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a b s t r a c t

Remote sensing is a useful tool for the estimation of gross primary production (GPP) in terrestrial
ecosystems at regional to global scales. One limitation of remote sensing based GPP models is the
inappropriate characterizing of precipitation impacts. In this study, we showed positive relationship
between the monthly flux-measured GPP of four grasslands ecosystems and the precipitation intensity,
which was calculated from dividing the monthly sums of precipitation by the half-hourly precipitation
frequency. Suggested by this finding, two remote sensing based GPP models, i.e. the greenness and
radiation model (GR) and the temperature and greenness (TG) model, were selected to test the potential
of incorporating this precipitation intensity for the estimation of monthly GPP. A scaled precipitation
intensity was proposed by normalizing a multi-year maximum precipitation intensity, considering its
dynamical ranges across sites and regions. Results indicated that by adding of this scalar, the revised
models can provide better monthly GPP estimates with average 10% improvements in precisions
compared to their original outputs. A further analysis showed that such better performances of the
revised models can be attributed to the positive relationship between precipitation intensity and the
absorbed photosynthetically active radiation (APAR). However, no evident response has been observed
on the light use efficiency (LUE), indicating the LUE and precipitation intensity relationship may differ
across species and ecoregions. To the best of our knowledge, this is the first report of the potential use of
precipitation intensity in the remote sensing based GPP models and it will be useful for the development
of future models that can better predict GPP in the context of future precipitation regimes.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Terrestrial ecosystems play a dynamic role in the global carbon
(C) cycle as the carbon balance of terrestrial ecosystems is highly
sensitive to climate changes, such as the inter-annual variations of
precipitation regimes and increased surface temperatures as
a result of the increase in atmospheric greenhouse gases (Beer et al.,
2010). The increase in temperature and the elevated CO2 in the
atmosphere have been demonstrated to have great effects on
terrestrial ecosystem production (Norby et al., 2005; Zhao and
Running, 2010). Precipitation, on the contrary, has been suggested
to have a more profound impact on ecosystem dynamics, especially
in arid and semiarid environments (Weltzin et al., 2003). Changes
in global and regional precipitation regimes are expected to have
ramifications for the distribution, structure, and diversity of plants
(Easterling et al., 2000). Although there are uncertainties for the

feedbacks between annual precipitation variability and the
aboveground net primary production (ANPP), it is suggested that
precipitation patterns can alter the vegetation production and the
responses may differ across biomes (Fang et al., 2001; Knapp and
Smith, 2001).

Remote sensing has been an important tool for the estimation of
gross primary production (GPP) at large spatial scales. Most of these
models are based on the capturing of spectral characteristics of
vegetation that are correlated to the biomass production. Specifi-
cally, the vegetation index (VI) are widely used in such models,
providing an indicator of either the light use efficiency (LUE)
(Garbulsky et al., 2011) or the faction of the absorbed photosyn-
thetically active radiation (fAPAR) (Xiao et al., 2004). For example,
the temperature and greenness (TG) model, derived by Sims et al.
(2008), utilizes a combination of the enhanced vegetation index
(EVI, Huete et al., 2002) and the land surface temperature (LST) in
estimating GPP across different biomes. A total chlorophyll based
model using the product of the normalized difference vegetation
index (NDVI, Rouse et al., 1974) and incoming photosynthetically
active radiation (PAR) also shows promising results for estimating
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GPP in crops (Gitelson et al., 2006; Wu et al., 2009) and forest
landscapes (Wu et al., 2010). A common limitation of these remote
sensing based GPPmodels is the inappropriate characterizing of the
meteorological factors (e.g., temperature, precipitation) that can
greatly affect LUE, leading to the largest uncertainty constrains the
application of these models globally (Mu et al., 2011; Zhao et al.,
2006). The reason is that the real-time LUE would change
dramatically across seasons and between vegetation types that
would be a function of factors as chlorophyll content, light, water,
temperature (Hilker et al., 2008; Sims et al., 2008; Zhao et al., 2006)
and thus a single vegetation index may have limited ability in LUE
estimation, especially in extreme drought conditions (Samanta
et al., 2010).

