
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Ecological Indicators 29 (2013) 203–207

Contents lists available at SciVerse ScienceDirect

Ecological  Indicators

jo ur nal homep age: www.elsev ier .com/ locate /eco l ind

Short  communication

Deriving  land  surface  phenology  indicators  from  CO2 eddy  covariance
measurements

Alemu  Gonsamoa,∗,  Jing  M.  Chena,  Petra  D’Odoricob

a Department of Geography and Program in Planning, University of Toronto, Sidney Smith Hall, 100 St. George Street, Room 5047, Toronto, Ontario M5S  3G3, Canada
b Remote Sensing Laboratories, University of Zurich - Irchel, Winterhurerstrasse 190, CH-8057 Zurich, Switzerland

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 28 April 2012
Received in revised form
13 December 2012
Accepted 30 December 2012

Keywords:
Land surface phenology
Remote sensing
GPP
Eddy covariance
Flux
Curve fitting

a  b  s  t  r  a  c  t

Recent  progress  of  CO2 eddy  covariance  (EC)  technique  and  accumulation  of  measurements  offer  an
unprecedented  perspective  to study  the  land  surface  phenology  (LSP)  in a  more  objective  way  than
previously  possible  by  allowing  the  actual  photosynthesis  measurement  – gross  primary  productivity
(GPP).  Because  of  the  spatial,  temporal,  and  ecological  complexity  of processes  controlling  GPP time  series,
the extraction  of important  LSP  dates  from  GPP  has  been  elusive.  Here,  we  present  objective  measures
of  several  LSP  metrics  from  GPP  time  series  data. A  case  study  based  on  long  term  GPP measurements
over  a  mature  boreal  deciduous  forest  is  provided  together  with  LSP  estimates  from  remote  sensing
data.  Results  show  that  most  LSP  metrics  are  interrelated  within  each  season  (spring  and  autumn)  both
from  GPP  and  remote  sensing  based  estimates.  We  provide  simple  mathematical  derivatives  of GPP  time
series  to objectively  estimate  key  LSP  metrics  such  as:  the  start,  end  and  length  of  growing season;  end
of greenup;  start  of  browndown;  length  of canopy  closure;  start,  end  and  length  of  peak;  and  peak  of
season.  These  key LSP  metrics  indicate  the  collective  ecological  responses  to environmental  changes  over
space  and  time.

© 2013  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Phenology affects nearly all aspects of ecology and evolution
from individual physiology to interspecific relationships to global
nutrient fluxes (Forrest and Miller-Rushing, 2010). Recent years
have seen a surge of studies vis-à-vis phenological responses and
climate change. Land surface phenology (LSP) defined as the study
of the timing of recurring seasonal pattern of variation in veg-
etated land surfaces observed from synoptic sensors (Gonsamo
et al., 2012a,b), is a key and a collective indicator of ecosystem
dynamics under a changing environment. LSP provides aggre-
gated information at moderate to coarse spatial resolutions, which
relate to the timing of vegetation growth, senescence, dormancy,
and associated surface phenomena at seasonal and interannual
scales. Over the last three decades, numerous studies have used
the time series data of vegetation indices derived from land sur-
face reflectance acquired by optical satellite sensors to delineate
LSP (e.g., White et al., 2009). Recent progress of CO2 eddy covari-
ance (EC) technique and accumulation of measurements offer a new
perspective for extracting LSP through gross primary productivity
(GPP). Increasing number of studies are using GPP measures for
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key LSP day of year (DOY) extraction (e.g. Ahrends et al., 2009;
Gonsamo et al., 2012a,b; Gu et al., 2009; Noormets et al., 2009;
Richardson et al., 2010; Wu and Chen, 2013) due to its compati-
ble spatial footprint with coarse and medium resolution satellite
pixels and objective land surface measure of photosynthesis (Chen
et al., 2010; Gonsamo et al., 2012a). Despite large progress in LSP
metrics extraction from remote sensing observations, the key LSP
DOYs are often extracted arbitrarily from EC based measures of
GPP. For example, Richardson et al. (2010) discussed the use of
various methods to extract start of growing season (SOS) and end
of growing season (EOG) from GPP measures: the first and last
DOY at which specific absolute thresholds of daily GPP reached 2,
4 or 6 g C m-2  d-1; and the first and last DOY at which relative
thresholds (defined in terms of maximum GPP, the peak value of
daily GPP) of daily GPP reached 25%, 50% and 75% of maximum
GPP. Because of the spatial, temporal, and ecological complex-
ity of GPP variations, the functional relevance of any particular
threshold can be elusive and thus the use of arbitrary thresh-
olds to define SOS and EOS becomes problematic. Gu et al. (2009)
and Noormets et al. (2009) discussed the use of logistic regres-
sions for LSP DOYs retrievals, but without analytical solutions to
extract various LSP metrics. Here we present objective approaches
to extract several important LSP metrics from EC based GPP
measures. This short communication also compares the LSP dates
extracted from GPP with that of improved remote sensing based
retrievals.

