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A simple data-model fusion method is developed to improve leaf area index (LAI)
mapping using satellite data. The objective is to overcome two issues with satel-
lite-derived LAI maps: (1) optical remote sensing data are often seriously affected
by the atmosphere due to clouds, and in some areas no reliable data are obtained
in the whole growing season, and (2) seasonal variations in conifer LAI derived
from satellite data are often distorted by the seasonal variations in leaf greenness
(pigments), the background vegetation and snow cover, etc., and the derived LAI
reflects the overall greenness rather than the actual forest leaf area present in a
pixel. These shortcomings of satellite measurements can be greatly alleviated when
an ecological model is used to simulate the LAI in the absence of reliable remote
sensing data and to estimate the seasonal variation of LAI according to ecological
principles. The usefulness of this fusion method is demonstrated through improv-
ing a China-wide LAI map series in 10-day intervals at 1 km resolution using
Satellite Pour l’Observation de la Terre (SPOT) VEGETATION (VGT) data.

1. Introduction

Leaf area index (LAI) is one of the most important parameters in ecological studies
as the leaf area is the basis for radiation absorption, energy and mass transfer to the
atmosphere, carbon dioxide (CO2) absorption for photosynthesis, etc. LAI is defined
as one-half the total green leaf area (all sided) per unit ground surface area (Chen and
Black 1992). Many previous studies have demonstrated the important effects of LAI
on the exchanges of energy, momentum and mass between the atmosphere and terres-
trial ecosystems (Sellers et al. 1997, Bondeau et al. 1999, Buermann et al. 2001, Foley
et al. 2003). The study of Xue et al. (1996) on the impact of vegetation on US summer
weather prediction suggested that accurate simulation of LAI seasonal variations can
improve the accuracy of temperature and precipitation prediction. Alan et al. (2004)
indicated that the seasonal variation of LAI for deciduous forests is the main factor
determining net ecosystem productivity. Several studies have shown that the uncer-
tainty in LAI is one of the main errors in the estimation of net primary productivity
(NPP) (Willams and Rastetter 1999, Churkina et al. 2003), and without accurate LAI
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2 M. Huang et al.

seasonal trajectory, it would be impossible to model plant response to global change
(Eweret 2004).

LAI can be measured on the ground by a number of direct and indirect methods
(Gower et al. 1999), but these methods are time-consuming and strenuous. Moreover,
it is quite difficult to use ground-based methods alone for studies across large temporal
and spatial scales. Remote sensing techniques are a way to estimate LAI time series for
large areas. However, satellite-derived LAI products are inevitably affected by atmo-
spheric conditions, including clouds, aerosols, water vapour, ozone, etc. Although
much of the effect of these conditions can be removed using real-time or near real-time
atmospheric observations made by the same sensor and other sensors, the remaining
effect can sometimes be very large (Vermote et al. 2002, Chen et al. 2006). Variations in
other factors, such as satellite view angle and solar illumination angle, can also cause
errors in retrieved LAI. The seasonal variations in the greenness of leaves, that is, the
chlorophyll content, and the soil background covers (understorey and snow cover in
forests) incur additional challenges in deriving the seasonal variation in LAI. Without
additional information on leaf greenness and background, the retrieved LAI seasonal
variation is considerably distorted, especially for conifer forests (Tan et al. 2005, Yang
et al. 2006, Pisek et al. 2007). Because of the decrease in leaf chlorophyll content in
the winter as well as snow cover on the background, LAI of conifer forests retrieved
through optical remote sensing often shows very small values, while in reality, it is only
slightly smaller than the summer peak value and plays an important role in radiation
absorption and energy balance.

