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a b s t r a c t

Parameters in process-based terrestrial ecosystem models are often nonlinearly related to the water flux
to the atmosphere, and they also change temporally and spatially. Therefore, for estimating soil moisture,
process-based terrestrial ecosystem models inevitably need to specify spatially and temporally variant
model parameters. This study presents a two-stage data assimilation scheme (TSDA) to spatially and tem-
porally optimize some key parameters of an ecosystem model which are closely related to soil moisture. At
the first stage, a simplified ecosystem model, namely the Boreal Ecosystem Productivity Simulator (BEPS),
is used to obtain the prior estimation of daily soil moisture. After the spatial distribution of 0–10 cm sur-
face soil moisture is derived from remote sensing, an Ensemble Kalman Filter is used to minimize the
difference between the remote sensing model results, through optimizing some model parameters spa-
tially. At the second stage, BEPS is reinitialized using the optimized parameters to provide the updated
model predictions of daily soil moisture. TSDA has been applied to an arid and semi-arid area of northwest
China, and the performance of the model for estimating daily 0–10 cm soil moisture after parameter opti-
mization was validated using field measurements. Results indicate that the TSDA developed in this study

is robust and efficient in both temporal and spatial model parameter optimization. After performing the
optimization, the correlation (r2) between model-predicted 0–10 cm soil moisture and field measurement
increased from 0.66 to 0.75. It is demonstrated that spatial and temporal optimization of ecosystem model
parameters can not only improve the model prediction of daily soil moisture but also help to understand
the spatial and temporal variation of some key parameters in an ecosystem model and the corresponding

ntro
ecological mechanisms co

. Introduction

Soil water content is a key variable for estimating plant growth
nd energy exchange between the surface and the atmosphere
Gillies, 1997; Zhan et al., 2007). Accurate estimation of soil water
ontent is especially important for regional agricultural, hydrolog-
cal and meteorological research and for the understanding land
urface processes (Hanson et al., 1998; Silberstein et al., 1999;
eathman et al., 2003; Eitzinger et al., 2004).

While the most direct way to determine soil water content is
ased on field measurements, using techniques such as the gravi-

etric sampling or the calibrated time-domain reflectometry (TDR)

Topp et al., 1980; Klute, 1986), it is impractical and expensive to
onduct such measurements for large areas (Heathman et al., 2003;
uang et al., 2008). Compared to point-based field measurements,

∗ Corresponding author. Tel.: +86 10 62764430.
E-mail address: hongfuqitian@pku.edu.cn (L. Zhu).

304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2009.04.042
lling the variation.
© 2009 Elsevier B.V. All rights reserved.

remote sensing techniques would be most feasible for large area
applications. Indices derived from visible and near infrared bands
(Zhan et al., 2007; Ghulam et al., 2007a,c), shortwave infrared bands
(Ghulam et al., 2007b); thermal infrared bands (Price, 1985; Kogan,
1995; Mcvicar and Jupp, 1998; Sandholt et al., 2002) and even
microwave bands (Schmugge et al., 1986; Njoku and Li, 1999) are
widely used to capture spatial and temporal soil moisture varia-
tions near the surface. However, no matter which bands are used,
signals from remote sensing only represent instantaneous and near
surface soil moisture conditions, and they are only sensitive to soil
moisture in the top few centimeters (less than 10 cm) of the soil
column (Li and Islam, 2002). This limitation of remote sensing data
hinders their applications in regional agricultural, hydrological and
meteorological studies.
The development of modeling techniques is an attempt to esti-
mate the vertical distribution of soil moisture that can extend the
near surface information derived from remote sensing. Ecosystem
models relate some key variables of the land surface in a mathe-
matical framework (Pipunic et al., 2008) and provide a mechanistic

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:hongfuqitian@pku.edu.cn
dx.doi.org/10.1016/j.ecolmodel.2009.04.042
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escription of every process which contributes to the total soil
oisture variation (Liu et al., 2003; Ju et al., 2006; Walker and

angridge, 2006; Chen et al., 2007). Therefore, an ecosystem model
s helpful to understand the feedback between soil and atmosphere
s well as plant growth and carbon uptake (Bach and Mauser, 2003).
n ecosystem models, water fluxes can be calculated for a defined
eriod so that the temporal variation of soil moisture can be stud-

ed (Liu et al., 2003). However, the major problems of ecosystem
odels may include overly simplified description of the natural

ystem, and inaccurate parameterization, both of which strongly
nfluence the model performance at a regional scale (Zhao et al.,
005; Dorigo et al., 2007; Naud et al., 2007). In particular, parame-
ers change temporally and spatially, while the field measurements
o calibrate these parameters are not always available or very often
e only have data from discrete weather stations. Errors due to
oor specification of model parameters will accumulate gradually
nd therefore, soil moisture estimation will diverge from the true
tate when a model is run for a period of several days.

It has recently been suggested that soil moisture could be bet-
er estimated through assimilating various observations (e.g. fluxes
rom field measurements, remote sensing data) into ecosystem

odels to best use all sources of information (Kostov and Jackson,
993; Moradkhani, 2008). The main objective of data assimilation is
o find an optimal estimation of model state variables using obser-
ations. Therefore data assimilation can be used to bridge the gap
etween a remote sensing observation of the land surface and a
rocess-based model (Bach and Mauser, 2003). Remote sensing
ata from moderate spatial resolution earth observation sensors,
uch as MODIS on board NASA Terre or Vegetation sensor on board
POT4 and SPOT5, are promising candidates for generating data
uitable for model improvement due to their high temporal reso-
utions and large spatial scales (Quaife et al., 2008; Pipunic et al.,
008; Huang et al., 2008).