1470-160X/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
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Table 1
Formula for the computation of the LSP metrics from eddy covariance GPP time series.

Fig. 1 label (derivatives) LSP metrics Formulae from Eq. (1) parameters

b (1st) Mid  of greenup (MOG) ˇ1

h (1st) Mid of browndown (MOB) ˇ2

a (3rd) Start of season (SOS) ˇ1 − (4.562/2∂1)
i  (3rd) End of season (EOS) ˇ2 + (4.562/2∂2)
i  (3rd) - a (3rd) Length of season (LOS) ˇ2 + (4.562/2∂2) − ˇ1 + (4.562/2∂1)
c  (2nd) End of greenup (EOG) ˇ1 + (1.317/∂1)
g  (2nd) Start of browndown (SOB) ˇ2 − (1.317/∂2)
g  (2nd) - c (2nd) Length of canopy closure (LOCC) ˇ2 − (1.317/∂2) − ˇ1 − (1.317/∂1)
d  (3rd) Start of peak (SOP) ˇ1 + (4.562/2∂1)
f  (3rd) End of peak (EOP) ˇ2 − (4.562/2∂2)
f  (3rd) - d (3rd) Length of peak (LOP) ˇ2 − (4.562/2∂2) − ˇ1 − (4.562/2∂1)
e  (2nd) Peak of season (POS) −1.317(−∂1 − ˇ1)

2. LSP metrics from GPP measurements

The annual cycle of LSP inferred from GPP is characterized by
several key transition dates, which define the key phenological
phases of vegetation dynamics at annual time scales (Table 1 and
Fig. 1). These transition dates include key LSP dates such as: the
start of growing season (SOS), end of growing season (EOS), length
of growing season (LOS), end of greenup (EOG), start of brown-
down (SOB), length of canopy closure (LOCC), start of peak (SOP),
end of peak (EOP), length of peak (LOP), and peak of season (POS).
These LSP metrics indicate the collective ecological responses to
environmental changes over space and time and some have pre-
viously been used in remote sensing based LSP studies (e.g., Ahl
et al., 2006; Busetto et al., 2010; Noormets et al., 2009; Zhang et al.,
2003). Here, we present a new method, which fits EC GPP measures
to a logistic function of time. Based on this function, the transition
dates defined above can be identified in a systematic fashion. At
regional and larger scales, variations in community composition,
micro- and regional climate regimes, soils, and land management
result in complex spatio-temporal variation in LSP. Therefore, the
LSP determination from the GPP measures should allow flexibility
to represent the variability in vegetation temporal dynamics. The
temporal variation in GPP data for an entire growing cycle can be
modeled using a function of the form:

f (x) = ˛1 + ˛2

1 + e−∂1(x−ˇ1)
− ˛3

1 + e−∂2(x−ˇ2)
(1)

where f (x) is the observed GPP at day of year (DOY) x, ˛1 is the
background GPP, ˛2 − ˛1 is the difference between the background
and the amplitude of the spring and early summer plateau, and
˛3 − ˛1 is the difference between the background and the ampli-
tude of the late summer and autumn plateau both in GPP units. ∂1
and ∂2 are the transitions curvature parameters (normalized slope
coefficients), and ˇ1 and ˇ2 are the midpoints in DOYs of these tran-
sitions for greenup and browndown, respectively. The first, second
and third derivatives of ŷ  of Eq. (1) are given by:

f ′(x) = ˛2∂1e∂1(x+ˇ1)

