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Abstract—The precise estimation of the baseline is a crucial
procedure in repeat-pass interferometric synthetic aperture radar
(InSAR) applications. Using the ephemeris of the satellite, a poly-
nomial regression algorithm can fit the satellite orbit at the third or
higher order with a main shortcoming that the mutual constraints
among the three dimensions defining the orbit are missed. In this
paper, a new approach is presented to fit the satellite orbit based on
the assumption that the satellite orbit is a 3-D ellipse, which retains
the relations among the three dimensions. Considering the com-
plexity of 3-D ellipse parameters estimation, the 3-D orbit is first
transformed into three 2-D ellipses. Then, the parameters of these
2-D ellipses are estimated with a direct least-square ellipse fitting
method (DLS-EFM). These two orbit fitting algorithms are tested
with ten sets of advanced land observation satellite phased array
L-band SAR data, which were acquired in north Toronto, Ontario,
Canada, from September, 2008 to January, 2009. Moreover, two
of them acquired with an adjacent period were chosen to form a
repeat-pass InSAR, and the corresponding baseline is calculated
with the proposed method as an example. The experimental results
show that the error of the satellite position using DLS-EFM is at
a submetric level, which is less than one-tenth of that of the poly-
nomial regression algorithm. Consequently, the proposed method
is appropriate for the baseline estimation in spaceborne InSAR
applications.

Index Terms—Advanced Land Observation Satellite (ALOS)
phased array L-band SAR (PALSAR), ellipse fitting, ephemeris,
interferometric baseline, repeat-pass synthetic aperture radar
(SAR).

I. INTRODUCTION

W ITH the all-weather, all-time, and large-scale imaging
characteristic, synthetic aperture radar (SAR) has be-

come an important technique in global remote surveillances
and measurements. Interferometric SAR (InSAR) technique
combines data recorded by different sensors or the same sensor
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at different times to form interferograms. Then, the phase
differences of the backscattered signals can be analyzed by
interfering the data observed from almost identical positions
of the satellite orbit. As a result, InSAR not only contains
backscatter amplitude information, but also includes the in-
terference phase information. Therefore, this technique can
provide fine-resolution and high-accuracy data for global to-
pography mapping [1]–[3], tree height retrieval [4]–[6], soil
moisture inversion [7], global forestry research [8], and so on.
The baseline is the distance between the sensor’s positions,
while the sensor is acquiring the radar echoes of the same scene
during the flights. It is a foundation of SAR interferometry and
needs to be established before InSAR information is derived
[9], [10]. The length of the baseline is a basic parameter for
forest tree height estimation [11] or topography retrieval [12]
using InSAR data. According to the height and velocity of the
platform, the radar wavelength, the off-nadir angle, and the
bandwidth of the radar, there is an optimal baseline to generate
interferograms. For advanced land observation satellite (ALOS)
as an example, when it works in the polarimetry mode with
an off-nadir angle 21.5◦, the bandwidth is 14 MHz, and the
optimum baseline is about 938 m [2], [13]. If the baseline is
too short, the fringes of the interference data will be very tight
and affect the accuracy of interferometric applications. If the
baseline is too long, the reference data and the repeat-pass
data will lose coherence, and the interferograms could not be
generated [14]. For the single-pass InSAR, the distance of the
two sensors is designed to be close to the optimum baseline,
and it is fixed during the flight. However, for a repeat-pass
InSAR, because of the disturbance of the satellite platform, it
is a challenge to control the baseline and keep it stable. Hereby,
the estimation of satellite positions is an important procedure in
InSAR baseline estimation.

This study aims to develop a new baseline estimation method
that is more accurate than the polynomial curve fitting method,
which is currently widely used in InSAR applications without
information from the ground control points [15]. This paper is
organized as follows. Section II gives a detailed description of
the test SAR data. The next section is devoted to the introduc-
tion of the two satellite orbit fitting methods. In Section IV,
the precision of the two fitting methods is compared with ten
sets of ALOS phased array L-band SAR (PALSAR) data. Then,
the methods on how to estimate the baseline using the fitted
orbits are presented in Section V. Finally, a conclusion about
the proposed method is drawn in Section VI.

0196-2892/$31.00 © 2012 IEEE
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Fig. 1. (a) Optical image of the study area acquired from Google Earth. (b) HH polarized amplitude image acquired by ALOS PALSAR on October 8th, 2008.
(c) The interferograms generated with the HH polarized complex data acquired by ALOS PALSAR on October 8th and November 23rd, 2008.