Although data assimilation techniques provide a promising way
o improve soil moisture estimation, the validity of data assim-
lation is strongly dependent on the quality of remote sensing
nformation and its sampling frequency. Information from optical
nd thermal infrared sensors is influenced by atmospheric con-
itions, especially clouds, water vapor and aerosol distribution
Huang et al., 2008). Furthermore, the heterogeneity of the land
urface at large spatial scales requires remote sensing signals or
emote sensing land surface products to be further calibrated using
eld measurements. For most meteorological stations, the field
easurements for soil moisture are always sampled at intervals

f several days. Therefore, high quality remote sensing data at daily
ime steps are often limited.

Confined to the availability of high quality remote sensing obser-
ations, uncertainty in model state variables will propagate if model
arameters have changed between two observations (Dorigo et
l., 2007; Quaife et al., 2008). Accordingly, the model prediction
rror of soil moisture still accumulates during this period. There-
ore, ecosystem models inevitably need parameter optimization to
mprove model initialization and prediction.

Combining parameter estimation with data assimilation tech-
iques is a recent approach to achieve high model performance
Kuroda and Kishi, 2004; Moradkhani, 2004; Raupach et al., 2005;
acks et al., 2006; Mo et al., 2008). This approach overcomes
he shortcomings of traditional methods assuming time-invariant
arameters (Braswell et al., 2005). Mo et al. (2008) use an Ensemble
alman Filter (EnKF) to optimize some key parameters of the Boreal
cosystem Productivity Simulator (BEPS) (Liu et al., 1997; Chen et

l., 1999). Their study demonstrated the feasibility of retrieving the
easonal and inter-annual variation of model parameters through
ssimilating eddy covariance fluxes.

This study is a spatial development of Mo et al.’s (2008) method
o combine both parameter estimation and data assimilation tech-
Fig. 1. Water fluxes included in BEPS based on Liu et al. (2003).

niques to optimize some key parameters of the BEPS model and
further improve surface soil moisture estimation. A two stage data
assimilation scheme (TSDA) is developed to assimilate remote sens-
ing observations into the BEPS model for parameter optimization
and soil moisture estimation. The TSDA has been applied to an
arid and semi-arid area in northwest China. Model performance in
estimating 0–10 cm soil moisture is evaluated based on field mea-
surements. Spatial and temporal variations of some key parameters
after data assimilation and the corresponding ecological mecha-
nisms controlling their variation are also investigated.

2. Methods

2.1. The ecosystem model

BEPS is a process-based ecosystem model which was originally
developed for forest ecosystem carbon budget simulation. Water
flux estimation is an important part of the model because of the
close relationship between soil water regime and carbon uptake
(Liu et al., 2003). In order to represent the importance of vegetation
conditions on the water cycle, a canopy in BEPS is stratified into
over-story and under-story two layers, and each layer is separated
into sunlit and shaded leaf groups. Under this framework, water
fluxes of all components in the hydrological cycle are captured as
shown in Fig. 1.

Daily soil water balance in BEPS was calculated using a “bucket”
model, in which soil water balance is calculated as:

�W = P + S − T0 − Tu − Rs − Es (1)

where �W is water storage change in soil; P is precipitation; T0 is
over-story transpiration; Tu is under-story transpiration; S is snow
melt water; Rs is surface run-off; and Es is evaporation from soil.

To assimilate surface soil water content derived from remote
sensing, we further divide the soil profile into two layers: 0–10 cm
and 10 cm to the top of saturated zone. This study focuses on sim-
ulating soil moisture in a crop area. For most crop types, it is found
that the root depth is much shallower than the water table depth
and the influence of the capillary rise on the root zone is small, so
the saturated zone water balance and the effect of capillary rise are
not considered in this study.
Water balance in the 0–10 cm (layer 1) is calculated as

�Wlayer1 = P + S − Elayer1 − Wp (2)

where Elayer1 is the total evapotranspiration in layer 1; Wp is the
vertical water percolation from layer 1 to layer 2. Wp is computed
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rom

p =
{

P + S + �layer1 − Elayer1 − �fc1, if (P + S + �layer1 − Elayer1) > �fc1

0, else
(3)

here �fc1 is the field capacity of layer 1; �layer1 is water in layer 1
t last time step.

Water balance in the layer from 10 cm to the top of saturated
one (layer 2) is calculated as

Wlayer2 = Wp − Elayer2 − Roff (4)

here Tlayer2 is the canopy transpiration in layer 2; Elayer2 is the
otal evapotranspiration in layer 2; Roff is the runoff water in layer
which is calculated as follows

off =
{

Wp + �layer2 − Elayer2 − �fc2, if (Wp + �layer2 − Elayer2) > �fc2

0, else
(5)

here �fc2 is the field capacity of layer 2; �layer2 is water in layer 2
t last time step.

In BEPS, the Penman–Monteith equation (Monteith, 1965) is
sed to calculate canopy transpiration in the whole soil layer. The

arvis model (Jarvis and Morison, 1981) is used to reduce the max-
mum stomatal conductance by environmental conditions to the
ctual stomatal conductance. Leaf area index (LAI) and stomatal
onductance strongly influence the calculation of total transpira-
ion and therefore they are very sensitive to soil water calculation.
ccounting for the influence of soil water content on the daily vari-
tion of stomatal conductance, the Jarvis model is further modified
s a function of soil water content (Chen et al., 2005).

Furthermore, in order to separate the total evapotranspiration
nto layer 1 and layer 2, we need to know the vertical distribution
f the root density. In this study, a root depth coefficient ˇ (Gale
nd Grigal, 1987; Jackson et al., 1996) is used to compute the root
ertical distribution within each soil layer.

