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a  b  s  t  r  a  c  t

Terrestrial  ecosystems  are  highly  sensitive  to  climatic  changes  in  early  and  late growing  seasons.  Land
surface  phenology  (LSP),  the  study  of the  timing  of  recurring  seasonal  pattern  of  variation  in vegetated
land  surfaces  observed  from  synoptic  sensors,  has thus  received  much  attention  due  to  its role  as a
surrogate  in  detecting  the  impact  of  climate  change.  Although  several  studies  have  been  conducted  on
the growing  season  LSP,  studies  on  the net carbon  uptake  phenology  (CUP)  defined  as  the  detrended
zero-crossing  timing  of  net  ecosystem  productivity  from  a source  to a sink  in spring  and  vice  versa  in
autumn,  have  been  scarce.  Here  we  present  a CUP  determination  approach  using  the  commonly  available
remote sensing  data  in  four  selected  temperate  and  boreal  deciduous  forest  CO2 flux  tower  sites.  We
test  a hypothesis  that  the  mean  monthly  surface  temperature  and  LSP  derived  from  remote  sensing
observations  explain  the  CUP  both  in  spring  and  autumn  seasons.  Our  approach  predicts  the  observed
CUP  in  spring  and  autumn  within  8  day  mean  errors,  equivalent  to the  temporal  resolution  of  the 8-day
composite  remote  sensing  dataset  used  in  this  study  for the four  flux  tower  sites.  The  results  from  this
study  will  have  a large  implication  for  global  change  studies  with  increasing  amount  of  valuable  remote
sensing  data  to  be used  for monitoring  CUP  beyond  the  footprints  of  CO2 flux  towers.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The carbon balance of terrestrial ecosystems is highly sensitive
to climatic changes in early and late growing seasons (Bergeron
et al., 2007; Piao et al., 2007, 2008; Wu et al., 2012a,b). Changes in
land surface phenology (LSP) events have the potential to broadly
impact terrestrial ecosystems and human societies, by altering the
timing of, for example, global carbon, water, and nitrogen cycles,
interspecific interactions both among plants and between plants
and insects, crop production, frost damage, pollination seasons,
and spreading diseases (Cook et al., 2010; de Beurs et al., 2009;
de Beurs and Henebry, 2010; Menzel and Fabian, 1999; Menzel
et al., 2006; Penuelas and Filella, 2001; Schwartz, 1998; Schwartz
and Reiter, 2000; White et al., 1999, 2009). While the seasonal pat-
terns of vegetated land surface variability are related to biological
phenomena, LSP is distinct from traditional definition of plant phe-
nology, which is the study of the timing of recurring biological
events, the causes of their timing with regard to biotic and abiotic
forces, and the interrelation among phases of the same or differ-
ent species (Lieth, 1974). Therefore, after de Beurs and Henebry
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(2004),  we define LSP as the study of the timing of recurring sea-
sonal pattern of variation in vegetated land surfaces observed from
synoptic sensors. Due to the increasing availability of synoptic
multi-temporal optical satellite data, LSP has emerged as an impor-
tant focus for ecological and global change researches (Bradley
et al., 2011; Cleland et al., 2007; de Beurs and Henebry, 2004;
Lokupitiya et al., 2009; Menzel, 2002; Nakaji et al., 2011; Park et al.,
2012; Post and Inouye, 2008; Shen et al., 2011; Siebert and Ewert,
2012; Sonnentag et al., 2012). Remote sensing based LSP estimate
provides aggregated spatiotemporal information at moderate to
coarse spatial resolutions, which relate to the timing of vegetation
growth, senescence, dormancy, and associated surface phenomena
at seasonal and interannual scales. Spring and autumn tempera-
tures over northern latitudes have risen by about 1.1 ◦C and 0.8 ◦C,
respectively, over the two decades before the year 2000 (Mitchell
and Jones, 2005) with a simultaneous greening trend character-
ized by a longer growing season and greater photosynthetic activity
(Myneni et al., 1997; Zhou et al., 2001). These observations have led
to speculation that spring and autumn warming could enhance car-
bon sequestration and extend the period of the net carbon uptake
in the future (Churkina et al., 2005).