On the other hand, LAI can also be generated by ecosystem models driven by envi-
ronmental factors that affect plant growth and therefore LAI. On the assumption
that resource availability constrains the distribution of plants, Prentice et al. (1992),
Neilson (1995), Woodward et al. (1995), Kergoat (1998) and Luo et al. (2002) simu-
lated LAI at regional and global scales. The atmosphere–vegetation interaction model
version 2 (AVIM2) used in this study to generate LAI is different from the above mod-
els. It is based on biophysical and biogeochemical processes at the land surface. LAI,
which is the internal variable of the model, can vary with growth, and its variation
would also feed back to the mass and energy balance calculations for the canopy. In
AVIM2, the allocation of photosynthetic assimilates to various biomass components
and the estimation of plant phenology often have considerable errors, and therefore
the parameterization for these processes needs independent data for validation. Albeit
having the inevitable atmospheric effects, satellite data can be used to derive the max-
imum LAI in the growing season more reliably than models for all cover types. They
can also be used to derive the phenology (e.g. leaf-on and leaf-off dates) more reliably
than models. It is therefore logical to develop a methodology that can make use of the
advantages of both satellite data and models while avoiding their shortcomings.

The objective of this study is to develop a methodology to fuse model-generated
LAI with satellite-derived LAI to improve LAI mapping. The methodology is tested
using an existing satellite LAI map over China’s land mass.

2. Materials and methods

2.1 Data source and data pre-processing

The satellite-derived LAI data set from 2003 used in this study was described in Chen
et al. (2006) and Deng et al. (2006). It is derived based on 10-day synthesis Satellite
Pour l’Observation de la Terre (SPOT) VEGETATION (VGT) reflectance images
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Leaf area index mapping 3

Table 1. The class names and codes of the vegetation cover map and the number of detected
cloudy pixels as a percentage of the total number of China pixels.

Code Class name Cloudy percentage (%)

1 Tree cover, broadleaved, evergreen 3.23
2 Tree cover, broadleaved, deciduous, closed 3.39
3 Tree cover, broadleaved, deciduous, open 0.00
4 Tree cover, needle-leaved, evergreen 4.61
5 Tree cover, needle-leaved, deciduous 0.48
6 Tree cover, mixed leaf type 0.04
7 Tree cover, regularly flooded, fresh water 0.00
8 Tree cover, regularly flooded, saline water 0.00
9 Mosaic: tree cover/other natural vegetation 0.45
10 Tree cover, burnt 0.00
11 Shrub cover, closed-open, evergreen 1.81
12 Shrub cover, closed-open, deciduous 0.02
13 Herbaceous cover, closed-open 2.55
14 Sparse herbaceous or sparse shrub cover 0.40
15 Regularly flooded shrub and/or herbaceous cover 0.12
16 Cultivated and managed areas 0.00
17 Mosaic: cropland/tree cover/other natural vegetation 0.00
18 Mosaic: cropland/shrub and/or grass cover 0.00
19 Bare areas 0.00
20 Water bodies 0.00
21 Snow and ice 0.00
22 Artificial surfaces and associated areas 0.00
23 No data

at 1 km resolution. The LAI algorithm was developed using the geometrical opti-
cal model (Four-Scale) to consider the bidirectional reflectance distribution function
without a prior angular normalization procedure (Chen and Leblanc 1997). A vari-
ety of spatial data sets for 2003, including climate, soil texture and vegetation, are
needed to drive AVIM2. The daily total precipitation, daily mean temperature, wind
speed, relative humidity and cloud cover of 720 weather stations in China were inter-
polated to 0.1◦ × 0.1◦ grids using the ANUSPLINE technique (Hutchinson 1989).
The soil texture map used in this study is a combination of three regional maps of
similar scales (1:14 000 000, 1:4 000 000 and 1:5 000 000) (Zhang et al. 2004). The
soil texture was divided into 12 grades: gravel, sand, coarse sand, fine sand, silty sand,
sandy silt, silt, silty clay, silty loam, loam, loamy clay and clay. The vegetation map
for this study is the global land cover 2000 (GLC 2000) which was downloaded from
the website http://www-gem.jrc.it/glc2000/objectivesGLC2000.htm. The vegetation
cover was divided into 22 types (table 1).

2.2 Methodology

In order to take the advantages of both satellite-derived and model-generated LAI, the
following steps were taken: (1) development of methods for cloud detection, (2) use
of the satellite-derived LAI in cloud-free pixels to determine the leaf-on and leaf-
off dates of each plant functional type (PFT) in the year and then estimation of
the corresponding accumulated thermal energy (degree-days) as inputs to AVIM2,
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4 M. Huang et al.