(z, ˇ) = 1 − ˇZ (6)

here f(z, ˇ) describes the cumulative root fraction from the soil
urface to depth z (cm). High ˇ values indicate larger proportions
f roots at a deeper soil depth, and low ˇ values imply larger pro-
ortions of roots near the soil surface (Chen et al., 2005).

Using the root depth coefficient ˇ, evapotranspiration rates for
ayer 1 and layer 2 are calculated separately as shown in Eqs. (7)
nd (8).

T + Es)layer1 = (1 − ˇ10)(To + Tu + Es) (7)

T + Es)layer2 = ˇ10(To + Tu + Es) (8)

To summarize from Eqs. (1) to (8), LAI, gmax and ˇ are major
arameters for the calculation of water balance in BEPS. They
hange spatially and temporally and were previously determined
rom empirical data. As field measurements of these parameters
or validation are not always available, the uncertainties in their
nitial values are considerable. Furthermore, if these three parame-
ers are not specified temporally, errors in water balance estimation
ill be accumulated over the modeling period. Considering that, in
EPS, LAI is a model input parameter which is periodically updated
rom Vegetation images (Deng et al., 2006), this study focuses on
ptimizing gmax and ˇ in BEPS using TSDA method.

The time step of BEPS is set as daily and forcing data include
tmospheric variables (temperature, humidity, wind speed, pre-
ipitation, solar irradiation), LAI from 10 day syntheses SPOT
EGETATION images and vegetation type. The model outputs

nclude daily soil moisture at the two layers (0–10 cm and 10 cm
o the top of the saturated zone), ET, NPP, etc.
g 220 (2009) 2121–2136 2123

2.2. Ensemble Kalman Filter

Ensemble Kalman Filter is first developed by Evensen (1994)
based on the original Kalman filter (Kalman, 1960). EnKF has gained
popularity in soil moisture assimilation problems with its simple
conceptual formulation and relative ease of implementation com-
pared with the Extended Kalman Filter (EKF) (Entekhabi et al., 1994;
Houser et al., 1998; Hoeben and Troch, 2000; Reichle et al., 2007).

Typically, there are two sets of dynamic ensembles in EnKF data
assimilation process. One is observation ensemble (xj

obs), and the
other is state/parameter ensemble (xj) (Burgers et al., 1998; Reichle
et al., 2002a,b; Moradkhani, 2004). Each ensemble is generated by
adding a noise with a Gaussian probability distribution to the first-
guess estimate as shown in Eqs. (9) and (10)

xj = x + εj, εj∼N(0, Rx), j = 1, . . . , N (9)

xj
obs = xobs + εj

obs, εj
obs∼N(0, Robs), j = 1, . . . , N (10)

where x and xobs are, respectively, the first guess of the
state/parameter ensemble and the observation ensemble, which
are added by a noise of εj and εj

obs, respectively. Rx is error covariance
of states/parameters and Robs is error covariance of observations.
The method to determine Rx and Robs are described in Sections 3.2
and 3.3, respectively. N is the ensemble size (number of realizations
in each ensemble).

At time steps when the observation ensemble is available, Eq.
(11) is used to modify the state/parameter forecast with the obser-
vations, to generate the best estimation of system state/parameters,
which make the model output most consistent with observations.

xj+ = xj− + K(xj
obs − H(xj)) (11)

where x represents the state/parameter to be optimized; super-
script ‘+’ refer to updated quantities of state/parameters; xobs is the
observation; H is the observation operator which is used to make
the matrix dimensions of the model state and observations compa-
rable; (xj

obs − H(xj)) in Eq. (11) is called “innovation” in EnKF; K is
the Kalman gain computed using the following equation

K = (P−HT)(HP−HT + Robs)
−1

(12)

where P− is the priori estimate of state/parameter covariance; Robs
is the observation covariance. A detailed description of how to com-
pute K can be found in Mandel (2007). Innovation (xj

obs − H(xj))
and Kalman gain (K) multiply together to determine the correction
added to the model forecast state/parameter (Pipunic et al., 2008).

2.3. Remote sensing observation

In this study, MODIS derived soil moisture is used as spa-
tial observations to be assimilated into BEPS. First, a water stress
index-SPSI (Shortwave Infrared Perpendicular water stress Index)
(Ghulam et al., 2007b) is calculated from MODIS images. Then SPSI
is converted to surface soil moisture using a linear relationship
between SPSI and field soil moisture measurements (as seen in
Section 3.2).

SPSI is expressed as:

SPSI = 1√
M2 + 1

(RSWIR + M × RNIR) (13)

where M is the slope of soil line in the scatter plot of near infrared
(RNIR) and shortwave infrared bands (RSWIR).
SPSI has been demonstrated to be very sensitive to canopy water
content using Landsat ETM/TM images (Ghulam et al., 2007b).
For moderate resolution sensors such as MODIS, their shortwave
infrared channel (1628–1652 nm) is also sensitive to water condi-
tion of the land surface because it has a higher spectral resolution
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hich avoids the influence of water absorption from atmosphere
nd allows for a closer relationship between leaf water content and
oil water conditions.