While impact on changes in the surface temperature has been
considered in many GPP models (e.g., Coops et al., 2005; Sims et al.,
2008; Xiao et al., 2004), little attention and result have been re-
ported on views of precipitation regimes in such remote sensing
based GPP models. Furthermore, precipitation regimes are pre-
dicted to become more variable with more extreme rainfall events
punctuated by longer intervening dry periods. Manipulated
experiments have demonstrated that these changes in patterns of
precipitation can alter vegetation production (Heisler-White et al.,
2008; Thomey et al., 2011). Therefore, it is urgent and necessary
to improve those GPP models with incorporation of precipitation
regimes, especially in consideration of the future regional and
global climate changes (Paiva et al., 2011). Here we reported an
analysis of the potential use of the precipitation intensity in remote
sensing based GPP models. Satellite observations from the
Moderate Resolution Imaging Spectroradiometer (MODIS) images
and multi-year flux measurements were used to estimate monthly
GPP in four northern grasslands. The objectives are (1) to explore
the potential for GPP estimation by incorporation of precipitation
intensity, (2) to give analyses of reasons for the better performance
of the revised models. These results will be useful for the devel-
opment of future GPP models based on remote sensing observa-
tions and climate variables.

2. Materials and method

2.1. Study sites

To support the analysis of this study, four grasslands were
selected in North America (Fig. 1). The first site is located west of

Lethbridge, Alberta, Canada, referred as CA-LET hereafter. This site
is classified as mixed grassland and occurs in the northern portion
of the Great Plains, which is the second largest eco-zone in North
America, covering approximately 2.6million square kilometers. The
plant community is consisted of the dominant grasses of Agropyron
dasystachyum [(Hook.) Scrib.] and Agropyron smithii (Rydb.)
(Flanagan and Johnson, 2005). The second site is located in an open
grassland ecosystem in the foothills of the Sierra Nevada in Cal-
ifornia, USA, referred as US-VAR hereafter. This site is classified as
grassland dominated by C3 annual grasses, mainly including Purple
false brome (Brachypodium distachyon L.) and Smooth cat’s ear
(Hypochaeris glabra L.). The third grassland site is located in the
Audubon Research Ranch, Sonoita Valley, Arizona, USA, which is
the largest ungrazed, privately managed grassland sites in Arizona
(Krishnan et al., 2011). Dominant species include the short-grass
prairie (C4 perennial bunchgrasses, primarily Bouteloua gracilis,
Bouteloua curtipendula, and Eragrostis intermedia) and two love-
grasses (Lehmann lovegrass (Eragrostis lehmanniana) and Boer
lovegrass (Eragrostis curvula var. conferta)). The final site is the
walnut river watershed site (US-WLR), which rests on a C3/C4
mixed grassland, tallgrass prairie north of Manhattan, Kansas, USA.
The dominate species are two C4 grasses (Andropogon gerardii
Vitman and Sorghastrum nutans [L.] Nash). Subdominants include
the C3 grass Poa pratensis L. and the C4 grasses B. curtipendula
(Michx.) Torr (Jastrow et al., 2000). Detailed descriptions for each
site and the relative references were shown in Table 1.

2.2. Flux measurements and climate data

Flux data of site CA-LET were downloaded from the Fluxnet
Canada Data Information System (http://www.fluxnet-canada.ca)
while data for the remaining three US sites were acquired from
http://public.ornl.gov/ameriflux/dataproducts.shtml.

Meteorological variables of air temperature (Ta, �C), precipita-
tion and radiation were measured from site sensors. Precipitation
data of these sites were obtained from the gap-filled half-hourly
meteorological measurements collected by on-site tipping bucket
sensors. Besides of sums of monthly precipitation quantity, we also
calculated the half-hourly precipitation frequency (n), which was
determined as the number of time periods with observed precipi-
tation. The precipitation intensity (Pa, mm/0.5 h) was then obtained
from dividing the sums of monthly precipitation by the precipita-
tion frequency (n) from the half-hourly observations.