(3) running AVIM2 to get 10-day averaged LAI and (4) fusion of model-generated
and satellite-derived LAI.

2.2.1 Cloudy pixel detection method. The satellite-derived LAI series used in this
study were screened to reduce the atmospheric effects using a locally adjusted cubic-
spline capping method (LACC; Chen et al. 2006). The LACC method finds the
optimum LAI seasonal trajectory for each pixel by replacing abnormally low LAI
values in the trajectory with cubic-spline capping values. The capping curvature in
different times of the growing season is automatically adjusted according to the cur-
vature of a preliminary curve fitting. In order for LACC to perform reliably, 20 data
points in a growing season are required. However, in areas with persistent cloud cover,
there are not enough data points in a 10-day interval to meet this minimum require-
ment, and the seasonal variation pattern remains irregular after performing the LACC
algorithm. The first step of this study was to find these residual cloud-affected pixels
which were not successfully screened by LACC. A cloudiness index (CI) was used for
this purpose. It is defined as the aggregate of the local maximum LAI minus local
minimum LAI in a three-date moving window:

CI =
n∑

i=1

(Lmaxi − Lmini), (1)

where n is the total number of local minimum LAI points determined with the mov-
ing window during the growing season from 1 May to 31 October. Within the moving
window of three consecutive dates in 10-day intervals, the local minimum LAI (Lmini)
is found when the ith 10-day LAI value (LAIi) is smaller than both the (i – 1)th
10-day LAI value (LAIi–1) and (i + 1)th 10-day LAI value (LAIi+1), and the local
maximum LAI (Lmaxi) is found when LAIi is greater than both LAIi−1 and LAIi+1.
The accumulated difference between the consecutive local minimum and maximum
LAI values over the growing season signifies the cloudiness. Figure 1 shows an exam-
ple of calculating CI for a deciduous forest in north-eastern China. There are three
local maximum LAI points and two local minimum LAI points in this LAI seasonal
trajectory. In this case CI is given as:

CI = (Lmax1 − Lmin1) + (Lmax2 − Lmin2). (2)

This is an extreme example. In fact, most of the detected number of local minimum
LAI in all the study pixels are one, only a few are greater than two.

If there is no local minimum LAI point detected in an LAI curve then CI is zero.
Table 2 shows different thresholds of CI for differentiating cloudy pixels and the cor-
responding detected percentages of cloudy pixels of total China pixels. Any pixels
having CI greater than the threshold are considered to be cloudy. If the strictest thresh-
old (0.0) is used to detect the percentage of cloudy pixels of total China pixels, then
19.67% of pixels are judged as cloudy. Table 2 shows the detected cloudy-pixel per-
centage increases from 2.7% to 19.67% as the threshold decreases from 2.0 to 0.0. The
stricter the threshold, the higher the detected cloudy-pixel percentage. We checked the
LAI seasonal trajectories pixel by pixel for different CI values and found that for the
threshold 0.0, some slight declines of LAI were judged as cloudy effects, and these
LAI drops may have been caused by other reasons (such as drought, pests, etc.). To
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Leaf area index mapping 5
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Figure 1. An example of calculating the CI value for a broadleaved deciduous forest LAI at
43.89◦ N, 129.83◦ E.

Table 2. Different thresholds of CI and the detected percentage of cloudy pixels of total China
pixels.

CI Cloudy pixels (%) CI Cloudy pixels (%)

0.00 19.7 0.1 16.1
0.02 18.6 0.2 14.3
0.04 17.8 0.4 11.9
0.06 17.1 1.0 7.0
0.08 16.6 2.0 2.7

avoid misjudgement, the threshold 0.06 was chosen. It is a moderately strict standard.
The unreliable pixel percentage is 17.1% for the chosen threshold. Table 1 shows the
constituents of these cloudy pixels. The most affected vegetation cover is evergreen
needle-leaved forest (4.61%), followed by deciduous broadleaved forest (3.39%), ever-
green broadleaved forest (3.23%), herbaceous cover (2.55%) and evergreen shrub cover
(1.81%). For pixels in cropland and managed areas, the CI is set to 0.0, since it is hard
to differentiate between erratic LAI variations caused by atmospheric effects and those
caused by human activity. The affected percentages for other vegetation covers are less
than 0.5.