.4. Data assimilation strategy

To address the issues of parameter optimization and remote
ensing soil moisture data assimilation, a study period is first

ivided into several sub-periods according to the availability of
loud-free remote sensing observations and field measurements.
or each sub-period, a two-stage data assimilation scheme (TSDA)
s developed to spatially and temporally optimize some key param-
ters of the BEPS model (as shown in Fig. 2). At the first stage, BEPS
ata assimilation scheme.

was initialized using three parameter ensembles including LAI, gmax

and ˇ together with atmospheric forcing data, land cover data and
initial soil moisture profile (as forecast, which is denoted as ‘−’ in
Fig. 2). Here, LAI is also perturbed as an adjustable ensemble to
account for uncertainty in LAI input. Initial parameter ensembles
(denoted as �) are generated by adding a random noise with zero
mean and parameter covariance (Rx). When remote sensing mea-
surements are available, they are converted into the spectral index

SPSI, and then SPSI is converted into 0–10 cm soil moisture estima-
tion using a linear function. An observation ensemble is generated
by adding a noise with zero mean and observation covariance (Robs).
Then the EnKF was used to minimize the difference between model-
simulated 0–10 cm soil moisture and remotely sensed surface soil
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oisture. In this process, values of initial parameter ensembles
re changed using the parameter-updating equation of the EnKF
Eq. (11)). At the second stage, BEPS is reinitialized using the opti-

ized parameters to provide updated model predictions of daily
oil moisture.

The updated mean values of parameters and their error covari-
nce are further used to generate new ensembles of parameters in
he next sub-period.

. Study area and data preparation

.1. Study area and data sources

A case study was conducted in the main drought area of
ingxia province, China. Its longitudes range from 104◦10′E to
07◦30′E, and latitudes range from 35◦25′N to 39◦25′N (Fig. 3). It
s a typical arid and semi-arid region with very little precipitation
200–400 mm/a). Estimated annual potential evapotranspiration is
bout 2000 mm.

Guyuan city (105.96◦–106.53◦E, 35.56◦–36.63◦N) was chosen as
he study area to test the data assimilation strategy. Guyuan city is
ocated in the southern mountainous region of Ningxia. It has vari-
us vegetation types including crop, grass, and forest in addition to
are land. Crops here are mainly rain-fed. The highest daily precip-

tation observed is only 23.5 mm, while mean precipitation per day
s 2.9 mm over the last 6 years, which led to heavy drought events
lmost every year, specifically in spring and summer (Ghulam et al.,

008). The study period covers a main growing season of crop from
arch to July 2004 and was divided into 8 sub-periods as showed

n Table 1.
Daily meteorological data, including radiation, minimum and

aximum temperatures, mean humidity and total precipitation of

able 1
ivision of sub-period and availability of remote sensing observations and field measurem

ay of year Sub-period Clouds free remote sensing images avai

78–99 1 99
99–109 2 109

109–119 3 119
119–129 4 129
29–139 5 139

139–149 6 149
49–163 7 163

163–170 8 170
g the temporal and spatial variations of model parameters.

the study area, were measured by Ningxia Key Laboratory for Mete-
orological Disaster Prevention and Reduction of China. The land
cover map was initially derived from supervised classification of
TM images during the growing season (registered on August 12,
1999) and then re-sampled to 1 km resolution. LAI was derived
from the 1 km resolution SPOT VEGETATION data using algorithms
developed by Deng et al. (2006).

Field measurements of soil moisture and LAI were performed
in collaboration with Ningxia Key Laboratory for Meteorolog-
ical Disaster Prevention and Reduction (Ghulam et al., 2008).
Soil moisture measurements from different soil depths of 10 cm,
20 cm, 30 cm, 40 cm, 50 cm were sampled on dates 8, 18 and
28 of every month in the study area from March to July 2004.
The contemporaneous MODIS data were downloaded from NASA
(http://modis–land.gsfc.nasa.gov/).

3.2. Determining the observation operator and observation error
of the study area

Determining the observation operator and error is very impor-
tant for the application of the assimilation scheme. The observation
operator represents the H in Eq. (11), which helps convert remote
sensing observations into data which are comparable to the model
simulation. The observation error determines the extent to which
the observation can be used to adjust the model simulation.

Field measurements of 0–10 cm soil moisture in the study area
were used to validate the relationship between SPSI and 0–10 cm

soil moisture at 1 km resolution. There are totally 20 sample sites
in Ningxia province. To avoid the influence of irrigation on the
soil moisture measurements, only 7 sample sites in the south-
ern Ningxia province were used where no irrigation occurred. It
is worth noting that, for crop areas, two or more different crops

ents during the whole study period (year: 2004).

lable day (Day of year) Field measurement available day (Day of year)

99
109
119
129
139
149
159
170

http://modis-land.gsfc.nasa.gov/
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ere planted in the same area in an interlaced way. So the average
f soil moisture measurements of different crops around a sample
ite was used to represent the real 0–10 cm soil moisture at 1 km
esolution.

The scatter plots between soil moisture measurements (volume
ercentage) and SPSI during the crop growing season of 2004 are

hown in Fig. 4. It is found that SPSI derived from MODIS 1 km res-
lution images has a close relationship with simultaneous 0–10 cm
oil moisture measurements in the field. The highest absolute value
f linear correlation coefficient between soil moisture measured in

ig. 4. (a)–(h) The relationship between SPSI and ground 0–10 cm soil moisture measure
8, 2004 (Day of year 170) (SD and R are the standard deviation and correlation coefficien
g 220 (2009) 2121–2136

the field and SPSIs is 0.98, and lowest is 0.87. The standard deviation
(SD) varies between 0.010 and 0.034. The linear function between
soil moisture and SPSI at each time was used to derive surface soil
moisture from MODIS images, and the corresponding SD is used to
account for the observation error in the EnKF.
3.3. Determining of model error

Model errors determine the uncertainty associated with the
assimilated model states (Mitchell and Houtekamer, 2002; Huang

ments at Ningxia province of China, from March 18, 2004 (Day of year 78) to June
t between SPSI and ground measurements).
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t al., 2008). The EnKF applies a so-called Markov Chain Monte
arlo (MCMC) method to solve the time evolution of the probabil-

ty density of model states (Evensen, 2003). With the Monte Carlo
ramework, the model states/parameters are perturbed to account
or model errors (Hamill and Whitaker, 2005; McLaughlin et al.,
006)

j
t+1 = M(xt + εj

t), εj∼N(0, Rx), j = 1, . . . , N (14)

here xt represents the model states/parameters at time t; εj
t is a

andom noise with a Gaussian probability distribution added to xt;
j
t+1 is the jth realization of model states/parameters at time t + 1.

is an ecological process model and represents the BEPS model in
ur case.

