kansas site.
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definitely identified as a CO2 sink. This means that

extrapolating 7 days of NEE and LE data through the

assimilation procedure resulted in a sink estimate that

was both significantly different from the best prior

estimate and significantly different from zero. Further,

we find that using the full PDF in parameter space

results in only about half of the uncertainty in NEE over

the 2 years compared with using a PDF derived from

parameter means and covariances. Skewness and

kurtosis of the full PDF of the cumulative NEE can

also be relatively large.

Note that this result still depends on the prior

uncertainty, which was only estimated in a simple

and preliminary way for this study. Also, assimilating

more days of flux measurements would lead to stronger

constraints of model parameters and fluxes, which

would lead to even smaller uncertainties of the

cumulative NEE. Here, we can instead use the

measured NEE of the 2 years, with a few gaps (for

which we assumed NEE 5 0), to validate our time

extrapolation (Fig. 5, blue line). With this additional

assumption as a point of caution, we arrive at around

25 mol(CO2) m�2 yr�1 or 300 g C m�2 yr�1 net uptake

from both the observations and the model simulations.

The generally good agreement between modeled (after

assimilation) and measured NEE across the 2 years

shows that the model is able to capture the main

processes that influence this quantity. We therefore

suggest, that the method shown here with all available

measurements assimilated, could be a superior gap
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filling method compared with the ones usually em-

ployed by the eddy covariance community.

Discussion

We have performed several Bayesian inversions of an

ecosystem model, BETHY, constrained by eddy covar-

iance data of carbon and water fluxes. There were two

sites, one C3 and one C4, and three sets of assumptions

about prior parameter uncertainties. We find that the

method works very well, although some care has to be

taken to insure algorithm convergence. Compared with

non-Bayesian, standard optimization techniques (e.g.

Wang et al., 2001), the method treats all parameters

equally and simultaneously, and is still able to

distinguish between those parameters that can be

constrained by the eddy covariance data, and those

that cannot. With 4 or 7 days of diurnal data

assimilated, the Bayesian part of the cost function in

the region of the minimum was between two and 10

times the cost of the measurements, so that the

inversion was found to be constrained predominantly

by the flux data. Similar to Wang et al. (2001), who used

non-Bayesian inversions, we find that typically five

parameters can be effectively constrained by the

method. Perhaps not surprisingly, two to three of them

are stomatal parameters: stomata control the balance

between carbon uptake and transpiration at the leaf

level, both were assimilated, albeit at the stand level.

This shows that leaf-level functional representations

can be effectively constrained. One of the parameters,

es, strictly speaking, belongs to the external driver of

BETHY used in the computation of incoming thermal

radiation. This particular result indicates that assimilat-

ing accurate radiation data (obliterating the need for es)

will likely improve parameter estimation further. We

could also constrain parameters describing the light

response (ai, aq), and sometimes the temperature

response of photosynthesis (k25). It is evident that a

sufficient range of environmental conditions must be

present during the period for which the data were

assimilated to gain information about the dependencies

on those conditions. The use of a diurnal cycle and of

different dates across the seasons must have helped

here, and may explain how well the eddy-flux

constrained model performed against the 2-year mea-

surements.

The method also delivers information on the error

covariances of parameters. This information can be

used to find out which processes can be constrained

individually by the assimilation of the eddy flux data.

Analysis of the full PDF, only possible by Monte Carlo

methods, shows that most parameters tend to have

distributions close enough to a Gaussian one for

gradient and second-derivative methods to work

effectively. These usually require a few orders of

magnitude fewer iterations. Only one parameter was

identified with a distribution so far away from a normal

one that such methods would have underestimated the

posterior mean and uncertainty to a large degree.

One straightforward and easy application of the

method presented here would be to use the posterior

means and covariances of the parameter PDF as priors

in a global-scale data assimilation system (cf. Rayner et

al., 2005). We expect that using the Gaussian part of the

complete PDF will tend to overestimate the uncertainty

of the model diagnostics.

We have found that the results of our study

depended on the prior uncertainty of the parameter

values. This uncertainty itself will depend on the

parameter in question, the scale at which the model is

applied, and the amount of available information at

that scale. Our preliminary results (unpublished)

indicate that for Vm
25, 0.5 prior uncertainty at the site

scale would be a realistic assumption in the log-

normalized space if only the functional type of

vegetation is known.