2.2.2 The atmosphere–vegetation interaction model (AVIM2). The AVIM2 used
in this study to generate LAI every 10 days is a process-based model which was
first developed by Ji (1995). This model consists of a plant-growth module, a
soil–vegetation–atmosphere transfer (SVAT) scheme, and a soil-carbon and nitrogen-
dynamics module. The detailed description of the plant-growth model and the SVAT
scheme can be found in Ji (1995), Lu and Ji (2006) and Dan and Ji (2007). The soil-
carbon and nitrogen-dynamics module is fully described by Huang et al. (2007). Here
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6 M. Huang et al.

we describe only the processes which are closely related to the simulation of LAI. In
this model, the forest biomass is divided into three parts: foliage, root and the remain-
ing part. For grassland, it is only separated into foliage and root, and its allocation
coefficient for foliage is the same as for forest.

Vegetation LAI is calculated by:

LAI = Mf(SLA), (3)

where Mf is the foliage biomass, and SLA is the specific leaf area (Schulze et al. 1994).
The biomass of a tissue is determined by photosynthesis, respiration, allocation of dry
matter to the tissue, phenological phase and its mortality rate, that is,

dMi

dt
= ηi(A − R) − Di, (4)

where Mi is the biomass of tissue i. i can be f, r or s, representing foliage, root and the
remaining part, respectively. A is the photosynthetic rate, and R is the sum of mainte-
nance and growth respiration. ηi denotes the allocation coefficient of tissue i, and Di

refers to its mortality rate. The following allocation schemes were used in this study: (1)
during the early stage of the growing season, more assimilates are allocated to foliage
and thus the vegetation can absorb more CO2 more quickly, and (2) as LAI increases
with time, the portions allocated to other parts increase gradually to maintain the
nutrient and water balance of the vegetation (Farrar 1992, Ji 1995, Dickinson et al.
1998, Lu and Ji 2002). On the basis of these assumptions, the allocation coefficients
for foliage (ηf), root (ηr) and the other parts (ηs) are written as:

{
ηf = (1 − a1) exp(−b1(LAI)/(LAI)max)

ηs = a2(1 − ηf)
ηr = (1 − a2)(1 − ηf)

, (5)

where b1 is an empirical constant, and a1 and a2 are parameters determined by the
phenological phase; (LAI)max is the maximum LAI.

In this study, the phenological phase was assumed to be controlled by the accu-
mulated thermal energy as measured by the degree-days above a threshold air
temperature. The complete phenological cycle was determined using both satellite
and meteorological data in the following steps: (1) the onset and the offset dates for
deciduous vegetation were found from the satellite-generated LAI seasonal trajectory
in cloudless pixels near a pixel of interest, (2) these dates were correlated with the
accumulated degree-days of the daily mean air temperature above 5◦C and (3) the
phenology of a cloudy pixel in question was determined using the measure of degree-
days. For evergreen coniferous trees, the relative magnitude of seasonal LAI variation
is determined by the lifespan of the leaves. The leaf lifespan for coniferous forest was
set as 6.17 years (Reich et al. 1999). In AVIM2, a minimum temperature of 0◦C was
set for photosynthesis for all PFTs.

2.2.3 Strategies for data-model fusion. For evergreen forest, the new LAI value after
fusion in the ith 10-day period (LAINi) is given as:
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Figure 2. Examples of data-model strategy (a) for evergreen forest; (b) for deciduous forest,
shrubland and grassland.