BEPS has been evaluated in several comprehensive studies (Liu
t al., 2003; Feng et al., 2007) at forest areas located in Canada
nd China at 1 km resolution. Thus we consider the conceptual
spects (including equations and principles) of BEPS are valid and
he spatial resolution is feasible. At the local scale, model forcing
ata are measured with sufficient accuracy compared to the ecosys-
em parameter uncertainties. The model uncertainties derived from
orcing data are not considered in this study. Therefore, we assume
he model error for estimating soil moisture arises from model
arameter errors including ˇ and gmax which are closely related
o the soil water balance.

As shown in Fig. 2, at the beginning of data assimilation, two key
odel parameters, ˇ and gmax, are perturbed in BEPS to account for

he model error. After the parameter optimization using EnKF, mean
alues and error covariances of updated parameter ensembles are
alculated and are further used to perturb parameter ensembles of
he next sub-period. In this way, we can account for the dynamics
f model errors during the whole study period.

. Model performance with the data assimilation scheme

The data assimilation strategy was used in the study area during
he growing season with an ensemble of 200 realizations. Model
erformance was evaluated using the Nash–Sutcliffe model effi-
iency coefficient (Nash and Sutcliffe, 1970). It is defined as:

= 1 −
∑T

t=1(Q t
0 − Q t

m)2

∑T
t=1(Q t

0 − Q̄0)
2

(15)
here Q0 is observation; Qm is model prediction; Q̄0 represents
he mean value of observation at time t; and T is the number of
ata assimilation sub-periods. In this study, T is equal to 8. The
ash–Sutcliffe model efficiency coefficient (E) ranges from −∞ to 1.
nued ).

The closer the model efficiency is to 1, the more accurate the model
is.

4.1. Point-based model performance and the influence of initial
parameters and their standard deviations

The generation of the initial 0–10 cm soil moisture ensemble is
realized by disturbing model parameters including LAI, gmax and ˇ.
Therefore, initial values of these parameters are crucial in success-
fully representing the real initial conditions of the model states (Mo
et al., 2008). The initial values of gmax and ˇ were carefully deter-
mined from the empirical ranges of crops in the study area. Since
field measurements of these parameters are not available for vali-
dation, there are still considerable uncertainties linked to the initial
values.

Point-based time-series of remotely sensed, model-predicted
and assimilated 0–10 cm soil moisture from DOY 78 to DOY
170 at a crop site (106◦16′E, 36◦00′N) are shown in Fig. 5. As
shown in Fig. 5(a), before data assimilation, the model-predicted
0–10 cm soil moisture deviates gradually from the observation.
Precipitation has a large influence on the model estimation. Gen-
erally, in sub-periods with precipitation, BEPS overestimates the
0–10 cm soil moisture as compared to observations. While in
sub-periods with no or little precipitation, BEPS underestimates
the soil moisture. As demonstrated in Fig. 5(a), BEPS’ estima-
tion of 0–10 cm soil moisture after parameter optimization is
improved in comparison with observations. The Nash–Sutcliffe
model efficiency coefficient (E) for 0–10 cm soil moisture esti-
mation after parameter optimization increases from 0.554 to
0.687.

The EnKF method has been tested in a weather forecast model
to be robust even with poor estimates of initial model states
(Zhang, 2004). Weerts and El Serafy (2006) also suggested that
the EnKF method is less sensitive to misspecification of model
parameters and input uncertainties than other nonlinear filters.
To further investigate the influence of the initial values of model
parameters on the soil moisture estimation using TSDA, case (b)
to case (f) (Fig. 5(b)–(f)) are simulated. In these cases, other
input parameters stay unchanged except for the initial gmax and
ˇ values and their standard deviations that vary in a way shown
in Table 2. Initialization of these parameters and their standard
deviations in BEPS has a slight influence on the model perfor-

mance in the first several days. As seen in Fig. 5(b)–(f), during
sub-period 1 (DOY 78–99), the difference between model pre-
diction and observation varies considerably. However, over the
whole modeling period (growing season), the total model per-
formance is notably improved after parameter optimization, and
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he final model results are little affected by the parameter ini-

ialization within reasonable ranges. From case (a) to (f), the
verage Nash–Sutcliffe model efficiency coefficient for the model
rediction of 0–10 cm soil moisture (Eb) during the whole run-
ing period is 0.538, and after data assimilation, it increases to
.696.

Fig. 5. (a)–(g) Comparison between model simulated and
g 220 (2009) 2121–2136

4.2. Improving assimilation results
From Fig. 5(a)–(f), we can see that the TSDA scheme performs
well during most data assimilation cycles except for sub-period
6 (DOY 139–149) when the parameters stay almost unchanged
after the parameter update, leading to little change in the surface

assimilated 0–10 cm soil moisture and observation.
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Fig. 5.
–10 cm soil moisture after data assimilation. There are two rea-
ons for this phenomenon: (1) there is no precipitation during DOY
39–149, and the LAI and gmax are higher than earlier days. After
everal days in the model run, the 0–10 cm soil moisture was close

able 2
he influence of initial values and standard deviations of gmax and ˇ to the model
erformance.