We have so far restricted our study to cases that are

rather rare when considering the entire FLUXNET

archive: we relied on the availability of soil moisture

measurements. Applying the method for more sites,

however, will be crucial for identifying representative

model parameterizations by plant functional type, or

some other generalization on which global models
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necessarily rely. Therefore, we expect to conduct further

studies using the complete BETHY model with the full

water balance. If no complete data on LAI are available,

a phenology scheme may also be included. LAI and soil

moisture data could then also be assimilated instead of

being used as input. We also suggest using more days

and longer periods for assimilation, although we find

that only a few days of data already deliver a strong

model constraint.

Conclusions

The parameterization of global TEMs for carbon cycle

studies poses great challenges. We are confronted with

model errors, errors from the finite accuracy of

parameter estimation, and representation errors that

result from the fact that models need to work with a

finite set of idealized vegetation types. This study

demonstrates that inversion against eddy covariance

data can be a powerful tool for using local measure-

ments to constrain the possible range of ecosystem

model parameters. Such information about parameter

uncertainties is crucial for understanding to what

degree of confidence we can use models to compute

the global terrestrial carbon balance.

The advantage of the Monte Carlo inversion techni-

que is that it works even for highly nonlinear models,

and that it allows sampling the complete posterior PDF.

This can be used to estimate how well methods will

work that derive uncertainties from the curvature of the

cost function at its global minimum. Because they

require far fewer iterations, such methods are better

suited for global applications, especially when para-

meters need to be inverted simultaneously.

Further use of this method will require a careful

analysis of the prior uncertainties of model parameters.

For the envisaged global applications, it will also be

important to repeat the analysis with a sufficient

number of sites per major vegetation type in order to

gain an understanding of the representation error. We

suggest that using such studies to determine prior

parameter uncertainties for global carbon cycle data

assimilation could be one of the principle applications

of data from the growing network of eddy covariance

measurement sites. We believe that such a method of

extrapolating measurements from local sites to the

global scale through the determination and spatial

extrapolation of parameters would be the most promis-

ing and most adequate route to better global TEMs.

These will be crucial for any application aimed at

predicting the future response of the carbon cycle to

climate change, including atmosphere – vegetation

feedbacks.
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Appendix: The BETHY model

Overview

We use a process-based model of the coupled photo-

synthesis and energy balance system, the BETHY

scheme, to simulate the exchange of CO2, water and

energy between the plant canopy and the atmosphere.

BETHY computes absorption of PAR in three layers,

while the canopy air space is treated as a single, well

mixed air mass with a single temperature. Evapotran-

spiration and sensible heat fluxes are calculated from

the Penman–Monteith equation (Monteith, 1965). Car-

bon uptake is computed with the model by Farquhar et

al. (1980) for C3, and the one by Collatz et al., (1992) for

C4 plants. The stomata and canopy model of Knorr

(2000) simulates canopy conductance in response to

PAR; in the absence of water stress in such a way as to

satisfy the demand for CO2. In water-stressed situa-

tions, stomata are further closed until transpiration

reaches a specific root supply rate that depends on soil

moisture. The carbon balance is computed as plant and

soil respiration subtracted from the photosynthesis rate

to yield net CO2 fluxes. The full version of BETHY,

described in Knorr (2000) and Knorr and Heimann

(2001a), also contains submodels for soil water balance,

snow, canopy and soil evaporation, and phenology,

which are not used here. Instead, LAI and soil moisture

are treated as external forcing data (elements of s in Eqn

(1)). The version of BETHY for C3 vegetation used here

has 23 free parameters, while the C4 version has 14.

Following is a description of all free model parameters
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and their meaning in the context of the model.

Parameters have been marked as underlined mathe-

matical symbols and are listed in Table 1, complete with

their prior values. (Those that do not appear in one of

the equations appear underlined in the text.)

Photosynthesis

For C3 vegetation, gross leaf CO2 uptake, A, is

calculated as (cf. Farquhar et al., 1980):

A ¼ min½Jc; Je� ðA1aÞ

with

Jc ¼ Vm
Ci � G�

Ci þ KCð1þOx=KOÞ
; ðA1bÞ

Je ¼
aqIJmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2
m þ aq

2I2
q Ci � G�

4ðCi þ 2G�Þ
ðA1cÞ

A is gross photosynthesis, or GPP, I is absorbed PAR, Ci

the leaf-internal CO2, and Ox the oxygen concentration

( 5 0.21 mol(O2)/mol(air)). aq is the quantum efficiency

of photon capture (mol(e�) mol(photons)�1) and Vm the

maximum carboxylation rate (in mol(CO2)m�2 s�1),

expressed as

Vm ¼ V25
m exp

EVmðTK � 298 KÞ
RTK298 K

� �
exp k12

Lu þ Ll

2

� �
ðA2Þ

with the activation energy EVm (in J mol�1). Lu and Ll

are the LAI of the upper and lower bounds of the

specific canopy layer under consideration, and k12 a leaf

nitrogen scaling parameter set to 0.5/cos(y12). y12 is the

solar zenith angle at noon.