Despite significant recent efforts to characterize, understand,
and model the spatiotemporal variation of LSP (Hudson and
Keatley, 2010; White et al., 2009), the carbon uptake phenology
(CUP) has scarcely been studied due to a limited number and a poor
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spatial representativeness of the CO2 eddy covariance tower sites.
The globally distributed network of eddy covariance stations sam-
ple only a small subset of the Earth’s biomes, disturbance regimes,
and land management systems (Churkina et al., 2005). In addition
to this, the eddy covariance techniques are currently limited to rela-
tively flat terrains. Thus, studying the CUP over large heterogeneous
areas remains challenging. Remote sensing provides spatially com-
prehensive measures of land surface properties with high temporal
frequencies to study LSP from reflected, backscattered and emitted
radiation measurements, whereas CO2 eddy covariance measure-
ments allow determination of CUP from ecosystem CO2 fluxes. The
CUP is controlled by the growing season LSP, but is not identical
because growth will typically commence and terminate some time
before and after the net ecosystem productivity (NEP) changes sign
in spring and autumn, respectively (Fig. 1). CUP is defined as the
detrended zero-crossing timing of NEP from a source to a sink in
spring and vice versa in autumn. CUP is characterized by two phe-
nologically distinct days of a given year; i.e.,  start of carbon uptake
(SCU) and end of carbon uptake (ECU) days. SCU is the upward zero-
crossing day of the detrended NEP from a source to a sink in spring
whereas ECU is the downward zero-crossing day of NEP from a sink
to a source in autumn. Eddy covariance tower measurements give
both gross primary productivity (GPP) and NEP:

GPP = NEP + R (1)

where R is the ecosystem respiration (Baldocchi, 2003). GPP is
related with remote sensing measures of photosynthetic biomass
optical thickness often expressed as vegetation index (e.g., Gitelson
et al., 2008). Recent studies have attempted to relate remote sens-
ing and ground based photographic LSP estimates with that of the
GPP based LSP estimates (Gonsamo et al., submitted for publication;
Migliavacca et al., 2011; Richardson et al., 2010; Xiao et al., 2009).
However, only a number of limited attempts have been made
to estimate CUP dates from, for example, using the LSP dates
(Churkina et al., 2005), remote sensing radiation and vegetation
products (Garrity et al., 2011), and soil and air temperature proxies
(Baldocchi et al., 2005). These studies have shown that differences
in the seasonal pattern of assimilatory and respiratory processes
are responsible for divergences in CUP among ecosystems. How-
ever, the asynchronicity of photosynthesis and respiration, due
to their sensitivity to different environmental drivers, makes CUP
difficult to predict based on a single factor related to either pho-
tosynthesis or respiration. All of the previous studies (Baldocchi
et al., 2005; Churkina et al., 2005), have provided precedents to
explore the potential of remote sensing data for estimating CUP

dates beyond the footprints of flux towers. The LSP is determined
by the start (SOS) and end (EOS) of growing season days in response
to various environmental factors, such as precipitation, light, nutri-
ent, temperature, disturbances, pests and diseases, and other biotic
forces (e.g., Larcher, 1995; Rathcke and Lacey, 1985; Schwartz,
2003; Wheelwright, 1985; van Schaik et al., 1993). CUP dates occur
within LSP dates in temperate and boreal forests in a given calendar
year. The difference between SCU and SOS, called spring interval,
usually lasts less than a month whereas the autumn interval, i.e.,
the difference between EOS and ECU lasts up to 4 months in boreal
forests (Wu et al., 2012a). While the LSP dates (SOS and EOS) can
be retrieved from synoptic sensors such as remote sensing and GPP
measurements (Migliavacca et al., 2011; Richardson et al., 2010,
2012; White et al., 2009; Wu  et al., 2012a; Xiao et al., 2009), the
main environmental factor controling the CUP dates (SCU and ECU)
in temparate and boreal forest is temprature (e.g., Piao et al., 2008;
Suni et al., 2003; Tanja et al., 2003; Wu  et al., 2012a). Piao et al.
(2008) has shown that there is no significant correlation between
CUP dates and precipitation anomalies in temperate and boreal
ecosystems. Thus, we hypothesize that, temperature is the main
factor for the transition of SOS to SCU in spring, and ECU to EOS  in
autumn.

Both LSP and temperature can be retrieved using satellite
remote sensing observations. Therefore, in this study, we test the
potential of remotely sensed temperature and phenology index (PI)
for determining the CUP over temperature limited temperate and
boreal forests. Our main goal is to develop a simple CUP estimation
method that can incorporate photosynthesis and respiration based
on commonly available spatiotemporal datasets such as remote
sensing and gridded meteorological observations. The results from
this study will have a significant implication for global change
studies with increasing amount of valuable remote sensing and
eddy covariance measurements being integrated for comprehen-
sive analysis of environmental controls on ecosystem productivity.
We do not intend for this study to be considered a comprehensive
analysis of CUP across the global flux networks sites. The selected
four temperate and boreal flux sites consist long term CO2 flux and
meteorology measurements over phenologically distinct mature
forests sites.