II. DATA DESCRIPTION

The satellite ALOS was launched on January 24, 2006 by
the Japan Aerospace Exploration Agency [16]. It carries a
PALSAR sensor, which has the characteristics of full polarime-
try, high resolution, and variable off-nadir view. The repeat-
pass period of the satellite is about 46 days. It thus has the
potential to use the relatively close period data as the reference
and repeat-pass data to form a repeat-pass InSAR.

The study area observed by ALOS PALSAR is in north
Toronto, Ontario, Canada, from September, 2008 to January,
2009. The vexcel standard single-look complex formatted data
acquired in full polarimetric mode were used [13]. There are
four binary data files corresponding to HH, HV, VH, and VV
polarizations. Ten sets of ALOS PALSAR data were used to
test the precision of the fitting methods in this paper. Two of
them with an adjacent period were selected as the reference
and repeat-pass data to estimate the interferometric baseline as
an example. The reference data were acquired on October 8th,
2008 and the repeat-pass data were acquired 46 days later on
November 23rd, 2008. Fig. 1(a) is the corresponding optical
image of the study area downloaded from Google Earth (left
up point: 44.2214N, 79.6702W; right down point: 44.1208N,
79.5361W). Fig. 1(b) is the HH polarized amplitude image
acquired on October 8th, 2008. In order to reduce the effect
of speckle noise and obtain similar nominal resolutions in the
range and azimuth directions, six-look processing has been
performed in the azimuth direction. After a subpixel coregis-
tration based on the correlation coefficients, Fig. 1(c) is the
corresponding interferometric image formed by calculating the
coherent coefficients using a 3 × 3 window with the HH
polarized complex data.

Each binary data file has a corresponding text header file,
which records the ephemeris of the SAR sensor positions and
other imaging parameters. The four header files of different
polarimetric channels are almost identical. From one of them,
the satellite orbit information and the imaging parameters can
be obtained, which are listed in Table I as follows.

The ephemeris of ALOS contains 16 vectors of satellite
position and imaging time. The position information is recorded
during 15 min, almost 1 min for one record. The satellite
position at a specified time could be estimated through fitting
the satellite orbit using these 16 vectors. With the estimated

TABLE I
INFORMATION IN THE HEAD FILE (2008 OCTOBER 8TH)

positions of the satellite, the interferometric baseline can be
calculated readily. The coordinates in each vector are recorded
in Geodetic Reference System 1980 (GRS80) and will be used
to fit the satellite orbit and estimate the positions of the satellite
in the next section.

III. SATELLITE ORBIT FITTING

The estimated satellite positions directly affect the precision
of the baseline estimation. In this section, a polynomial re-
gression algorithm for fitting the satellite orbit is introduced
firstly, and then the direct least-square ellipse fitting method is
presented.

A. Polynomial Regression

The scheme of the baseline estimation with the polynomial
regression algorithm is shown in Fig. 2.

Polynomial regression can fit a nonlinear relationship be-
tween the value of p and the corresponding value of q to
describe a nonlinear phenomenon as follows:

q =
n∑

i=0

aip
i = a0 + a1p+ a2p

2 + · · ·+ anp
n n ≥ 2 (1)

where n is the polynomial regression order. The position of
the SAR sensor can be seen as a function of the time, and
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Fig. 2. Scheme of baseline estimation with the polynomial regression
algorithm.

therefore the coordinates of the satellite defined by X , Y , Z can
be expressed as functions of time t, and the cubic polynomial
regression (n = 3) between the satellite position and the time
is shown in ⎧⎨

⎩
X = a0 + a1t+ a2t

2 + a3t
3

Y = b0 + b1t+ b2t
2 + b3t

3

Z = c0 + c1t+ c2t
2 + c3t

3.

(2)

B. DLS-EFM

The polynomial regression algorithm for fitting the satellite
orbit only considers the relation between the coordinates and
the time separately. It ignores the relations among the three
dimensions. In fact, the three dimensions of a satellite orbit
are related to each other, enabling the satellite to operate on an
ellipse orbit around the earth. Although the earth is not a com-
pletely regular sphere, the ellipse orbit is still comparatively
stable and predictable.

The scheme of the baseline estimation with an ellipse fitting
algorithm is shown in Fig. 3. The differences between the
schemes of the polynomial regression algorithm and DLS-EFM
are the coordinate transformation and the time interpolation
procedures.