LAINi = (LAI)Ai+((LAI)Rmax − (LAI)Amax), (6)

where LAIAi is the ith 10-day LAI generated by AVIM2, and LAIRmax and LAIAmax

represent the satellite-derived and model-generated maximum LAI, respectively.
Figure 2(a) shows an example of this method. This data-model fusion strategy was
developed to minimize the errors in satellite LAI data in the seasonal trajectory.
Coniferous forests have only small LAI seasonal variations in reality, depending on the
needle longevity. However, in remote sensing images, the LAI of coniferous forests
often shows large seasonal variations due to the variation in leaf pigments and the
variation in the background (understorey, moss, snow, etc.). In particular, during the
winter months, when the background is covered by snow and leaves are less green,
the LAI retrieved from remote sensing is often close to zero, while in reality a large
LAI is still present and can greatly affect radiation absorption and energy balance. If
LAI derived from remote sensing in this way is not corrected, it becomes unreliable as
input to land-surface schemes, such as those used in numerical weather forecast and
climate simulations, which require accurate simulation of surface energy balance. Our
fusion strategy was to rely on model simulation of the seasonal trajectory while using
remote sensing data to determine the maximum LAI in the season. The fusion pro-
cess basically shifts the modelled LAI curve by the difference in the maximum LAI
between the model and the satellite values.

For deciduous forest, shrubland and grassland, the new LAI after fusion is given as:

LAINi = LAIAi
(LAI)Rmax

(LAI)Amax
. (7)

An example of this method is shown in figure 2(b). This fusion is similar to that for
conifers, that is, combining the modelled seasonal trajectory with the satellite-derived
maximum LAI value. The mathematical formulation (equation (7)) is different from
equation (5) in order to maintain the zero LAI values before and after the growing
season.
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8 M. Huang et al.

In both cases, the maximum LAI from the satellite data can occur at different times
of the seasons from the modelled value. We matched the satellite-based maximum
value with the modelled value at the same date, so that the fused LAI can sometimes
have a slightly larger LAI value than that derived from satellite data.

In this study, the satellite-derived LAI values for croplands and managed areas were
not altered by the fusion process, as their seasonal variation patterns are much more
affected by human activity than meteorology, and our modelled seasonal trajectories
become less reliable than satellite data. There is a supplementary step for grassland. If
LAIRmax is 50% less than LAIAmax, then the new LAI is given as:

LAINi = (LAI)Ai. (8)

The reason for this is that the satellite-derived LAI values for grassland have not been
validated in China, whereas the model-generated LAI values agree well with the field
observations. The satellite LAI algorithm is sensitive to the soil background optical
properties, which are difficult to acquire for large areas. The comparisons between
the grassland measurements and AVIM2 simulations are shown in figure 3. The field-
observed LAI values were obtained from an Inner Mongolian grassland ecosystem
observation station located at 43.63◦ N, 116.70◦ E (Du et al. 2001).

In this study, the resolution of satellite-derived LAI is 1 km and that of modelled
LAI is 0.1◦. As the modelled shape of the LAI seasonal trajectory does not vary greatly
in space and the maximum LAI is determined at 1 km resolution, the fused LAI
effectively remains at 1 km resolution. For detected cloudy pixels, where the satellite
maximum LAI was also unreliable, the following protocols were followed: if a 1 km
pixel had the same vegetation type as the coarse pixel, then its LAI was taken as the
coarse pixel LAI, and otherwise its LAI was taken as that of an adjacent coarse pixel
which had the same vegetation type. It seldom happened that there were no reliable

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 Model-generated LAI
 Field-observed LAI

L
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Figure 3. Comparison of model-generated LAI seasonal trajectory with the field observations
(field data source: Du et al. 2001).
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Leaf area index mapping 9

LAI values for a large region. When this was the case, we used a modelled LAI value
for the same PFT in the nearest distance.