2. Materials and methods

We  restrict this study to FLUXNET networks from Canadian Car-
bon Program (CCP: http://www.fluxnet-canada.ca) and AmeriFlux
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Fig. 1. A schematic of curve fitting mechanism for the phenology index (PI), gross primary productivity (GPP), and net ecosystem productivity (NEP) time series for the
Saskatchewan Old Aspen flux tower site for year 2007. PI data points which fall further from the fit line are subsequently assigned less weight in the phenological fit. Both
the  PI and GPP were fitted using a double logistic function. The exact start (SOS) and end of season (EOS) are shown as estimated from PI and GPP for year 2007 indicated by
vertical lines. Whereas, start (SCU) and end of carbon uptake (ECU) are estimated from NEP.
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Table  1
List of the CO2 eddy covariance tower sites used in this analysis, years of the flux measurements, overstorey genera,  their location, mean annual air temperature (Ta) and
references describing site characteristics and measurements.

Site Genera Location Years Ta (◦C) References for data and site

Old Aspen, Saskatchewan (CA OA) Populus 53.63N/106.20W 1997–2010 0.4 Barr et al. (2004), Black et al. (2000)
Harvard Forest, Massachusetts (US HA1) Quercus/Acer 42.54N/72.17W 1992–2008 7.4 Urbanski et al. (2007)
University of Michigan Biological Station, Michigan (US UMB) Populus 45.56N/84.71W 1999–2008 5.5 Gough et al. (2008)
Morgan Monroe, Indiana (US MMS)  Quercus/Acer 39.32N/86.41W 1999–2008 11.8 Schmid et al. (2000)

(http://public.ornl.gov/ameriflux/dataproducts.shtml) mature for-
est study sites whose trees have broad leaves and deciduous habits,
with long term (minimum of 10 years) CO2 flux measurements.
The key genera at the sites used in this analysis include Populus
(aspen), Acer (maple), and Quercus (oak), although other deciduous
and needleleaf trees are present in all of the sites. Most of these for-
est sites are closed canopies; their leaf area indices ranged between
2 and 5, with average tree age ranging between 60 and 110. The
mean annual precipitation ranged between 470 and 1120 mm.  The
selected long term records of four broadleaf forest sites represent
diversity in regions, age structure, climate, and species composition
of typical old growth deciduous vegetation across North America
(Table 1). Characteristics of the sites used in this analysis, and pri-
mary references describing additional site details are summarized
in Table 1.

For CCP sites, a standard procedure was used to estimate the
daily NEP and GPP from gap-filled half-hourly measurements (Barr
et al., 2004). Empirical regressions of night-time net ecosystem
exchange to temperature and daytime GPP to photosynthetically
active radiation (PAR) were used to estimate GPP to fill gaps as dis-
cussed in Barr et al. (2004).  For the AmeriFlux sites, level-4 daily
products were used which contain gap-filled and friction velocity,
u∗ filtered records of carbon fluxes with flags regarding the quality
of the original and gap-filled data. The half-hourly datasets were
gap-filled using the Marginal Distribution Sampling (MDS) method
(Reichstein et al., 2005). Although different gap-filling methods
were used among CCP and AmeriFlux datasets, the reliability of the
daily NEP and GPP time series for phenology studies are guaran-
teed given the annual multiple site comparisons of most methods
tended to cluster on similar results to within 10% of each other
(Desai et al., 2008; Moffat et al., 2007; Papale et al., 2006). Monthly
mean air temperature (Ta) was also collected from sensors located
above the forest canopy at each flux tower site.

Two distinct procedures were used each to retrieve the CUP
and the LSP days from NEP and GPP measurements, respectively
(Fig. 1). A negative exponential model using polynomial regres-
sion and weights computed from the Gaussian density function
was used to derive the smoothed curves for daily NEP observations.
Then the two CUP days, i.e.,  start of carbon uptake (SCU) and end of
carbon uptake (ECU) from the zero-crossing of detrended NEP time
series are determined as illustrated in Fig. 1. For the LSP determina-
tion from daily GPP, we used the seven parameter double logistic
function:

y(t) = ˛1 + ˛2

1 + e−∂1(t−ˇ1)
− ˛3

1 + e−∂2(t−ˇ2)
(2)