Further, Jm, the maximum electron transport rate

(same units as Vm), is expressed as

Jm ¼ rJmVm
V25

m

TC

25�C
: ðA3Þ

This rate, at standard temperature, is assumed

proportional to Vm with an additional proportionality

constant (e.g. Wullschleger, 1993). Tc is the canopy

temperature in 1C, Tk the canopy temperature in

Kelvin, and R the universal gas constant

(8.314 J K�1 mol�1). The CO2 compensation point with-

out dark respiration, G
*
, follows from:

G� ¼ G25
�

TC

25�C
: ðA4Þ

The two Michaelis–Menten constants for carboxylation

and oxygenation, KC and KO, respectively (in J mol�1),

have a temperature dependence based on Arrhenius’

equation similar to Vm:

KC ¼ K25
C exp

EKC
ðTK � 298 KÞ
RTK298 K

( )
ðA5Þ

and

KO ¼ K25
O exp

EKO
ðTK � 298 KÞ
RTK298 K

( )
: ðA6Þ

For C4 photosynthesis, the model of Collatz et al. (1992)

is used with:

A ¼ min½Je; Jc; Ji� ðA7aÞ

with

Je ¼ Vm; ðA7bÞ

Jc ¼ kCi; ðA7cÞ

Ji ¼ aiI ðA7dÞ

Vm is computed from Eqn (A2), ai is the C4 quantum

efficiency (in mol(CO2)/mol(photons)), and k is the C4

CO2 specificity (in mol(CO2) m�2 s�1), with

k ¼ k25 exp
EkðTK � 298 KÞ

RTK298 K

� �
: ðA8Þ

Photosynthesis rates are computed across three

different layers of the canopy, each with its own value

for I and Vm, and thus A. The sum over the three layers

yields Ac, the canopy gross photosynthesis.

Carbon balance

To compute net CO2 uptake by the leaves, leaf or ‘dark’

respiration, Rd, is subtracted from A to yield net leaf

CO2 uptake, An, with

An ¼ A� Rd ðA9Þ

and

Rd ¼ fRd
V25

m exp
ERd
ðTK � 298 KÞ
RTK298 K

( )
: ðA10Þ

Summation of Rd across canopy layers yields Rd,c, the

canopy dark respiration.

There are two standard values for fRd
, one for C3 and

one for C4 vegetation. Dark respiration is assumed to

be a constant fraction of total plant, or autotroph

respiration, Raut, such that

Raut ¼
Rd; c

fR; leaf
: ðA11Þ

fR,leaf stands for the fraction of total plant respiration

contributed by the leaves. This formulation differs from

the form chosen in the original description of BETHY,

which contains an additional term for ‘growth respira-

M O N T E C A R L O I N V E R S I O N O F E C O S Y S T E M M O D E L 1349

r 2005 Blackwell Publishing Ltd, Global Change Biology, 11, 1333–1351



tion’ assumed proportional to net primary productivity.

Such an implicit formulation yields a sum of two terms,

one of which is proportional to Raut of Eqn (A10), the

other to GPP. The above formulation was chosen for

simplicity in order to avoid unnecessary co-dependence

of parameters.

For soil (excluding root), or heterotroph respiration,

Rhet, we use an exponential temperature dependence on

air temperature (Ta, in 1C) times a soil water factor

(with zero respiration at zero plant-available soil

moisture):

Rhet ¼ R0
het

w

wm

� �k

Q10
Ta=10�C: ðA12Þ

wm is the plant available soil water content at field

capacity (% volume), and Rhet
0 soil respiration at 0 1C

and with soil water content at field capacity. w is the

plant-available soil water content (% volume) and

is computed from total soil moisture, wtot, as

w 5 max{wtot, wm}�wpwp, is the soil water content at

the permanent wilting point, which is used as another

free parameter in the case that total soil water content is

used as input.