The monthly GPP was also acquired for each site. For CA-LET,
a standard procedure by the Fluxnet-Canada Research Network
was used to estimate monthly net ecosystem production (NEP) and
to partition NEP into components of GPP and ecosystem respiration
(Re) (Barr et al., 2004). The procedure to estimate monthly GPP
from half-hour measurements of NEP first derives GPP and Re from
measured NEP and then fills gaps in GPP, Re and NEP using simple
empirical models that are constrained by the measured data. For
the other three US sites, the level-4 monthly GPP product was used
and these data were gap-filled with the Artificial Neural Network
(ANN) method (Papale and Valentini, 2003) and/or the Marginal
Distribution Sampling (MDS) method (Reichstein et al., 2005).

2.3. MODIS products

To support the satellite estimation of GPP, two MODIS products
were used which were acquired at https://lpdaac.usgs.gov/lpdaac/
get_data/wist.

The first MODIS product is the Terra MODIS 8-day LAI product
(MOD15 A2, 1 km), which provides LAI data globally (Yang et al.,
2006). The second product is the 8-day Terra MODIS surface
reflectance atmospheric correction algorithm product (MOD09A1,Fig. 1. Spatial distribution of the four grassland sites in this study.
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500 m) which provides surface reflectance data at seven bands
from optical to shortwave ranges. These reflectance were used to
derive two vegetation indices, including the NDVI and EVI with the
equations below,

NDVI ¼ ðRNIR � RredÞ=ðRNIR þ RredÞ (1)

EVI ¼ 2:5� RNIR � RRed
1þ RNIR þ 6� RRed � 7:5� RBlue

(2)

where theRx represents the reflectanceat thegivenwavelength (nm).
We only used the MODIS LAI data for US-AUD and US-WLR

where in situ data was unavailable. For these two sites, the LAI
data of the central pixel was extracted to represent the value of flux
towers considering the footprints at each directions were around
1.5 km for both sites. Both NDVI and EVI were used for all sites and
were extracted from 3� 3 MODIS pixels centered on the flux tower
similar to the approach used by Sims et al. (2008) and Wu et al.
(2011). The 3� 3 MODIS pixels method was also checked at each
site with respect to footprints at each direction. Both 8-day LAI and
vegetation indices observed during the month were then averaged
to represent the mean monthly value.

2.4. Ground LAI and LUE calculations

For CA-LET and US-VAR, ground measured LAI were available
and thus were used. LAI was measured once every two weeks by
destructive sampling (0.2 m� 0.5 m, replicates¼ 6) using a leaf
area meter (model LI-3100, LI-COR Inc.) in CA-LET. All observations
within the same month were averaged to represent the mean
monthly value. Detail descriptions of LAI sampling are shown in
Flanagan et al. (2002). For US-VAR, the LAI was determined by
harvesting four sample plots (0.25 m� 0.25 m)within the footprint
of flux tower based on the extrapolation of data obtained during
periodic field visits (Ryu et al., 2008).

These LAI data were further used to determine the faction of
APAR (fAPAR) by the following equation andwith the light extinction
coefficient (k¼ 0.5),

fAPAR ¼ 0:95�
�
1� e�kLAI

�
(3)

For the other two sites (US-AUD and US-WLR) where in situ LAI
were unavailable, the fAPAR of these two sites were calculated from
an alternative method, considering the widely reported relation-
ship between the fAPAR and the NDVI,

fAPAR ¼ 1:24� NDVI� 0:168 (4)

The empirical relationship between fAPAR and NDVI we used has
been validated in diverse ecosystems in North America (Wu et al.,
2011), which gives us more confidence in use this correlation.

The monthly LUE of all sites then can be determined by the flux-
measured GPP, fAPAR and PAR from meteorological measurements
using equation below:

LUE ¼ GPP
fAPAR � PAR

(5)

Growing seasons for these sites were different considering their
local climates. Owing to a Mediterranean climate for site US-VAR,
months from May to Oct. were excluded because GPP in these
non-growing season months were zero (Ryu et al., 2008). For the
other three sites, months fromMay to Oct. were selected (Flanagan
et al., 2002; Jastrow et al., 2000; Krishnan et al., 2011).