where y(t) is the observed GPP at day of year (DOY) t, ˛1 is the back-
ground GPP. ˛2 − ˛1 is the difference between the background and
the amplitude of spring and early summer plateau, and ˛3 − ˛1 is
the difference between the background and the amplitude of late
summer plateau and autumn both in GPP units. ∂1 and ∂2 are the
transition in slope coefficients, and ˇ1 and ˇ2 are the midpoints in
DOY of these transitions for green-up and senescence/abscission,
respectively. The two slope midpoint DOYs (ˇ1 and ˇ2) are good
indicators of SOS and EOS from satellite measurement of normal-
ized difference vegetation index (NDVI) (e.g., Fisher and Mustard,
2007). However, for GPP, SOS is the DOY at the start of the slope of

ascending curve and EOS is the end of descending curve since GPP
follows strictly that of land surface photosynthesis (Fig. 1). There-
fore, the LSP from GPP can be estimated from Eq. (2) parameters
as the start of slope in spring (SOS = ˇ1 − 4.562/(2∂1)), and the
end of slope in autumn (EOS = ˇ2 + 4.562/(2∂2)). Given the DOYs
of the midpoint slope of spring greenup (ˇ1) and autumn brown-
down (ˇ2), the spring plateau (˛2) and ranges (˛2 − ˛1), the autumn
plateau (˛3) and ranges (˛3 − ˛1), and the average slopes of the
spring (˛2∂1/4.562) and the autumn (˛3∂2/4.562) linear transition
lines, we can mathematically estimate the minima and maxima of
the third derivatives by applying triangle identities. The SOS and
EOS are the dates defined by the intersect of the tangent at the
steepest part of the curves and of the tangents at the asymptotic
starts and asymptotic ends of the curves, respectively correspond-
ing to the roots of the third derivative of the fitted curve.

We used the remote sensing data from the MODIS Terra satel-
lite measurements. The 8-day composite reflectances from three
spectral bands, namely red (620–670 nm), near infrared (NIR:
841–875 nm), and shortwave infrared (SWIR: 1628–1652 nm) were
extracted for each 500 m flux tower pixel from MODIS surface
reflectance product (MOD09A1). In the production of MOD09A1,
atmospheric corrections for gases, thin cirrus clouds and aerosols
are implemented (Vermote and Vermeulen, 1999). We  have
extracted the reflectances and the exact acquisition date for a single
pixel of each flux tower site for dates spanning from 1 January 2001
to 31 December 2010 from the DAAC database of Oak Ridge National
Laboratory (http://daac.ornl.gov/MODIS/). We  have used the newly
developed phenology index (PI) (Gonsamo et al., submitted for
publication) derived from the commonly used vegetation indices
for phenology studies: normalized difference vegetation index
(NDVI = (NIR − red)/(NIR + red)) (e.g., White et al., 2009), and
normalized difference infrared index (NDII = (NIR − SWIR)/(NIR +
SWIR)) (Delbart et al., 2005). PI is calculated as follow:

PI =

⎧⎪⎨⎪⎩
0, if NDVI or NDII < 0

(NDVI + NDII) (NDVI − NDII) = NDVI2 − NDII2

0, if PI < 0

(3)

PI combines the merits of NDVI and NDII by taking the differ-
ence of squared greenness and wetness to remove the soil and snow
cover dynamics from key vegetation LSP cycles. PI was validated
and found to be better estimator of SOS and EOS compared to the
sole use of NDVI or NDII (Gonsamo et al., submitted for publication).
Eq. (2) was  used to derive the SOS and EOS from PI following the
same procedure described above for GPP (Fig. 1). We  have devel-
oped a simple weighting scheme, which gives a weight of half for
the sum-of-squared-error for the local value of PI if they are less
than half or more than twice of the median value of the mov-
ing window average of three points in the iterative curve-fitting
process.

The mean monthly day time land surface temperature (Ts)
was also extracted from the Version5 MODIS Terra 8-day Land
Surface Temperature & Emissivity (MOD11A2) product at 1 km
spatial resolution. The day time orbit of Terra around the
Earth passes from north to south across the equator at about
10:30 a.m. local solar time. The MODIS Ts is derived from two
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thermal infrared bands, i.e.,  band 31 (10.78–11.28 �m)  and band
32 (11.77–12.27 �m)  using the split-window algorithm which cor-
rects for atmospheric effects (Vancutsem et al., 2010). We  have
used three sets of 8-day products to estimate the monthly average
value. The missing values due to poor quality input data were filled
with the average value of the two nearest measurements in time.
MODIS Ts is one of the MODIS’s land science team products which
is underexploited for climatic and environmental studies due to
several definition and conceptual ambiguities for the meaning of
Ts (Jin and Dickinson, 2010; Shreve, 2010). Unlike the in situ mea-
sured thermodynamic Ta at CO2 flux tower height, the MODIS Ts is
defined by radiation emitted by land surface at the instantaneous
view time.