Initial value Standard deviation Eb Ea

ase (a) gmax = 5 (mm s−1) 2 0.554 0.687
� = 0.94 0.003

ase (b) gmax = 5 (mm s−1) 2 0.538 0.696
� = 0.91 0.003

ase (c) gmax = 2 (mm s−1) 2 0.521 0.704
� = 0.91 0.003

ase (d) gmax = 5 (mm s−1) 2 0.538 0.687
� = 0.91 0.003

ase (e) gmax = 5 (mm s−1) 5 0.543 0.686
� = 0.91 0.003

ase (f) gmax = 5 (mm s−1) 2 0.532 0.714
� = 0.91 0.005

ase (g) gmax = 5 (mm s−1) 2 0.530 0.895
� = 0.91 0.003
nued ).

to the wilting point, and in the model, the soil moisture at the top
layer changes very little when the wilting point is reached. (2) When
the 0–10 cm soil moisture reaches the wilting point, each element
in the 0–10 cm soil moisture ensemble will become the same as the
wilting point which leads to a zero deviation in the ensemble and
makes the Kalman gain reduce quickly. As a result of this dryness,
the soil moisture after data assimilation is almost unchanged.

It has been recognized that the linear updating mechanism and
normality approximations of the EnKF may lead to biases or imbal-
ances of output state variables within a model structure that is
strongly nonlinear (Zhou et al., 2006; Weerts and El Serafy, 2006;
Pan and Wood, 2006; Moradkhani, 2004, 2008). Pan and Wood
(2006) developed a Constrained Ensemble Kalman Filter (CEnKF),
in which the EnKF is used twice to optimally redistribute any imbal-
ance from the first step. However, when a model indicates soil water
stress, the model ensemble may lose a large part of its statistical

properties, leading to ineffectiveness of the EnKF.

In this study, we developed a simple method to fine-tune gmax

to account for extreme water conditions in the model. That is, each
time before performing the EnKF, the model will first be checked if
the deviation of 0–10 cm soil moisture is reduced to zero and if the



2130 L. Zhu et al. / Ecological Modelling 220 (2009) 2121–2136

moist

d
i
v
a
t
w
i
i
0
u

4

c
e

Fig. 6. (a) and (b) Modeled surface soil

ifference between observed and simulated 0–10 cm soil moisture
s positive. If it is, gmax is directly decreased to 50% of its original
alue to amend the unreasonable excessive water loss in the model,
nd the EnKF is quitted in the present sub-period. Fig. 5(g) shows
he result after this modification, using updated gmax together
ith other parameters, at DOY 149, the model simulated result

ncreases considerably in accord with the observation. Correspond-
ngly the Nash–Sutcliffe model efficiency coefficient increases from
.530 before the parameter update to 0.895 after the parameter
pdate.
.3. Field validation of the optimized model

Scatter plots of model-predicted vs. observed values is the most
ommonly used approach to evaluate model predictions (Mesple
t al., 1996; Piñeiro et al., 2008). Model-simulated 0–10 cm soil

Fig. 7. (a) and (b) Agreement index before
ure compared with field observations.

moisture is compared with field measurements using the scatter
plot method. There is one field measurement (106.16◦E, 36.00◦N)
of 0–10 cm soil moisture within each data assimilation cycle. For the
whole study period (DOY 78–170), there are 9 field measurements
in total. The correlation between the model and field measurements
increases from 0.66 (before the parameter update) to 0.75 (after
the parameter update) as shown in Fig. 6, which demonstrates that
the data assimilation scheme developed in this study is effective in
improving the model performance using remote sensing observa-
tions.
4.4. Spatial evaluation of model performance

The spatial distribution of the Nash–Sutcliffe model efficiency
coefficient for modeled 0–10 cm soil moisture displays pronounced
east-west and north-south gradients as well as detailed variation

and after parameter optimization.
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ith land cover type and vegetation density. As shown in Fig. 7(a),
–10 cm soil moisture simulated by the model before the parameter
ptimization is relatively close to the observation in the southern
art of the study area where the dominant vegetation type is for-
st and spring wheat. While in the northern part of the study area,
he model performance is much poorer, especially near the west
oundary of the study area with the Nash–Sutcliffe model effi-
iency coefficient lower than 0. Land cover types in the northern
art of the study area are mainly sparse grass and crop. In com-
arison with Fig. 7(a), we can see that after data assimilation and
arameter optimization, as shown in Fig. 7(b), the Nash–Sutcliffe
odel efficiency coefficient has been improved significantly, espe-

ially in the northern and middle parts of the study area. These
esults demonstrate that the two-stage data assimilation scheme is
ffective in improving the day-to-day surface soil moisture estima-
ion.

However, it should be noted that in the northeast part of the
tudy area, the model performance is not much improved after
arameter optimization. Through further investigation, we found
hat parameters including gmax and ˇ almost stay unchanged dur-
ng the data assimilation, leading to little change in the 0–10 cm
oil moisture after parameter optimization. The uncertainty of soil
ydraulic conductivity in BEPS is the main reason for the critical
odel performance in this area. Soil hydraulic conductivity is a

ery important parameter in the Penman–Monteith equation for
stimating evaporation from soil. In areas where the land surface
s covered by dense vegetation, evaporation from soil is very low.
owever, in areas where the vegetation cover fraction is very low,
vaporation from the soil surface is the main process influencing
oil water balance. In this study, our focus is on optimizing two key
arameters of BEPS (including gmax and ˇ) which influence canopy
ranspiration while the spatial and temporal uncertainties of soil
onductance are ignored. As shown in Fig. 8, after data assimila-

ion, the model performance is still very poor in the northwest part
f the study area where the average LAI during the whole study
eriod is very low (where the land cover types are sparse grass and
rop as shown in Fig. 9).