2.5. Description of GPP models

Two remote sensing based GPP models were selected. The first
is the greenness and radiation model (GR) which is firstly proposed
by Gitelson et al. (2006) in both irrigated and rainfed maize. Later
validations of the model also show promising results in different
crops (Wu et al., 2009) as well as forest landscapes (Wu et al., 2011).
The underlying mechanism of this model lies in the correlation
between the GPP and the total canopy chlorophyll content.
Therefore, vegetation indices that derived to be proxies of total
chlorophyll content can be used in the estimation of GPP with
combination of the incoming PAR. Briefly, the model can be
expressed by the following equation,

GPP ¼ EVI� PAR (6)

A second model is the temperature and greenness (TG) model
proposed by Sims et al. (2008) that estimates GPP using a combi-
nation of MODIS LST and EVI products. The most important merit of
this model is the independence of climate variables. The original
form of the TG model can be illustrated by,

GPP ¼ ScaledEVI� ScaledLST (7)

Empirical data suggests that GPP may drop to zero when EVI is
around 0.1 and thus the ScaledEVI is determined as:

ScaledEVI ¼ EVI� 0:1 (8)

The ScaledLST is proposed based on the determination of
optimum temperature for GPP. As GPP generally increases to the
maximum values at the LST around 30 �C, two linear equations are
used to define the ScaledLST,

ScaledLST ¼ min½ðLST=30Þ; ð2:5� 0:05� LSTÞ� (9)

However, the use of MODIS LST can lead uncertainties because
satellite sensors measure a signal that is a combination of the
radiant temperature of the land surface and the intervening
atmosphere (Goetz et al., 2000). Therefore, we used a simple
revised form of the original model with the Ta from the flux
measurements considering all monthly temperature in our analysis
were below 30 �C,

GPP ¼ EVI� Ta (10)

2.6. Statistical analyses

In order to analyze different drivers on monthly GPP, both
meteorological variables (i.e., temperature and precipitation) and
canopy parameters (i.e., LAI and EVI) were tested and compared.

Table 1
Description of the four grasslands sites in this study.

Site ID Site name Latitude Longitude Precipitation
(mm/yr)

Climate Time range References

CA-LET Lethbridge 49.43 N �112.56 E 398 Temperate continental 2002e2005 Flanagan et al., 2002
US-VAR Vaira Ranch 38.41 N �120.95 E 544 SubTropical-Mediterranean 2003e2006 Ryu et al., 2008
US-AUD Audubon Research Ranch 31.59 N �110.51 E 438 Temperate arid 2003e2005 Krishnan et al., 2011
US-WLR WalnutRiver 37.52 N �96.85 E 995 Temperate continental 2002e2004 Jastrow et al., 2000

C. Wu, J.M. Chen / Journal of Arid Environments 82 (2012) 11e18 13
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Considering the dynamical ranges of these variables across sites
and regions, we explored the correlations between GPP and these
variables by exploration of their month-to-month anomalies,
allowing the identification and evaluation of these correlations
within sites and excluding errors from spatial interference. The
pairwise Pearson coefficient (r) and p-value were used to assess
these correlations.When considering the GPPmodel performances,
observations across all sites were used to test and show the
robustness of models. The coefficient of determination (R2) and the
p-value were accordingly used to evaluate the relationship.