One of the first steps of predicting the CUP using the remote
sensing data is to search for proxy flux tower explanatory measure-
ments which can also be measured using satellite observations. To
do this, we first start with measured CO2 flux and meteorology data.
The SOS and EOS derived from GPP together with the monthly Ta

measured using the in situ sensors were used as explanatory vari-
ables to estimate both SCU and ECU. Next is to predict the CUP using
the remote sensing SOS, EOS and Ts based on the sensitivity analy-
sis of the in situ measurements. The predictive performance of the
least-squares linear regression model (CUP = f (LSP, T, ˇ) where T
is mean monthly temperature and  ̌ is regression coefficient) was
evaluated using coefficient of determination (R2), root mean square
error (RMSE), and leave-one-out cross-validation approach (Shao,
1993).

3. Results

3.1. Carbon uptake phenology prediction from in situ CO2 flux
and meteorology data

Table 2 presents the CUP predictive performances based on LSP
dates and mean monthly Ta explanatory variables obtained from
the CO2 flux and meteorology observations, respectively. We  have
used the GPP SOS, Ta values in February, March, April and May, the
combination of GPP SOS with May  Ta, and the combination of GPP
SOS with April Ta and May  Ta to predict the SCU (Table 2). Among
the four monthly Ta values, May  Ta explains the SCU variance rang-
ing from 0.36% to 83.37%. May  Ta explains the most followed by
SOS and April Ta. There are distinctive discrepancies among the flux
tower sites regarding the performances of each monthly Ta and SOS
(Table 2). The combination of SOS with April Ta and May  Ta explains
the most variance to predict SCU. Accordingly, we  have selected
the combination of SOS, April Ta and May  Ta for subsequent SCU

prediction using the remote sensing data. Similarly, we have also
evaluated the monthly Ta ranging from June to October in addition
to GPP EOS to predict the ECU. August Ta and September Ta were
found to be the best explanatory variables next to EOS  to predict the
ECU (Table 2). For ECU prediction, we have selected the combina-
tion of EOS, August Ta and September Ta for subsequent prediction
using the remote sensing data. Generally speaking, May  Ta is the
best temperature predictor variable for SCU whereas September
Ta is for ECU. SOS and EOS also perform comparably with May
Ta and September Ta for predicting SCU and ECU, respectively.
Model predictions of both SCU and ECU performed poorly at Har-
vard Forest (US HA1) and for SCU at Morgan Monroe (US MMS)
(Table 2).

Fig. 2 presents the scatter plots of the predicted CUP  from
the in situ measurements and observed CUP following a linear
regression (Fig. 2a) and leave-one-out cross-validation (Fig. 2b)
approach based on the best performing explanatory variables,
whereas the interannual variability is presented in Fig. 2c. All in situ
results presented in Fig. 2 are for years after 2001 for subsequent
comparisons with remote sensing results. For both predicted SCU
and ECU, the root mean square errors (RMSEs) were fewer than
8 days (Fig. 2). All of the predictive performances shown in Fig. 2
are statistically significant (p < 0.05, two-tailed). The predicted SCU,
ECU, and the carbon uptake period (ECU–SCU) capture all of the
interannual variability of the observed values in three of the four
flux tower sites (Fig. 2c). The US HA1 flux tower site has shown
poor performance for interannual variability for two years of SCU
and one year of ECU predictions (Fig. 2c). 2005, the year where the
observed SCU comes approximately 1 month later than the preced-
ing and the subsequent years have shown less agreement with the
predicted SCU. This year has relatively low NEP  and GPP due to the
drought. Compared to the poor performances of all of the explana-
tory variables presented in Table 1 for US HA1 site, the interannual
variability of the predicted CUP captures the observed dates very
well (Fig. 2c).

3.2. Carbon uptake phenology prediction from satellite remote
sensing data

Table 3 presents the predicting performances of monthly Ts

and LSP dates as retrieved from remote sensing data for esti-
mating CUP dates. The monthly mean temperature, SOS, and
EOS from remote sensing data have relatively comparable per-
formances as the in situ observation for predicting SCU and ECU
dates (Tables 2 and 3). Some of the discrepancies can be explained
by varying number of data points as the MODIS satellite data can

Table 2
The predicting performances of start (SOS) and end (EOS) of land surface phenology, and monthly mean air temperatures and their combination for estimating the start (SCU)
and  end (ECU) of carbon uptake given in percent coefficient of determination (R2) for each flux tower site and all available data values. The regression analyses are made
for  the entire flux and meteorology measurement years given in Table 1. The SOS and EOS, monthly mean air temperatures, and SCU and ECU are from the in situ CO2 eddy
covariance and meteorology measurements. The best performing explanatory variables are given in bold.