Fig. 8. Average LAI during the whole study period.
Fig. 9. Land cover map of study area.

5. Temporal and spatial variation of model parameters

For further exploring the variations of model parameters after
parameter optimization, a sub-area in the study area (Fig. 3) is
extracted and its temporal and spatial variations are examined.
Compared to other locations of the study area, the Nash-Sutcliffe
model efficiency coefficient in this sub-area improved most signif-
icantly after parameter optimization. Therefore it would be useful
to further examine the temporal and spatial changes of optimized
parameters.

5.1. Temporal variation of parameters

During each data assimilation cycle, the average values of the
maximum stomatal conductance (gmax) and root depth coefficient
(ˇ) of the sub-area are computed and the temporal variations of

these two parameters during the 8 sub-periods are displayed in
Fig. 10. Results show that gmax and ˇ vary significantly with time.
Generally, gmax and ˇ are found to be negatively correlated, and
both have a decreasing trend with time.

Fig. 10. Temporal variation of parameters during the study period.
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Stomatal conductance is an important factor that affects tran-
piration (Maruyama and Kuwagata, 2008; Fischer et al., 2008).
enerally, stomata close in response to drought and open when

he atmospheric vapor pressure deficit is low (Socias et al., 1997;
ndres, 2007; Mo et al., 2008). Endres (2007) reported that younger
eaves displayed greater stomatal conductance. In this study, the

ecreasing trend of gmax with time gave support to Endres’s find-

ng. Furthermore, comparing Fig. 10 to Fig. 5, we found that during
ub-periods when modeled soil moisture is low (such as sub-period
), gmax has a sharp decrease. While during sub-periods 5 and

Fig. 12. Spatial distribution of model paramete
rs at the sub-area (sub-periods 1 and 2).

7 with plenty precipitation, gmax increases quickly. Although the
Jarvis method includes scalar functions that take in to account the
instantaneous effects of soil water content and atmospheric vapor
deficit on leaf stomatal conductance by scaling down the actual
stomatal conductance from the given maximum value accordingly,
the detrimental effects of long and persistent droughts on plant

leaves (including leaf pigments and nutrient status) could not be
well captured with the fixed gmax values. By allowing gmax to vary
temporally, these detrimental effects are included. The variation of
gmax with time demonstrated that the data assimilation scheme

rs at the sub-area (sub-periods 3 and 4).
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eveloped in the study has the ability to control the response of
tomatal movement to persistent environment changes that affect
lant health status.

In BEPS, the root depth coefficient (ˇ) is used to compute the root
ertical distribution within each soil layer. Accurate estimation of
is helpful to understand plant rooting patterns and therefore is

very important parameter in ecosystem modeling (Jackson et al.,
996). Although in reality, the rooting pattern for a specific plant
aries with plant growth and also with environmental change, in
revious ecological modeling, ˇ is often set as a constant. For crop

Fig. 14. Spatial distribution of model paramete
rs at the sub-area (sub-periods 5 and 6).

and grassland area, Jackson et al. (1996) reported that the typi-
cal value for ˇ is around 0.91–0.96. Considering that, the model
is initialized in early stage of vegetation growth (from DOY = 78 of
2004) when a large part of the roots is distributed in top 30 cm
of the soil, the initial ˇ is set as 0.91 for the sub-area. As shown
in Fig. 10, during the latter four sub-periods, ˇ fluctuates quickly

and have a decreasing trend with time. The quick variation of ˇ
shows that modeled soil moisture has a great influence on ˇ. When
the modeled soil moisture is very low (such as sub-period 6), ˇ is
increased to have more proportion of transpiration originating from

rs at the sub-area (sub-periods 7 and 8).
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he deeper soil. While when the modeled soil moisture is high (dur-
ng sub-periods 5 and 7), the soil moisture in the upper soil layer
s enough to support canopy transpiration, and ˇ decreases cor-
espondingly. Therefore, the TSDA scheme appears to be able to
apture the temporal variation pattern of plant root water extrac-
ion in the model.

The temporal variation patterns of the above two parameters
an be further explained by the regulation mechanism in the EnKF
pdating equation. As shown in Eq. (11), there are two driving fac-
ors in the EnKF updating process which collectively influence the
xtents to which parameters can be modified. The first factor is the
ifference between observed and modeled 0–10 cm soil moisture,
hich is termed innovation in Eq. (11). The second factor is the
alman gain for each parameter. Considering that at each param-
ter updating process, innovation is the same for gmax and ˇ, the
orrections made to the model parameters are determined by their
orresponding Kalman gains. In BEPS, gmax is negatively correlated
o 0–10 cm soil moisture while ˇ is positively correlated to 0–10 cm
oil moisture. Correspondingly, the Kalman gain in Eq. (12) for gmax

s negative and for ˇ is positive. This is the reason that these two
arameters are updated in the opposite directions.