3. Results

3.1 Cloudy pixel detection results

The calculated CI values are shown in figure 4(a). Any pixel with CI value greater than
0.06 was detected as a cloudy pixel. These are the pixels that have frequent cloud cover
in the year, for which the seasonal trajectory could not be reliably reconstructed using
the LACC method (Chen et al. 2006), and their LAI values were replaced using the
data-model fusion method. Figure 4(b) shows the distribution of annual mean cloud
amount, averaged over the period of 1961–1990. The cloud amount (0–10 tenths of sky
cover) data were from ground meteorological station observations and were interpo-
lated to 0.1◦ resolution. The detected geographical locations of cloud-affected pixels in
2003 correspond very well with the mean cloud amount. They are mainly distributed
in southern and north-eastern China, where the annual mean cloud amount values are
greater than five. The examples of LAI with low and high CI values for deciduous and
evergreen forests are shown in Figure 4(c) and (d). It is obvious that the LAI curve
with CI around the threshold of 0.06 shows a smooth seasonal cycle, whereas the LAI
curves with higher CI values show abrupt seasonal variations.
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Figure 4. (a) The calculated cloudiness index map; (b) the averaged annual mean cloud
amounts; (c) examples of CI equal to the threshold 0.06 for deciduous forest at 44.12◦ N,
126.75◦ E, and CI equal to 0.00 for evergreen forest at 25.00◦ N, 100.28◦ E; (d) examples of high
CI for deciduous forest at 44.94◦ N, 129.60◦ E and for evergreen forest at 30.00◦ N, 102.21◦ E .
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10 M. Huang et al.

3.2 Comparison of satellite-derived and modelled LAI in cloudless pixels

The modelled maximum LAI values averaged for the individual PFTs (table 1) were
compared with those of the satellite-derived LAI (figure 5), which shows that the two
sets of values generally agree very well. For evergreen shrub and herbaceous cover, the
averaged modelled LAI values are slightly greater than satellite-derived LAI values.
This close agreement suggests that the data-model fusion would not introduce system-
atic bias to the satellite-derived LAI while removing the errors due to the atmospheric
effects and the seasonal variation.

3.3 Comparison of LAI maps before and after data-model fusion

The LAI maps before and after data-model fusion in winter and summer are visu-
ally compared in figure 6. Before the fusion, the LAI map in January (figure 6(a))
has maximum LAI values that are smaller than 2.0, which are obviously incorrect for
coniferous forests. After the fusion (figure 6(b)), the LAI values of many pixels are
increased to around 5.0. These pixels are mostly in subtropical forests and in middle-
and high-latitude coniferous forests. After the fusion, the forest LAI values in August
are also increased in cloudy pixels (figure 6(d) in comparison with figure 6(c)). Before
the fusion, grassland LAI values are between 0.0 and 1.0 in Inner Mongolia and the
Tibetan plateau (figure 6(c)), and these values are increased to 1.0–2.0 after the fusion
(figure 6(d)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

 Satellite-derived maximum LAI

 Model-generated maximum LAI

LA
I

Vegetation type

Figure 5. Comparison of the maximum LAI values, averaged for individual PFTs.
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Leaf area index mapping 11

Figure 6. LAI distributions in the first 10-day period of January, (a) before and (b) after
the data-model fusion; LAI distributions in the first 10-day period of August, (c) before and
(d) after the data-model fusion.

3.4 Comparison of China-wide seasonal maximum LAI with an existing
global data set

In order to compare the LAI values in China with other available data, the PFTs were
merged into forest, grassland and shrubland, and the China-wide mean maximum LAI
values in the growing season for the three cover-type groups were compared with an
existing global data set (table 3). The global mean maximum LAI data were compiled
by Asner et al. (2003), who collected more than 1000 published estimates and removed
the statistical outliers using inter-quartile range analysis.

Table 3 shows that after the data-model fusion, the mean maximum LAI values over
China’s land mass for forest, grassland and shrubland are all slightly lower than their

Table 3. Comparison of China-wide mean maximum LAI values after fusion with global mean
estimates (the data in the brackets are global estimates).

Vegetation type Mean Standard deviation

Forest 4.24 (4.36) 1.46 (2.00)
Grassland 1.51 (1.70) 1.04 (1.20)
Shrub 1.93 (2.10) 1.19 (1.60)
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12 M. Huang et al.

corresponding global mean measurements. The maximum forest LAI is 4.24 ± 1.46
in China, and the global mean measurement is 4.36 ± 2.0. The maximum LAI values
of grassland and shrubland in China are 1.59 ± 1.04 and 1.93 ± 1.19 respectively,
compared to the corresponding global values of 1.7 ± 1.2 and 2.1 ± 1.6. Since 55% of
the LAI values referenced by Asner et al. (2003) were from the USA and Japan, the
differences between these two data sets are reasonable.