SCU SOS February March April May June SOS, May  SOS, April, May

CA OA (n = 14) 85.8* 0.4 18.8 41.2* 83.4* 3.9 94.5* 94.4*

US HA1 (n = 19) 20.2 0.21 1.5 0.1 29.0* 7.9 29.9 29.1
US  UMB  (n = 10) 64.9* 0.1 26.4 15.67 80.7* 15.0 83.8* 87.6*

US MMS  (n = 10) 3.0 1.3 4.0 18.3 0.4 0.4 5.5 21.0
All  (n = 53) 56.3* 25.3* 39.5* 55.2* 69.7* 35.2* 71.3* 72.5*

ECU EOS June July August September October EOS, September EOS, August, September

CA OA (n = 14) 50.2* 1.7 10.8 14.2 25.9 31.5* 51.8* 52.4*

US HA1 (n = 19) 8.1 5.4 10.1 1.3 1.2 0.9 8.3 9.8
US  UMB  (n = 10) 23.8 2.0 2.1 1.1 58.1* 6.0 60.5* 60.5*

US MMS  (n = 10) 89.7* 29.3 0.6 48.6* 41.7* 3.3 90.3* 90.4*

All (n = 53) 69.0* 42.7* 26.9* 45.6* 62.9* 6.5* 80.1* 80.3*

* Correlation is significant at the 0.05 p-value level (2-tailed).
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only be used after the year 2001. Although May  temperature and
SOS can almost explain the variances of SCU from both in situ and
remote sensing observations, April temperature was added despite
the fact that the addition did not result in significant improve-
ments (Tables 2 and 3). The same is true for ECU estimation as
the combination of September temperature and EOS is compa-
rable with the combination of August temperature, September
temperature and EOS for predicting ECU (Tables 2 and 3). In
both cases, the additional monthly temperatures were added with
the assumption that more explanatory temperature variables will
make the predicting performance of the regression model more
stable in extreme weather years and capture the detrended CUP
dates.

Fig. 3a presents the scatter plot of the predicted CUP from
remote sensing data and observed CUP following a linear regres-
sion, whereas Fig. 3b and c presents the scatter plot and the
interannual variability of the observed and predicted CUP dates fol-
lowing the leave-one-out cross-validation approach, respectively.
The RMSE of the predictions for both SCU and ECU following the

linear regression and leave-one-out cross-validation is compara-
ble with the temporal resolution of the satellite data (∼8 days).
This shows that the CUP can be predicted solely using the remote
sensing data to the accuracy which is comparable to the 8-day
composite temporal sampling resolution of satellite sensor in the
four temperate and boreal deciduous forest CO2 flux tower sites.
Generally speaking, the performance of the CUP prediction using
the in situ Ta and LSP dates (Fig. 2) resulted in comparable per-
formance with that of solely based on remote sensing LSP dates
and Ts (Fig. 3). This results show that CUP can be estimated using
remote sensing observations with the same performance as the
in situ measurements. The interannual variability of CUP dates from
remote sensing data (Fig. 3c) is also comparable with that of in situ
observations (Fig. 2c). The interannual performances illustrated
in Figs. 2c and 3c therefore prove that the remote sensing based
approach for CUP estimation works very well even across various
sites ranging 14◦ of latitude with significant site characteristics’
variations (Table 1). This will avoid the need for the site-by-site
calibration of the regression model.
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Fig. 2. Relationships between measured and estimated carbon uptake phenology (CUP) from the in situ measurements after year 2001. (a) Relationships between the start
(SCU)  and end (ECU) of carbon uptake observed and predicted based on the best performing explanatory variables given in Table 2, (b) relationships between SCU and ECU
observed and predicted based on best performing explanatory variables following leave-one-out cross-validation approach, and (c) the interannual evolution of the observed
SCU  and ECU plotted along with the predicted values following leave-one-out cross-validation approach. (a) and (b) are plotted for all flux measurement years whereas (c)
is  presented only for those years where there is remote sensing data for subsequent comparison. Regression analyses were based on all site values.
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Fig. 3. Relationships of carbon uptake phenology (CUP) between estimates from the remote sensing data and measured values from the in situ CO2 eddy covariance
observations. (a) Relationships between the start (SCU) and end (ECU) of carbon uptake observed and predicted based on the best performing explanatory variables given in
Table  2, (b) relationships between SCU and ECU observed and predicted based on best performing explanatory variables following leave-one-out cross-validation approach,
and  (c) the interannual evolution of the observed SCU and ECU plotted along with the predicted values following leave-one-out cross-validation approach. Regression analyses
were  based on all site values.