(e∂1ˇ1 + e∂1x)
2

− ˛3∂2e∂2(x+ˇ2)

(e∂2ˇ2 + e∂2x)
2

(2)

f ′′(x) = ˛2∂2
1(e∂1(x+2ˇ1) − e∂1(2x+ˇ1))

(e∂1ˇ1 + e∂1x)
3

+ ˛3∂2
2e∂2(x+ˇ2)(e∂2x − e∂2ˇ2 )

(e∂2ˇ2 + e∂2x)
3

(3)

f ′′′(x) = ˛2∂3
1(−4e2∂1(x+ˇ1) + e∂1(x+3ˇ1) + e∂1(3x+ˇ1))

(e∂1ˇ1 + e∂1x)
4

− ˛3∂3
2(−4e2∂2(x+ˇ2) + e∂2(3ˇ2+x) + e∂2(ˇ2+3x))

(e∂2ˇ2 + e∂2x)
4

(4)

For each site-year, the seven parameters describing the
shape of the fitting curve can be determined by least squares
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Fig. 1. Seasonal course of gross primary productivity (GPP), and the land surface phenology metrics (denoted with letters, a–i) as defined by the extremes of the first (f’(x)),
second (f”(x)), and third (f”’(x)) derivatives of the fitted logistic function Eq. (1). The scales of the derivatives are enhanced for visual clarity. The GPP measures are from the
Canadian old Aspen flux tower site for year 2007. dag = dekagram.
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minimization of the differences between Eq. (1) and the GPP
time series. The DOYs at which the fitted logistic curve showed
characteristic curvature changes (LSP metrics) were identified
with the formula shown in Table 1 derived analytically from the
seven parameters of Eq. (1) corresponding to the minimums and
maximums of the derivatives (Eqs. (2)–(4)).  Several LSP metrics
were identified in both the spring and autumn seasons (Table 1
and Fig. 1). Metrics ˇ1(ˇ2) are the dates of maximum increase
(decrease) of the fitted curve, which are frequently used to esti-
mate the start and end of the growing season dates from remote
sensing data (White et al., 2009). Given the DOYs of the midpoints
of spring greenup (ˇ1) and autumn browndown (ˇ2), the spring
plateau (˛2) and ranges in GPP (˛2 − ˛1), the autumn plateau (˛3)
and ranges in GPP (˛3 − ˛1), and the average slopes of the spring
(˛2∂1/4.562) and the autumn (˛3∂2/4.562) linear transition lines
(Ricketts and Head, 1999), we can estimate the minimums and
maximums of the third derivatives analytically by applying triangle
identity theory. Mathematically, the upper ends of the linear part
of the greenup curve can be expressed as ˇ1 + (1.317/∂1) whereas
the browndown curve is ˇ2 − (1.317/∂2), both corresponding to the
second derivative (Eq. (3)) (details for derivation of inflection points
from sigmoid curves can be found in statistical books, e.g. Johnson
et al., 1974). The use of seven-parameter logistic function (Eq. (1))
instead of the traditional six-parameter function (e.g. Fisher et al.,
2006) gives robust statistical confidence for analytical solutions
by allowing the use of different amplitudes during the spring and
autumn halves of the growing seasons with the intention that the
ascendant (greenup) and descendent (browndown) parts can dif-
fer both in shape and in maximum values. The analytical formula
to derive all LSP metrics using the GPP measurements are given in
Table 1. These formula apply to all unimodal GPP curves and avoid
the complicated analysis of derivates to retrieve phenologically
important dates.