Fig. 4 shows that the orbit of ALOS is a 3-D ellipse around
the earth. The position of ALOS is recorded with a label in
a 3-D coordinate system, while the equation of a 3-D ellipse
contains ten parameters, and its expression is as follows in:

aX2+bY 2+cZ2+dXY +eXZ+fY Z+gX+hY +iZ+j=0.
(3)

When this 3-D ellipse is projected onto XOY, YOZ, and XOZ
planes, three 2-D ellipses could be obtained, where each 2-D
ellipse equation only contains six parameters. Therefore, it is
easier to estimate the parameters of a 2-D than a 3-D ellipse.
The three 2-D ellipse equations are shown in⎧⎨
⎩

aX2 + bY 2 + dXY + gX + hY + j = 0 XOY plane
aX2 + cZ2 + eXZ + gX + iZ + j = 0, XOZ plane
bY 2 + cZ2 + fY Z + hY + iZ + j = 0, YOZ plane.

(4)

Fig. 3. Scheme of baseline estimation with DLS-EFM.

Fig. 4. Three-dimensional ellipse orbit of the ALOS around the Earth (as-
cending orbit).

In analytic geometry, the 2-D ellipse on the Cartesian plane
is defined as a set of points (X,Y ) satisfying the implicit
equation in

AX2 +BXY + CY 2 +DX + EY + F = 0

×
(
F �= 0&F (B2 − 4AC) > 0

)
. (5)

On a 2-D plane, taking XOY plane as an example, if a series
of projected 2-D point labels (Xi, Yi), i = 1, 2, . . . ,K are
acquired, the least-square error method can be used to estimate
the parameters of the projected ellipse. Fitzgibbon [17] presents
an algorithm named a direct least-square ellipse fitting method
to estimate these six parameters of the general ellipse equation
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in (5). There are mainly four steps to estimate these parameters
by using K groups of position vectors of the satellite:

1) To normalize the input data (Xi, Yi), i = 1, 2, . . . ,K;

mx =
1

K

K∑
i=1

Xi my =
1

K

K∑
i=1

Yi (6)

Δx = max(Xi)−min(Xi) (i = 1, 2, · · ·K) (7)

Δy = max(Yi)−min(Yi) (i = 1, 2, · · ·K) (8){
xi = (Xi −mx)/Δx
yi = (Yi −my)/Δy

(i = 1, 2, · · ·K) (9)

2) To form the column vectors, where T means matrix or
vector transpose;

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = [x1, x2, · · ·xK ]T

y = [y1, y2, · · · yK ]T

xx = [x1 · x1, x2 · x2, · · ·xK · xK ]T

xy = [x1 · y1, x2 · y2, · · ·xK · yK ]T

yy = [y1 · y1, y2 · y2, · · · yK · yK ]T

(10)

3) To form the scatter matrix M and the constraint matrix
R. S is a K × 6 matrix and M and R are both 6 × 6
matrices.

S = [xx,xy,yy,x,y,1] (11)

M =STS (12)

R =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −2 0 0 0
0 1 0 0 0 0
−2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(13)

4) To calculate the eigenvalues and eigenvectors with Sξ =
λRξ, and then find the eigenvector ξ∗ corresponding to
the only negative eigenvalue λ∗, which is the estimation
of the vector ξ∗ = [Ã, B̃, C̃, D̃, Ẽ, F̃ ]T . Therefore, the
estimation of the six parameters in (5) is obtained.

IV. COMPARISON WITH THE TWO FITTING METHODS

There are 16 groups of position vectors in each header file.
Among these vectors, 15 groups are recorded at almost every
integral minute, and one vector is recorded between the integral
minutes. In this paper, these 15 records are used to fit the curve
of the satellite orbit, and the rest record is used to evaluate the
precision of the fitting algorithm as a test point.

A. Results of the Polynomial Regression Algorithm

With the 15 groups of records of the reference data, two
polynomial fitting curves in X direction are shown in Fig. 5(a),
where the order of the polynomial regression is eight, making
n = 8. From Fig. 5(a), it is noted that the reference and repeat-
pass curves are nearly parallel, and the distance between them
could be taken as a gross estimation of the baseline. The errors

Fig. 5. (a) Polynomial fitting curves on X direction. (b) The errors of the
15 samples on X direction with polynomial regression method (both reference
and repeat-pass data).

of the 15 samples on X direction with polynomial regression
method are plotted in Fig. 5(b).

After getting the fitted curve parameters, the positions at
the time of the test point can be estimated. The fitting error
could be calculated with the distance between the observed and
estimated positions of the test point. The details of estimated
positions and the error of the test point with an eighth regression
order are listed in Table II. The mean value and the standard
derivation of the errors with the 15 samples are also listed in
Table II.