3. Results

3.1. Meteorological and canopy factors on monthly GPP

We first analyzed the meteorological factors i.e., temperature
and precipitation, on monthly GPP across all sites using the month-
to-month anomalies (Fig. 2). Monthly temperature showed a posi-
tive impacts on GPP with a Pearson coefficient r of 0.46 (p< 0.001)
for the overall dataset. This trend also existed for data of each
individual site with slight differences in degrees. The monthly
precipitation quantity, however, was not found to be correlated
withmonthly GPP as no significant correlationwas observed for the
overall dataset (r¼ 0.08, p¼ 0.494). We also explored this correla-
tion for each single site and none of these correlations were
significant. The Pearson coefficient r for CA-LET, US-VAR, US-AUD
and US-WLR were 0.02 (p¼ 0.919), 0.34 (p¼ 0.137), 0.38
(p¼ 0.158) and 0.29 (p¼ 0.313), respectively. These observations
suggest that the monthly precipitation is not a reliable indicator of
GPP. On the contrary, when the precipitation intensity was corre-
lated with GPP, we identified a significant relationship for the
overall dataset with r of 0.39 (p¼ 0.001). Data for individual site
also indicates that the Pa is a better proxy than the precipitation
quantity of monthly GPP. While Pa was not significantly correlation
with monthly GPP for US-AUD (r¼ 0.11, p¼ 0.568), we acquired
significant relationships for all the other three sites with r of 0.73
(p< 0.001), 0.52 (p¼ 0.018) and 0.46 (p¼ 0.042) for CA-LET, US-
VAR and US-WLR, respectively.

Two canopy variables, including the LAI and EVI, were selected
to test their impacts onmonthly GPP (Fig. 3). LAI was demonstrated
as a good indicator of monthly GPP with a Pearson coefficient r of
0.62 (p< 0.001) for all observations, suggesting a positive influence
of LAI on GPP. This strong correlation also existed for each indi-
vidual site with r ranging from 0.45 (p¼ 0.042) for US-VAR to 0.93
(p< 0.001) for US-WLR. Canopy EVI showed high correlation with
monthly GPP and an r of 0.71 (p< 0.001) was acquired for the
overall dataset, implying the potential of EVI as an indicator of GPP.

3.2. GPP estimation with incorporation of precipitation intensity

We first estimated the monthly GPP using the two original
models (Fig. 4). Both the GR model and the TG model can provide
reasonable estimates of monthly GPP with coefficients of deter-
mination (R2) of 0.71 (p< 0.001) and 0.58 (p< 0.001), and root
mean square errors (RMSE) of 46.1 g Cm�2month�1 and
55.3 g Cm�2month�1, respectively. The GR model was first
produced for GPP estimation in crops, and results in our testing
indicate that this model may have the potential for the application
of GPP estimation in grasslands, probably due to similar canopy
structures between these two ecosystems. Furthermore, the GR
model generally showed a better performance than the TG model,
both for most of the individual sites and the overall dataset
(Table 2). These results agree with recently evaluation of both
models at various ecosystems in North America (Wu et al., 2011).

In view as a meteorological scalar, we first multiplied the orig-
inal algorithms by Pa for the two models (i.e., Pa�GR and Pa� TG),
expecting to show the influence of precipitation intensity on GPP
estimation. As expected, this simple multiplication produced
improved GPP estimates at individual sites with both models
(Table 3). One exception was the US-WLR where a slightly lower
correlation was observed for the revised model (R2¼ 0.79,
p< 0.001) compared with the original GR (R2¼ 0.81, p< 0.001).

Fig. 2. Relationships between monthly anomalies of GPP and (a) air temperature (Ta),
(b) precipitation and (c) precipitation intensity (Pa).

C. Wu, J.M. Chen / Journal of Arid Environments 82 (2012) 11e1814
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However, the largest limitation of this simple revision was the
inappropriate performances for the overall dataset, which indicates
that this method is not workable across sites and regions (Fig. 5).
For mesic grassland site US-WLR, the average Pa was about
2.23 mm/0.5 h, which is substantially larger than the other three
sites (0.85 mm/0.5 h). This site difference leads to a different
dynamical range of the mesic site and thus the low precision of GPP
estimates for the overall dataset.

To correct this regional climate difference, we proposed
a modified Pa scalar as:

ScaledPa ¼ Pai=Pamax (11)

where Pai is the precipitation intensity in month i, and Pamax

represents the maximum Pa for this site from multi-year observa-
tions.We suspect that incorporating a multi-year maximum Pa may
be potentially helpful for capturing the effects of both seasonal and
inter-annual variations of precipitation regimes. Furthermore, by
normalizing with Pamax, site difference with respect to the range of
precipitation intensity can be reduced.