Metrics SOS, EOP and SOP, EOS are the dates defined by the
intersect of the tangent at the steepest part of the curves and
of the tangents at the asymptotic starts and asymptotic ends of
the curves, respectively corresponding to the roots of the third
derivative of the fitted curve (Eq. (4),  Table 1 and Fig. 1). Thus, the
length of the growing season (LOS) and peak (LOP) can be calcu-
lated from the differences between EOS and SOS and EOP and SOP,
respectively. Metrics EOG (SOB) correspond to the threshold of the
end of greenup (start of browndown) and are obtained from the
minimums of the second derivatives (Eq. (3),  Table 1 and Fig. 1) cor-
responding to the end and start of linear part of the curve in spring
and autumn seasons, respectively. We  define the time between
EOG and SOB as the length of canopy closure (LOCC) indicating the
period between the onset and offset of maximum leaf area index for
a given environmental and edaphic condition of the site in a given
year. In the same manner, the threshold date between the greenup
and browndown can be obtained from the maximum of the second
derivatives between EOG and SOB corresponding to the peak DOY
of the growing season (POG) (Eq. (3),  Table 1 and Fig. 1).

3. Case study on long term GPP measurements over mature
deciduous forest site

3.1. Site description

We used CO2 flux data from a deciduous forest site of the
Canadian Carbon Program (CCP) network, formerly known as
FLUXNET-Canada to demonstrate the phenology metrics determi-
nations. The Saskatchewan Old Aspen (OA) flux site represents
the only broadleaf forest flux tower site over Canada, importantly
located in a transitional zone between boreal forest and grass-
land (lat: 53.62889/lon: −106.19779). The forest site representing
the largest dominant and co-dominant overstorey broadleaf tree

species over the North American boreal zone is characterized by a
mean air temperature of 0.4 ◦C and a mean annual precipitation of
∼467 mm (Barr et al., 2004; Bergeron et al., 2007). The aspen trees
at this site are on average 21 m tall and 90 year old with a few Bal-
sam Poplar and thick Hazel understory with total leaf area index of
2.1 (Chen et al., 2006).

3.2. GPP measurements

We used 15 site-years of GPP data available from the CCP
website (http://www.fluxnet-canada.ca/) measured using the EC
technique for the years 1996 2010. Wind velocity components (u,
v, w, measured using 3-D sonic anemometers), air temperature,
water vapor density, and CO2 concentration were sampled at 10
to 20 Hz, and calculations of relevant covariances were performed
from these samples to obtain the fluxes. A standard procedure
was used to estimate the daily GPP from half-hourly values of
net ecosystem exchange (NEE) (Barr et al., 2004). NEE was cal-
culated as the sum of the EC CO2 flux above the canopy and the
change in CO2 storage in the air column between the EC-sensor
height and the ground. Net ecosystem productivity (NEP) was cal-
culated as NEP = − NEE. Measured ecosystem respiration (Re) was
estimated as Re = − NEP during periods when GPP was known to
be zero, i.e., at night and during both night and day in the cold
season (periods when both air and soil temperatures are less than
0 ◦C). Data gaps due to instrument malfunction, power failure, and
calibration schedule were filled using linear interpolation and rela-
tionships between Re and NEE and various climatic and biological
variables (Barr et al., 2004). Finally, GPP (dekagram m-2  d-1) was
calculated as the sum of NEP and Re:

GPP = NEP + Re (5)

Daily GPP data were fitted to the logistic function with a non-
linear regression provided with the first guess values of the seven
parameters in Eq. (1),  and solved with maximum of 2000 iterations.
All of the LSP metrics were derived from the seven parameters of
Eq. (1) as described in Table 1.