B. Results of DLS-EFM

Considering that the satellite orbit is independent of the self-
rotation of the earth, the coordinates of the satellite in GRS80
need to be transformed into another coordinate system, which
is not influenced by the self-rotation of the earth. There is only



3614 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 9, SEPTEMBER 2012

TABLE II
ESTIMATED POSITIONS AND ERRORS OF REFERENCE AND REPEAT-PASS DATA

an angle difference between the two coordinate systems. With
the new transformed coordinates and using DLS-EFM, vector
ξ∗ can be acquired by using the new 15 groups of transformed
coordinates. Fig. 6(a) shows the ellipse on XOY plane with the
reference data. The stars represent the positions of the satellite.
Fig. 6(b) shows the errors of the 15 samples on X direction by
using DLS-EFM with both reference and repeat-pass data.

After acquiring these six parameters of the ellipse equation,
the positions of the test point can be estimated. Then, the
coordinates of the test point can be transformed into GRS80
to calculate the estimation errors. The details of the estimated
positions and fitting errors DLS-EFM are listed in Table II. The
mean value and the standard derivation of the 15 samples are
also listed in this table.

C. Comparison of the Results

From Fig. 6(a) and (b), for the reference and the repeat-
pass data, the results show that the errors of the ellipse fitting
algorithm are only several centimeters, whereas the errors of
polynomial regressions are more than 0.5 m, i.e., 10 times
greater. The optimum order for polynomial regression with a
minimum error is 8. For example, the errors are 1317.97 m,
0.73 m, and 1.25 m for the orders of 3, 9, and 10 for reference
data fitting, and 1340.72 m, 0.70 m, and 0.90 m for repeat-
pass data fitting, respectively. The mean value and the standard
derivation of the 15 samples also indicate that the proposed
method is much more precise than the polynomial regres-
sion method. Another eight sets of ALOS PALSAR data are
used to test the polynomial regression algorithm (n = 8) and
DLS-EFM. These data were all acquired in north Toronto, On-
tario, Canada from September, 2008 to January, 2009 by ALOS.
With different imaging parameters, the analysis of errors is
listed in Table III.

From Table III, it is worth noting that that the position
estimation with DLS-EFM is much more precise than that of
the polynomial regression algorithm. The average error of the
polynomial regression algorithm is about 8.11 m, while it is

Fig. 6. (a) Ellipse fitting curve on the XOY plane with reference data acquired
on October 8th, 2008. (b) The errors of the 15 samples on X direction with
DLS-EFM (both reference and repeat-pass data).
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TABLE III
ESTIMATED POSITIONS AND ERRORS OF DATA WITH DIFFERENT IMAGING PARAMETERS

only 0.35 m with DLS-EFM. It is obvious that the position
errors of the ellipse fitting algorithm are all at a submetric level.
Therefore, it is appropriate for spaceborne InSAR applications,
where the baselines are generally about several hundred meters.

V. BASELINE ESTIMATION

A. Time Registration

After acquiring the parameters of the satellite orbit with the
polynomial regression and ellipse fitting algorithms, time regis-
tration is the next procedure for baseline estimation. The acquir-
ing date of reference data is 8th October, 2008, and the imaging
time is 03:28:35.149392 (h:m:s), while it is 03:29:24.325631
(h:m:s) on 23rd November, 2008 for the repeat-pass data. After
getting the exact imaging time, the next step is to eliminate the
time difference with a precise image match. The satellite runs
about 7.5 m every millisecond (ms), and the baseline of the
repeat-pass spaceborne InSAR is about several hundred meters.
Since one line mismatch in calibration will bring 0.52 ms
time error, which approximately equals to 3.9 m of position
variance, it is necessary to calibrate the imaging time precisely.

The time of acquiring the first line of the reference data
and the repeat-pass data is different, which can be found in
the header files. Moreover, the scenes of the first line are
also different, and there is an offset by several lines. After a
subpixel registration of the reference and the repeat-pass data,
it was found that reference data were 0.02548s earlier than the
repeat-pass data. Therefore, the time of the reference data after
calibration is 03:28:35.149392 and the time of the repeat-pass
data after calibration is 03:29:24.351111.

B. Baseline Estimation With Polynomial Regression

With the calibrated reference and repeat-pass time, positions
of the satellite could be calculated with the curve parameters
estimated using the polynomial regression algorithm. Since the
time for one-scene imaging with ALOS is about 10 s, the
satellite positions can be sampled every 3 s from 28:35.149392
and 29:24.351111 with the reference and repeat-pass data,
respectively.