4. Potentials and challenges

Before we attempt to present detailed potentials and challenges
of our working approach, it is crucial that we demonstrate whether
or not predicting CUP based on LSP and monthly temperatures
works across a representative sample of the study sites. Because
the dependent and independent variables have sampling and mea-
surement errors and the remote sensing data are only for limited
site-years, the lack of statistical significance for some of the rela-
tionships may  not hold for larger area studies. A major strength
of our approach, compared with traditional phenological models
based on temperature thresholds of a chilling sum, cumulative
heat sums or growing degree days (GDD) approach (Richardson
et al., 2012) is that our method does not rely on an arbitrary
heat unit threshold that must be calibrated on a site-by-site basis.
One of the remarkable works attempting to link CUP with surface

variables, i.e.,  air and soil temperatures was that of Baldocchi et al.
(2005). However, their method has not been operational as the soil
temperature is not easily measurable or available variable from
remote sensing and meteorology networks. In our approach, both
the surface temperature and LSP dates can be obtained from eas-
ily available remote sensing observations. Figs. 2 and 3 show the
results obtained from the all available data regression analysis as
such site-by-site calibration was  not required as the traditional
phenology approaches do for example with arbitrary site specific
temperature threshold for GDD (Barr et al., 2004; Richardson et al.,
2012; Thompson and Clark, 2006; Wu et al., 2012a,b). The results
are noteworthy given the large range of age, leaf area index, lati-
tude, temperature, and precipitation regimes in the four study sites.
The poor performance of our approach at US HA1 for SCU and ECU
and at US MMS  for SCU estimations remains to be explained. How-
ever, even at US HA1 forest, most of the interannual variability
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Table  3
The predicting performances of start (SOS) and end (EOS) of land surface phenology, and monthly mean surface temperatures and their combinations for estimating the start
(SCU)  and end (ECU) of carbon uptake given in percent coefficient of determination (R2) for each flux tower site and all available data values. The SOS and EOS, and monthly
mean  surface temperatures were derived from remote sensing data whereas the observed SCU and ECU were from the in situ CO2 eddy covariance measurements. The best
performing explanatory variables are given in bold.

SCU SOS April May  SOS, May SOS, April, May

CA OA (n = 10) 84.5* 25.5 40.5* 84.8* 92.2*

US HA1 (n = 8) 31.5 1.6 20.5 31.9 37.2
US  UMB (n = 8) 84.5* 38.1 15.1 90.6* 94.1*

US MMS  (n = 8) 37.8 0.2 8.0 49.0 53.3
All  (n = 34) 74.2* 40.0* 26.4* 74.3* 75.7*

ECU EOS August September EOS, September EOS, August, September

CA OA (n = 10) 39.6 24.9 23.6 41.9 65.6
US  HA1 (n = 8) 1.8 3.4 0.6 1.7 9.6
US  UMB (n = 8) 23.4 3.0 13.7 26.1 33.6
US  MMS  (n = 8) 89.0* 45.8 34.6 94.1* 96.0*

All (n = 34) 63.8* 43.2* 66.2* 72.3* 74.0*

* Correlation is significant at the 0.05 p-value level (2-tailed).

in CUP was captured both from the in situ and remote sensing
observations (Figs. 2c and 3c). The in situ estimation of CUP dates
from the detrended NEP time series is also challenging for US
HA1 forest site since there is prolonged intermittent increase and
decrease of NEP values around zero in spring and autumn sea-
sons. Other explanation of the poor performance can come from
the significant coniferous vegetation composition such as East-
ern Hemlock and White Pine in Harvard Forest site which do not
respond the same way as deciduous forest for interannual variabil-
ity of air temperature and LSP. In that case, our method may not
work well in predominantly coniferous vegetation types. This is
also the case for many ecosystem process models which account
for phenology only considering the deciduous vegetation types
(Richardson et al., 2012). However, the feasibility of our approach
for coniferous vegetation remains to be further tested in larger
study areas.