3.3. MODIS 500 m reflectance data

We  used the MODIS surface reflectance product, MOD09A1 to
compare the SOS and EOS DOYs derived from GPP to that of remote
sensing observations. In the production of MOD09A1, atmospheric
corrections for gases, thin cirrus clouds and aerosols are imple-
mented (Vermote and Vermeulen, 1999). The MOD09A1 product is
produced in 8-day ‘maximum quality’ composites in 500 m pix-
els, choosing observations with minimal cloud cover, low solar
zenith angles, and near-nadir views. The selected MOD09A1 sur-
face reflectance product consisted of ASCII subsets for the CO2 flux
tower site from the DAAC database at the Oak Ridge National Labo-
ratory (http://daac.ornl.gov/MODIS/). We  have extracted the red,
near infrared (NIR), and shortwave infrared (SWIR) reflectances
and the exact acquisition date for a single 500 m pixel at the tower
site for the period spanning from February 2000 to December 31st
2010, intersecting all available MODIS time series with GPP mea-
surements. Ninety percent of stable (day time) CO2 flux, used for
GPP, usually comes from the area less than 500 m of the tower site
(Chen et al., 2009).

We have used the newly developed phenology index (PI:
Gonsamo et al., 2012a,b) to derive remote sensing based SOS and
EOS dates from MODIS data. The PI is calculated as follows:

PI =

⎧⎪⎨⎪⎩
0, if NDVI or NDII < 0

NDVI2 − NDII2

0, if PI < 0

(6)
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where NDVI is the normalized difference vegetation index
(NDVI = (NIR − red)/(NIR + red)) and NDII is the normalized differ-
ence infrared index (NDII = (NIR − SWIR)/(NIR + SWIR)). The SOS
and EOS dates derived from PI using Eq. (1) were proven to
be better phenology estimates compared to NDVI (Gonsamo
et al., 2012a,b). Both SOS and EOS were derived after fitting
Eq. (1) in the same manner as GPP, i.e. SOS = ˇ1 − (4.562/2∂1)
whereas EOS = ˇ2 + (4.562/2∂2) corresponding to the same phen-
ology metrics from GPP (Table 1). A simple weighting scheme was
used to filter out the noisy data, which gives a weight of half for
the sum-of-squared-error for the value of PI of the central point
if they are less than half or more than twice of the median value
of the moving window of three points in the iterative curve fitting
process.

3.4. Results

Fig. 2 presents the LSP metrics derived from EC based GPP
measurements (a–i) and remote sensing data (SOS and EOS). The
study by Gonsamo et al. (2012a) demonstrated the strong agree-
ment between the SOS and EOS DOYs derived from EC GPP and
remote sensing PI with average error of less than 8 days. PI also
follows the land surface photosynthesis (GPP) better than other
commonly used vegetation indices (Gonsamo et al., 2012a).  The
current study further shows that the SOS derived from GPP explains
85% (R2 = 0.85) variability of SOS from PI whereas only 50% (R2 = 0.5)
variability is explained in the case of EOS (i.e., GPP SOS = a, and GPP
EOS = i: Fig. 2). The explained variance of EOS is less than SOS due
to difficulty in estimating the slow process of vegetation browning
and leaf abscission. The results show that the use of a more objec-
tive approach such as the logistic function used here is feasible for
LSP metrics retrievals from EC GPP measures. The interannual vari-
abilities of the spring LSP metrics (i.e., a–d and SOS) and the autumn
LSP metrics (i.e., f–i and EOS) follow the same patter within each
season (Fig. 2).

The SOS came early for years 1998, 2001, 2006 and 2010 because
the average air temperature of April and May  were the highest for
these four years. Start of peak (SOP = d) and peak of season (POS = e)
came late for year 2004 because the average temperature of May
and June were the lowest for this year. For year 2003, the autumn
LSP metrics such as the start of browndown (SOB) and end of peak