With the estimated satellite positions, the Euclidian distance
formula is used to calculate the baseline B. The baseline can be

TABLE IV
POSITIONS ESTIMATED EVERY 3 s WITH POLYNOMIAL REGRESSION

projected along and across the incident direction, forming a per-
pendicular baseline and a parallel baseline. The perpendicular
baseline B⊥ is a main parameter for flat earth effect elimination
in SAR interferometry [10], [18]. The relation between the
number of the fringes fn and the perpendicular baseline B⊥
over a flat swath with a known width W is expressed as follows:

fn =
2B⊥ cos θ

λL
W (14)

where θ is the off-nadir angle; λ is the wave length; and L is the
slant range. With the precisely estimated baseline, the flat earth
effect can be properly removed. The baseline estimation and
decomposition results with the polynomial regression algorithm
are listed in Table IV.

C. Baseline Estimation With DLS-EFM

There are some differences in calculating the positions of the
satellite with ellipse parameters. Time interpolation is needed
before estimating satellite positions. Through a proper choice
of the coordinate system, an ellipse can be described by a
canonical implicit equation with the center label (0, 0), major
semi-axes a, and minor semi-axes b:

x2

a2
+

y2

b2
= 1. (15)
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Fig. 7. Geometric parameters of a 2-D ellipse on the XOY plane.

As Fig. 7 shows, there are five geometric parameters in a
2-D ellipse equation, which are the center label (x0, y0), semi-
major axis a, semi-minor axis b, and a rotation angle ψ. These
five parameters can be deduced from the estimated vector ξ∗ =
[Ã, B̃, C̃, D̃, Ẽ, F̃ ]T .

Make x = a cosφ, y = b sinφ, φ ∈ [0, 2π), when φ in-
creases from 0 to 2π, the points (x, y) will produce a whole
ellipse on the XOY plane. Therefore, for an ellipse with a
rotated angle ψ and a moving center (x0, y0), it is simple to
make the following coordinate transformation:

x′ = a cosφ cosψ − b sinφ sinψ + x0

y′ = a cosφ sin θ + b sinφ cos θ + y0. (16)

When φ increases from 0 to 2π, these (x′, y′) functions plot
an ellipse with the rotated angle θ, the center (x0, y0) and the
same major and minor semi-axis a, b.

The period of the satellite around the earth is about 98.7
min, and there are 16 groups of position and imaging time
information over 15 min. In order to find the exact position of
the satellite at a given time, the best way is to interpolate the
ellipses with the adjacent satellite positions of the given time.
For example, if we need to estimate the satellite position of
the reference data at 28:35.149392, the data at 27:59.999 and
29:00.000 in the reference header file could be used.

The perimeter of the satellite orbit is more than 4× 107 m.
When φ increases from 0 to 2π, with φ changing every 10−6

radian, the position of the satellite changes more than 6.4 m.
Hence, we separate the orbit into [2× π × 109] segments with
the step Δφ = 10−9 radian, where [•] means to get the nearest
integer. These segments are labeled as the discrete φ from 0 to
[2× π × 109] ∗Δφ. Through searching the minimum distance
from the original positions to the ellipse orbit, the responding
values φ1, φ2 can be found when they are at 27:59.999 and
29:00.000 for the reference data. The same method is used to
find the discrete φ3, φ4 for the repeat-pass data. Then, we can
use φ1, φ2 to estimate the value of φref at 28:35.149392 for
the reference data, and use φ3, φ4 to estimate the value of φrep

at 29:24.351111 for the repeat-pass data. Once φref and φrep

are obtained, it is easy to define the satellite positions on the
satellite orbit with those known ellipse geometric parameters.

TABLE V
POSITIONS ESTIMATED EVERY 3 s WITH DLS-EFM

Finally, these estimated satellite positions are transformed into
GRS80 coordinate system and used to calculate the baseline,
which are shown in Table V. From Tables IV and V, it is found
that the baseline is changing during the image acquisition.
Therefore, it is inappropriate to take the minimum distance
between the orbits as the estimation of the interferometric
baseline.

VI. CONCLUSION

In this paper, a method is developed to estimate the baseline
of the spaceborne repeat-pass InSAR through transforming a
3-D satellite ellipse orbit into three 2-D ellipse curves, which
employ the relations among the three dimensions. The direct
least-square fitting method is adopted to estimate the parame-
ters of these 2-D ellipses. This new satellite orbit fitting method
and a conventional polynomial regression algorithm are applied
to a serial of ALOS PALSAR images of an area in north
Toronto, Ontario, Canada, acquired during September, 2008
and January, 2009. The experimental results show that the
ellipse fitting algorithm for the satellite orbit is much better
than the polynomial regression algorithm in interferometric
baseline estimation. With the high-precision estimated baseline,
the ALOS full polarimetric InSAR data could be used in many
interferometric applications as a further study, such as DEM
estimation, disaster evaluation, forest tree height inversion, and
so on.
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