Using this ScaledPa, we observed evident effect in correcting the
site specific climate difference and the results weremuch improved
for data of both individual site and the overall dataset compared to
the original GR and TG models (Fig. 6 and Table 4). The revised
models (i.e. ScaledPa�GR and ScaledPa� TG) gave RMSE of
40.8 g Cm�2month�1 and 50.2 g Cm�2month�1, respectively,
which was about 10% improvement in the precision. At each site,

the revisedmodel also produced better GPP estimates, implying the
high potential use of the precipitation intensity in future GPP
models.

4. Discussion

4.1. Relationship between Pa and GPP

Annual precipitation increase is demonstrated to have positive
effects on annual GPP (Beer et al., 2010), however, at monthly
temporal scale, influences of changes in precipitation patterns are

Fig. 4. Estimating monthly GPP using the (a) greenness and radiation (GR) model and
(b) the temperature and greenness (TG) model.

Table 2
Comparison between original model performances for each site.

Sites GPP models

GR TG

CA-LET R2 0.71 0.79
RMSE 48.1 41.2

US-VAR R2 0.85 0.77
RMSE 59.2 61.9

US-AUD R2 0.48 0.46
RMSE 32.7 32.0

US-WLR R2 0.81 0.72
RMSE 29.2 34.8

Note: RMSE in GPP unit of g Cm�2month�1.

Fig. 3. Relationships between monthly anomalies of GPP and (a) leaf area index (LAI)
and (b) enhanced vegetation index (EVI).
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not well known. Our results conducted at four grasslands show that
the precipitation quantity is not a good indicator of GPP at monthly
temporal scale. On the contrary, the precipitation intensity is
a better indictor than the precipitation quantity of variability, and
thus shows a potential use for tracking variations in GPP (Heisler-
White et al., 2008). This positive correlation between Pa and GPP
can be supported by the previous work of altered rain size in
grassland (Knapp et al., 2008) and it also coincides with a recent
research of Thomey et al. (2011), which reports a significant
increase of above net primary production for grassland with an
extra single large rainfall event than samples receiving multiple
small events with equal total rainfall amounts.

Precipitation is a variable of high temporal heterogeneity that
can vary substantially between months while keep annual quantity
relatively stable. The impacts of such variability should be taken
into consideration in ecosystem models, especially the changes in
precipitation patterns rather than the precipitation quantity
(Weltzin et al., 2003). Our results first show a correlation between
monthly GPP and precipitation intensity in four grasslands
ecosystems. This observation is important and useful as it high-
lights the importance of precipitation variability obtained from the
altered experiments (Knapp et al., 2008; Thomey et al., 2011).
Furthermore, this may provide an avenue for the potential use of

Fig. 5. Estimating monthly GPP using the (a) Pa�GR model and (b) Pa� TG model.

Fig. 6. Estimating monthly GPP using the (a) ScaledPa�GR model and (b) Sca-
ledPa� TG model.

Table 4
Comparison between model performances for each site.

Algorithms GPP models

ScaledPa�GR ScaledPa� TG

CA-LET R2 0.85 0.86
RMSE 34.3 33.1

US-VAR R2 0.87 0.80
RMSE 31.4 44.0

US-AUD R2 0.49 0.50
RMSE 29.5 28.6

US-WLR R2 0.80 0.78
RMSE 31.7 31.9

Note: RMSE in GPP unit of g Cm�2month�1.

Table 3
Comparison between model performances for each site.

Sites GPP models

Pa�GR Pa� TG

CA-LET R2 0.85 0.86
RMSE 34.4 33.1

US-VAR R2 0.87 0.81
RMSE 31.5 44.0

US-AUD R2 0.49 0.53
RMSE 29.6 28.7

US-WLR R2 0.79 0.77
RMSE 31.7 31.9

Note: RMSE in GPP unit of g Cm�2month�1.

C. Wu, J.M. Chen / Journal of Arid Environments 82 (2012) 11e1816
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precipitation patterns in ecological models. With this finding, here
we explore the potential use of this precipitation intensity in
remote sensing based GPP models in order to improve the accuracy
of GPP estimation. This would be useful for the development of
future GPP models as it provides a method to link GPP and
precipitation patterns at the monthly temporal scale.