Remote sensing of CUP as presented in this study has a com-
pelling operational potential given the easily available remote
sensing data. The main strength is that both of the explanatory
variables, i.e.,  LSP and surface temperature can be estimated with
commonly available remote sensing and meteorological observa-
tions at regional and global scales. Results from Tables 2 and 3
show that the remote sensing surface temperature (Ts) can be
used with comparable performance as the in situ measured
air temperature (Ta) for CUP estimation. Research has shown
(Richardson et al., 2012) the need for improved understanding of
the environmental controls on vegetation phenology and incorpo-
ration of this knowledge into ecosystem process models. Existing
ecosystem and climate models are less likely to predict future
responses of phenology to climate change and therefore will
misrepresent the seasonality and interannual variability of key
biosphere–atmosphere feedbacks and interactions. By being able
to predict CUP in addition to LSP, we can understand the environ-
mental controls both on assimilatory and respiratory ecosystem
processes. Only then we can account for the comprehensive feed-
backs of biosphere and atmosphere to climate changes. Currently,
even the state-of-the-art land surface schemes typically have a poor
representation of vegetation phenology (Kovalskyy and Henebry,
2012; Morisette et al., 2009). The work by Garrity et al. (2011)
found that no single source of vegetation and radiation products
from remote sensing data which are all based on the visible and
near infrared reflectances showing strong autocorrelation were
able to accurately describe the CUP. Our work includes the inter-
laced impact of both the LSP derived from visible, near infrared
and shortwave infrared reflectances, and temperature derived from
thermal emissivity of land surfaces to predict CUP.

There are however challenges that should be addressed in future
research. Most grasses, agricultural crops, and young forest stands
are carbon sources for most part of the growing season. There-
fore, irrespective of the LSP, environmental conditions, and species
similarities, forest age also plays a large role on CUP. Although
we can easily separate non forest vegetation from forest based on
remote sensing land cover maps, forest age mapping still remains
a challenge. Our approach does not separate middle aged and
mature forests from young forests. However, one of the possi-
ble solutions for separating mature forest from young forest or
non forest vegetations would be the use of weight either the
annual GPP sum from flux tower sites or the annual integrated
NDVI sum from remote sensing data. This should also be further
explored.

The development of new leaves is a prerequisite for photosyn-
thetic uptake in deciduous forest. In temperature limited temperate
and boreal deciduous forests, the site turns carbon sink within the
same year only after the leaf onset, while the interannual variation
of the rate and timing being determined predominately by tem-
perature (e.g., Piao et al., 2008; Suni et al., 2003; Tanja et al., 2003;
Wu et al., 2012a).  This is not the case in most coniferous forests. It
is difficult to define CUP in conifers because NEP may be positive
throughout the year. In evergreen conifer forests, spring recovery of
photosynthetic capacity is unrelated to changes in canopy structure
such as LSP but instead requires only sufficiently mild air temper-
atures (Tanja et al., 2003). Even if arbitrarily chosen minimum NEP
thresholds correlate well with cumulative temperature or model
estimates (Suni et al., 2003), it is difficult to apply these at different
sites, or justify them on a mechanistic basis. The transition from
net negative to net positive NEP is more flexible in coniferous than
in deciduous trees because the seasonality of coniferous species
is not determined by LSP. For example, the SCU in an evergreen
coniferous forest in Manitoba, Canada, preceded that at US HA1
deciduous flux tower site, USA, by a month or more even though
the deciduous stand is 13◦ farther south than the evergreen one
(Goulden et al., 1998). In this regard, the strength of our approach,
as compared to the commonly used temperature sum, is that the
temperature sum is irreversible by nature whereas the recovery of
NEP in a coniferous forest is not. Depending on the fluctuations in
air temperature, the recovery of NEP of evergreen species, can be
reversed and begin again. Therefore, our approach uses monthly
air temperature, two months each for spring and autumn which
are reversible variables compared to a single temperature sum val-
ues to estimate the detrended CUP dates. However, the degree to
how much this can be useful in coniferous forest needs to be further
investigated.



Author's personal copy

134 A. Gonsamo et al. / Agricultural and Forest Meteorology 165 (2012) 127– 135

5. Conclusions

This study has provided a methodology to predict CUP from
easily available remote sensing observations. The CUP in con-
trast to LSP provides the combined responses of photosynthesis
and respiration to environmental controls. The results suggest
that CUP estimation is possible based on remote sensing explana-
tory surface variables. LSP dates combined with mean monthly
air temperatures explain CUP variability by more than 70% in
spring and autumn. A more comprehensive analysis, based on
multi-year data from the CO2 eddy covariance sites across the
globe for various plant functional types, is planned as a future
FLUXNET synthesis (http://www.fluxdata.org/) project in combi-
nation with remote sensing observations. This exercise would
involve improved estimation of LSP dates such as the use of USA
National Phenology Network (http://www.usanpn.org), PhenoCam
networks (http://phenocam.sr.unh.edu),  and other related citizen
phenology networks together with gridded meteorology datasets.
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