.2. Spatial patterns of parameters

As shown in Figs. 11–14, during each sub-period, there are mean-
ngful spatial distributions of gmax, single leaf g (single leaf stomatal
onductance) and ˇ after parameter updating in the spatial mode,
hich can be summarized as following:

1. In BEPS, LAI is an important factor that relates single leaf conduc-
tance and canopy transpiration using a sunlit and shaded leaf
separation method (Chen et al., 1999; Liu et al., 2003). In this
study, the spatial distribution of stomatal conductance is esti-
mated through assimilating remotely sensed soil moisture into
BEPS-simulated soil moisture. From Figs. 11–14, we can see that
at the time scale of several days, using the TSDA scheme, vege-
tation dynamics (in terms of the LAI series in this study) show
an influence on the temporal variation of gmax and its spatial
pattern via soil moisture that controls transpiration, especially
when LAI is higher than 0.2. During periods when the observed
soil moisture and other meteorological conditions do not change
much, LAI is the primary factor influencing the variation of gmax.
The relationship between LAI and stomatal conductance helps
to understand the physical mechanisms controlling the spatial
and temporal variations of these two parameters. Generally, con-
sidering that an increase in LAI can sometimes force stomatal
opening to decrease or even close to prevent excessive water
loss in plants, it is reasonable to find that gmax decreases with
increasing LAI in some cases, especially in sub-periods 3, 7 and
8.

. Comparing between the time series of LAI and 0–10 cm soil mois-
ture maps, we conclude that the spatial distribution of observed
soil moisture and its evolution with time is affected by the
regional vegetation to some extent. Especially in sub-periods
1, 5 and 6, a positive feedback could exist between LAI and
soil moisture, which reinforces similar findings of the studies of
Rodriguez-Iturbe et al. (1999), D’Odorico et al. (2007) and Arora
(2002).

. During the growing season, leaf-level g is not only affected by
meteorological conditions but also by soil moisture (Barradas et
al., 1994; Ewers et al., 2001). In this study, the calculation of leaf-

level g is based on the modified Javis’ model which considers the
influence of daily soil moisture variation on g. As displayed in the
times series of 0–10 cm soil moisture maps and leaf-level g maps
(Figs. 11–14), the spatial distribution of g is positively correlated
with the spatial variation of 0–10 cm soil moisture. This positive
g 220 (2009) 2121–2136

relationship demonstrates that the modified Javis’ model has the
ability to capture the influence of surface dryness or wetness
on the leaf-level g. Through parameter optimization and Javis’
model modification, the updated g becomes reasonably sensitive
to the environmental influence. Thus it can be concluded that
the TSDA scheme is effective in improving leaf-level stomatal
conductance estimation both temporally and spatially.

4. Distinct from gmax, there is no spatially explicit pattern in the
variation of ˇ, while the average ˇ of the whole sub-area exhibits
a decreasing trend with increasing spatial heterogeneity with
time. The lack of a spatial pattern indicates that ˇ is not as sen-
sitive as gmax to the surface soil moisture, making the average ˇ
of the whole sub-area change little with time. The decrease of
ˇ indicates an increased proportion of roots near the soil sur-
face which contributes to the total transpiration. One reason for
this decrease is that with the growth of vegetation, the hetero-
geneity of the land surface is increasing. Another reason is the
distribution of precipitation. Especially during sub-periods 5, 7,
and 8, there are relatively large amounts of precipitation in this
area, which lead to sharp increases in the surface soil moisture,
as well as increases in the proportion of transpiration from the
top soil layer.

6. Summary and conclusions

Our study demonstrates the feasibility of assimilating remotely
sensed surface soil moisture data into an ecosystem model (BEPS)
in an arid and semi-arid area of northwest China to improve the
performance of soil moisture prediction in that area. A two-stage
data assimilation scheme is developed to fine-tune two key model
parameters using the Ensemble Kalman Filter and to reinitialize
the model to get improved predictions of 0–10 cm soil moisture.
The model performance using TSDA is first tested and validated
using field 0–10 cm measurements at a site. The influence of ini-
tial values of model parameters and their standard deviations on
model performance is also investigated. Using remotely sensed top
10 cm soil moisture, the spatial and temporal distribution of the
same model parameters is also optimized. Through this study, the
following conclusions are drawn:

(1) The TSDA scheme developed in this study is robust and
effective for spatial and temporal optimization of some key
model parameters and considerably improves the estimation
of 0–10 cm soil moisture except for extremely dry conditions,
i.e. soil moisture near the wilting point estimated in the model.

(2) Initialization of parameter values and their standard deviations
in BEPS has a slight influence on the model performance in the
first several days (sub-period). However, over the whole mod-
eling period (growing season), the total model performance is
notably improved after parameter optimization. The final model
results are little affected by the parameter initialization within
reasonable ranges.

(3) Spatially, the TSDA method results in significant improvement
in model performance in most areas except for areas where
LAI is very low. In these very sparsely vegetated areas, it is
evaporation from the soil surface rather than the transpira-
tion that affects soil moisture. Considering the dynamics of
soil hydraulic conductivity that affects evaporation in the opti-
mization scheme would potentially further improve the model
performance in very sparsely vegetated areas.
(4) The TSDA scheme can help not only reveal the temporal and
spatial variations of model parameters but also understand the
corresponding ecological mechanisms controlling these vari-
ations. Temporally, gmax and ˇ vary significantly during each
parameter updating stage, and the TSDA scheme is effective in
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capturing their temporal variations and the mutual compensat-
ing effects of these two parameters. Spatially, TSDA is helpful
for revealing the spatial variations of the BEPS model param-
eters. Input LAI series and 0–10 cm soil moisture observations
influence the spatial distributions of optimized model param-
eters and are useful for the optimization and application of the
ecosystem model to large areas.

This study is only focused on optimizing two key parameters
f BEPS (including gmax and ˇ) which influence canopy transpira-
ion while the spatial and temporal uncertainties of other model
arameters are ignored. In the future work, a parameter sensitivity
nalysis is yet to be done to analyze the model more thoroughly.
n addition, further research is required to improve the accuracy of
emotely sensed surface soil moisture to provide a more reliable
patial observation.
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