(EOP) came earlier due to the record high temperature of July and
August for this year compared to other years although the end
of season (EOS) was  comparable with other years (Fig. 2). Fig. 2
also shows that the greenup is faster than the browndown. A close
examinations of Fig. 1 and GPP time series from other years indicate
that the commonly accepted use of subjective GPP thresholds (e.g.,
Richardson et al., 2010) such as 2, 4 or 6 g C m-2 d-1, or 25%, 50%
and 75% of maximum GPP in both spring and autumn seasons over-
estimate SOS and underestimate EOS compared to remote sensing
LSP dates. In spring season, the 25% of maximum GPP lies halfway
between lines a and b, 50% equals line b, and 75% lies halfway
between lines b and d whereas, in autumn season the 25% of max-
imum GPP lies halfway between lines h and i, 50% equals line h,
and 75% lies halfway between lines f and h (Figs. 1 and 2). In spring
season, both 50% and 75% threshold of maximum GPP overestimate
SOS compared to remote sensing estimates whereas 25% gives rea-
sonably close estimate to SOS (Fig. 2). The same is true for threshold
using the absolute values where 4 and 6 g C m-2  d-1 overestimate
the SOS and 2 g C m-2 d-1 gives comparable results with remote
sensing based estimates of SOS. In autumn season, all of the six
percent and absolute value thresholds (e.g., Richardson et al., 2010:
such as 2, 4 or 6 g C m-2  d-1, or 25%, 50% and 75% of maximum
GPP) underestimate EOS compared to the remote sensing based
EOS estimates (Fig. 2).

Gu et al. (2003) and Noormets et al. (2009) used a Weibull func-
tion which treats two  parts of a growing season separately, creating
a discontinuity both in the fit lines and derivatives, with condi-
tional assumptions of separation. They use subjective and visual
approaches to extract LSP metrics. Gu et al. (2009) later used a
seven parameter logistic function to fit GPP time series, but they
failed to derive important LSP metrics analytically. Our function (Eq.
(1))  is continues, derivable, flexible, and easy to extract LSP metrics
analytically from first estimates of the seven parameters without
complex derivative analysis. Ahrends et al. (2009) presented visual
evaluation of phenology metrics from webcam and GPP time series,
but without LSP metrics from GPP. Gonsamo et al. (2012a) pro-
vides detailed comparison of GPP and PI time series and SOS and
EOS metrics from the two  datasets. They however do not provide
the remaining LSP metrics given in Table 1, which are required
to study the LSP time series throughout the year. The LSP metrics
in Table 1 are collective indictors of the interactions between the
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inherent biological and ecological processes and the progression of
climatic conditions and reflects unique functioning of plant com-
munities at different stages of the growing season. Besides the key
LSP DOYs, we can also retrieve analytically the rate parameters.
For example, from Eq. (1),  average slopes of the spring (average
recovery rate indicating the average greenup rate) and the autumn
(average senescence rate indicating the average browndown rate)
can be retrieved as ˛2∂1/4.562 and ˛3∂2/4.562, respectively. The
peak recovery rate in spring and senescence rate in autumn are
∂1 and ∂2, respectively. These LSP metrics and rates provide us
tools to develop a unique photosynthetic signature for each plant
community. These coupled with mechanistic explanations of the
underlying processes will help develop new ecological theories
and in-depth physiological and biochemical studies. PI and the GPP
based LSP metrics need further studies, particularly in moisture
limited ecosystem with tropical, subtropical, and Mediterranean
vegetation sites. For multimodal GPP curves as those of managed
crop lands with two or more growing periods within a year, Eq.
(1) should be applied for each bell curves separately. Further study
should also look into detailed uncertainty analysis with represen-
tative study sites from global distributions of plant functional types
and biomes.

4. Conclusions

Land surface phenology (LSP) has seen a surge of interest due to
its collective response to climatic controls over terrestrial ecosys-
tem. Previous studies have often focused on the use of remote
sensing data for retrieving LSP metrics (White et al., 2009). How-
ever, a survey of late 20th and early 21st century LSP literature for
North America highlights the conflicting results of SOS and EOS
obtained from satellite based methods, due in large part to the
problems associated with LSP methodologies. One objective way
of estimating LSP is by direct measurement of land surface pho-
tosynthesis using EC techniques. However, the use of subjective
thresholds to extract important LSP dates from EC GPP has been elu-
sive. In this study, we have provided objective measures to retrieve
several LSP metrics from EC GPP measurements. These metrics not
only help the detailed study of the climatic control over LSP, but
also provide validation data to compare the remote sensing based
LSP estimates.
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