3.5 Comparison with two Landsat ETM images

To investigate the accuracy of individual pixel LAI values, comparisons were made
between the improved LAI images after fusion and those in the corresponding
Enhanced Thematic Mapper (ETM) images in China. One ETM scene is located in
Liping County in the south-west of China, and the other in the Changbaishan Nature
Reserve in north-east China. The LAI values for the two images were calculated from
atmospherically corrected Landsat ETM+ reflectance using algorithms based on field
observations. The resolutions for the two images are 30 m (Wang et al. 2007, Zheng
et al. 2007). Since the spatial resolution is 1 km for the VGT LAI image and 30 m
for the ETM LAI images, both coarse- and fine-resolution images were resampled to
3 km for comparison purposes. The final comparison was made at 3 km rather than
1 km, in order to reduce the effect of pixel misregistration of the coarse resolution
image, following the methodology of Chen et al. (2002). For the Changbaishan area,
with a large LAI dynamic range due to the altitude variation, the VGT LAI is well-
correlated with the ETM LAI (figure 7(a)), and the coefficient of determination (R2)
value reaches 0.8 with the root mean square error (RMSE) equal to 0.36. For the
Liping area, with a small LAI dynamic range, the correlation is not as good, with a
smaller R2 value of 0.36, but the RMSE is reduced to 0.30 (figure 7(b)). The p-values
for the two regressions are both less then 0.0001.

The comparison of mean LAI values of improved LAI with those of ETM LAI
for the Changbaishan and Liping images is shown in table 4. For the image of
Changbaishan, the dominant vegetation cover is deciduous broadleaved forest, decid-
uous needle-leaved forest, mixed forest and herbaceous cover. The improved LAI
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Figure 7. Comparisons of LAI values after fusion with those derived from ETM for:
(a) Changbaishan; (b) Liping.
Notes: ETM, Enhanced Thematic Mapper; LAI, leaf area index; VGT, VEGETATION.
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Leaf area index mapping 13

Table 4. Comparison of LAI mean values after fusion with those from ETM of Changbaishan
and Liping (the data in the brackets are standard deviations).

Changbaishan Liping

Vegetation
code VGT LAI ETM LAI

Vegetation
code VGT LAI ETM LAI

2 6.11 (0.56) 6.26 (0.45) 1 2.71 (0.52) 3.33 (0.57)
5 6.6 (0.35) 6.56 (0.23) 4 2.67 (0.45) 3.32 (0.61)
6 4.49 (0.58) 4.75 (0.55) 11 2.57 (0.51) 3.15 (0.68)
13 4.73 (0.98) 4.94 (0.86) 13 2.21 (0.62) 2.71 (0.63)

Notes: The meaning of the vegetation code can be found in table 1. ETM, Enhanced Thematic
Mapper; LAI, leaf area index; VGT, VEGETATION.

mean values for the above vegetation cover types are 6.11 ± 0.56, 6.6 ± 0.35, 4.49
± 0.58 and 4.73 ± 0.98, respectively, which are very close to the ETM LAI mean val-
ues of 6.26 ± 0.45, 6.56 ± 0.23, 4.75 ± 0.55 and 4.94 ± 0.86. For the image of Liping,
the improved LAI mean values are 2.71 ± 0.52, 2.67 ± 0.45, 2.57 ± 0.51 and 2.21 ±
0.62 for evergreen broadleaved forest, evergreen needle-leaved forest, evergreen shrub
and herbaceous cover respectively, which are all lower than the ETM LAI mean val-
ues of 3.33 ± 0.57, 3.32 ± 0.61, 3.15 ± 0.68 and 2.71 ± 0.63. The larger systematic
error at the Liping site may be due to the following reasons: (1) the landscape within
the Liping county in southern China is heterogeneous due to intensive land manage-
ment and small-scale topographical variations, and most pixels at 1 km resolution
are mixed, causing errors in scaling from 30 m to 1 km resolution; and (2) the influ-
ence of topographical variations on remote sensing signals at Liping county would be
considerable and is not corrected on the ETM and VGT images used in this study.
These errors are much less at the Changbaishan Nature Reserve, where the landscape
is more homogeneous and the topography varies at a larger scale. Additional work is
still needed to reduce the scaling error and to consider the topographical effects.