Finally, the net carbon flux of the site is given by

FCO2 ¼ A� Raut � Rhet: ðA13Þ

Stomatal control

The model of stomatal control follows the assumption

that, in the absence of water stress, leaf-level photo-

synthesis operates at a standard ratio between the leaf-

internal CO2 concentration, Ci, and the CO2 concentra-

tion of free air, Ca. This value is given by

Ci; 0 ¼ fCi Ca ðA14Þ

with two values for fCi
, one for C3 and one for C4

vegetation. In order to determine the demand for CO2

uptake, An is first calculated as An,0 for Ci 5 Ci,0, and

Tc 5 Ta. Inversion of the diffusion equation for CO2 at

the stomatal boundary is then used to compute

stomatal conductance in the absence of water stress at

each canopy layer (in m s�1):

gs; 0 ¼
1:6An; 0

Ca � Ci;0

RTk

p
: ðA15Þ

p is air pressure (in Pa). If at the time of highest

demand, D, transpiration rates exceed a root water

supply rate, S, stomatal conductance at each canopy

layer is reduced according to

gs ¼
gs; 0

1þ beDa
ðA16Þ

by adjusting be such that S 5 D. Da is the VPD of the

free air. This supply rate is taken as

S ¼ cw
w

wm
: ðA17Þ

Next, the canopy temperature, Tc, is computed con-

sistent with the energy balance after integrating gs over

the canopy to obtain the canopy conductance used in

the Penman–Monteith equation. Then, the photosynth-

esis model is run again, but at a fixed stomatal

conductance, gs, obtained from Eqn (A16), which yields

the final gross, A, and net photosynthesis rate, An.

Energy and radiation balance

PAR absorption is calculated according to the two-flux

scheme by Sellers (1985) with three vertical layers of

equal LAI. The diffuse fraction of PAR is calculated

according to a procedure by Weiss and Norman (1985).

Leaf-angle distribution is assumed to be uniform, and

the only free parameters for this scheme is o, the leaf

single-scattering albedo.

To determine evapotranspiration rates from the

Penman–Monteith formula, BETHY computes net

radiation balance of the canopy, Rn,c, according to the

following equation:

Rn; c ¼ ð1� tl;vÞ ðea � esfcÞsT4
K; a � G

h i
� 1� aV � aS

� �
fPARRS: ðA18Þ

ea and esfc 5 0.97 are sky and surface emissivity,

respectively, TK,a air temperature in Kelvin,

s5 5.6703� 10�8 W m�2 K�4 the Stefan–Boltzmann con-

stant, and tl,v the longwave transmissivity of the

vegetation, assumed tl,v 5 fc exp(�0.5L/fc) 1 (1�fc). fc
is the fraction of soil covered by vegetation. For the

shortwave part, RS is incoming solar radiation (W m�2),

fPAR is the fraction of PAR absorbed by the vegetation

and computed by the two-flux scheme, av the albedo of

the vegetation at the limit of high LAI and closed

canopy, and as the amount of solar radiation absorbed

by the soil under the canopy at the same limit. G is the

ground heat flux, assumed to be a fixed fraction of total

net radiation. (Contrary to Rn,c, total net radiation does

not depend on G, so there is no implicit equation to be

solved.) The sky emissivity is computed from

ea ¼ es
ea

TK; a

� �1=7

ð1þ 0:22n2
cÞ ðA19Þ

with the cloud cover fraction nc. If no separate

radiation data for PAR and solar radiation are available,

RS is calculated from PAR according to Weiss and

Norman (1985).

The aerodynamic exchange between the canopy and

the free air is described as

Ga ¼ ga; vu ðA20Þ

1350 W. K N O R R & J . K A T T G E

r 2005 Blackwell Publishing Ltd, Global Change Biology, 11, 1333–1351



with wind speed, u, and a proportionality factor serving

as a free model parameter. Wind speeds below 1 m s�1

are uniformly set to 1 m s�1 to avoid unrealistically high

canopy temperature under conditions of extremely still

air and high incoming radiation. The prior value of ga,v

is determined from the following formula:

ga; v ¼
k2

ln href=rzhc þ azð Þ½ �2
: ðA21Þ

href is the reference height above canopy (10 m), hc the

canopy height, k 5 0.41, rz 5 0.1 and az 5 1.

M O N T E C A R L O I N V E R S I O N O F E C O S Y S T E M M O D E L 1351

r 2005 Blackwell Publishing Ltd, Global Change Biology, 11, 1333–1351