3.6 Comparison with field observations

Although the direct comparison of satellite-generated LAI values at a coarse reso-
lution with field observations in small plots is often not meaningful because of the
mismatch in spatial resolution, we can still get some information from such compar-
isons when a large data set is used. The field LAI observations used for comparison
for this purpose, obtained from the website http://www.daac.ornl.gov, were 794 plots
with mature or nearly mature stand ages originally collected by Luo (1996) and Luo
et al. (2002) from the ecological research plots in the Chinese literature and inventory
plots. In the comparison, if there are three or more plots located at a forest pixel then
the averaged ground observation is compared with the satellite data, and plots located
within a non-forest pixel or less than three plots located within one pixel are excluded.
Figure 8 shows that the correlations between field-observed LAI and satellite-derived
LAI are improved after the data-model fusion. The R2 increased from 0.14 to 0.23
and the RMSE decreased from 1.34 to 1.24 after data-model fusion. The p-values
for the two regressions are both less then 0.0001. The reason for this is that many of
the forest LAI measurements were obtained in the detected cloudy pixels in southern
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Figure 8. Comparison of satellite-based LAI values with field observations (Luo 1996, Luo
et al. 2002), (a) before data-model fusion; (b) after fusion.

Figure 9. The locations of field observation sites with their LAI values.

China (figure 9), and LAI values in these cloudy pixels were increased after data-model
fusion.

The mean values of field-observed LAI, the old satellite-based LAI and the
improved LAI are shown in table 5. It shows that after fusion, the mean LAI values
for deciduous and evergreen forests are closer to the field measurements than before.

4. Conclusions

The data-model fusion method used in this study is shown to be effective in improv-
ing the quality of the satellite-derived LAI through identifying the atmospherically
affected data points and reconstructing the seasonal trajectory of LAI. In cloudless
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Leaf area index mapping 15

Table 5. Comparison of the mean values of field-observed LAI with those of satellite-based
LAI before and after improvement (the data in the brackets are standard deviations).

Vegetation code Observation Satellite-based LAI Improved LAI

1 7.21 (2.99) 4.08 (1.25) 6.26 (1.02)
2 6.01 (1.61) 5.39 (0.98) 5.43 (1.04)
4 6.86 (2.44) 4.56 (1.44) 5.48 (1.35)
5 5.46 (1.44) 4.44 (1.50) 4.58 (1.54)

Note: The meaning of the vegetation code can be found in table 1.

pixels, the satellite-derived maximum LAI is relatively reliable in comparison with our
ecological model AVIM2 used for LAI simulation, and it is the basis for determining
the spatial LAI distribution. For deciduous cover types, the leaf-on and leaf-off dates
observed by satellite are also reliable and can be used to calibrate AVIM2. However,
the seasonal variations of coniferous forests observed by satellite sensors are often
not reliable due to the variation in leaf pigment contents and the background vegeta-
tion or snow cover, while the seasonal variation of conifer LAI can be well-modelled.
The model AVIM2, driven by environmental variables (soil and meteorology), has the
advantage of stability and reasonability. Its results are not influenced by atmospheric
effects, and thus can be used to reconstruct the LAI seasonal trajectory in cloudy pixels
and for conifer pixels. It is therefore logical to use a model to improve satellite-derived
LAI data through data-model fusion. It is demonstrated in this study that this fusion
method considerably improved an existing LAI map series in comparison with several
independent LAI data sets.

In this study, the data-model fusion method was not suitable for pixels of cropland
and managed areas because (1) these pixels are highly influenced by human activ-
ity and there is insufficient information to judge if the abrupt reductions in the LAI
seasonal trajectory were caused by atmospheric effects or human activity (such as
harvests in double or multiple cropping systems), and (2) croplands were taken as
grasslands in the AVIM2 simulation, which ignores the influence of human activity
such as irrigation and fertilization. These shortcomings may be overcome in future
studies when information on agricultural activity that affects LAI seasonal variations
is available for large areas.
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