4.2. Explanations of better GPP estimates

To better understand the mechanisms of model performances
incorporating the Pa scalar, we further explored the responses of
both LUE and APAR, two major components in GPP estimation, to
the changes in Pa. For the overall dataset, no correlation had been
acquired between LUE and Pa (Fig. 7a, R2¼ 0.00, p¼ 0.472).
However, significant correlation existed for data at CA-LET
(R2¼ 0.28, p¼ 0.012) and US-AUD (R2¼ 0.30, p¼ 0.022), indi-
cating the responses of LUE to Pa may differ for ecosystems at
different ecoregions due to its climatic properties. A significant
correlation (p< 0.001) was acquired between Pa and APAR with
coefficient of determination R2 of 0.49 for the overall dataset, which
indicates that future higher precipitation intensity predicted by
ecosystem models would help canopies to gain radiation and thus
enhancing monthly GPP. These probably are the main reasons for
the better performances of the revised models in estimating GPP.

4.3. Potential challenges with precipitation intensity

It is suggested that results in this study would provide the first
step in the use of precipitation patterns for future carbon exchange
and climate change research. While Pa only shows moderate
correlation (r¼ 0.39, p< 0.001) with monthly GPP, this relationship
is still important as it reveals an additional impact of precipitation
patterns on ecological processes, which would probably be over-
looked or underestimated. This impact would be useful for the Pa as
an ancillary input parameter for future GPP algorithms to better
explain the variance in GPP, especially at monthly temporal scale.

Specific attentions are suggested in the further analysis. First,
the grasslands are ecosystems that are very sensitive to water
availability and can respond to such changes quickly. Although four
sites were adopted in this analysis to ensure the relatively wide
ranges in precipitation (300e1000 mm/year), there are uncer-
tainties in the application of the revised models in other ecosys-
tems because biomes in mesic environments may have low
sensitivity to precipitation changes (Huxman et al., 2004). The
feasibility or improvements of revised models may differ for
ecosystems in ecoregions facing different water availabilities. This
is the possible reason for the different responses of LUE on this
precipitation intensity among sites. Second, precipitation is
a heterogeneous factor and this will lead to problems in the oper-
ational applications. For example, if no precipitation is available in
a month, the Pa will not make sense and the production of vege-
tation can either be very low or even higher, probably dependents
on the synchronization between vegetation growing season and
precipitation period. The opposite aspect is months with abundant
precipitation and the limited times of precipitation which can lead
to an extremely large values of Pa. For instance, an overall precip-
itation of 300 mm is observed in US-VAR with precipitation
frequency n of 209 in Dec. 2005. The Pa for this month equals to
1.44 mm/0.5 h, which is three times larger than the standard
deviation (sd¼ 0.17 mm) of all observations after subtracting the Pa
average (Pa_ave¼ 0.82 mm) for this site. This “outlier”, excluded in
this study from the statistical perspective, would happen in natural
ecosystems because precipitation is a stochastic factor that can
change dramatically. In these cases, other variables, such as the soil
water content and the precipitation of the previous month may be
of potential use in those models as the lag effects of the responses
of ecosystems to changes in precipitation regimes (Weltzin et al.,
2003). The third consideration is the underlying mechanism that
links the better performance of GPP models to precipitation
intensity. Although we have observed improvements of Pa on the
APAR, it is still unclear about the extent of such positive impacts in
other ecosystems which indicates that further analyses and vali-
dations are particularly desired. The unknown mechanism also
prevents a further modification of the temporal resolution of the
revised GPP models. The last point limits the use of this precipi-
tation intensity may be the strategy in operational applications.
This probably depends both on the sensitivity of vegetation
production to precipitation intensity at various temporal scales and
the data availability of precipitation frequency at regional to global
scales.

5. Conclusion

Future precipitation changes have been demonstrated to have
great influences on vegetation production and the precipitation
patterns are suggested to play a more important role than the
precipitation quantity in these changes (Weltzin et al., 2003). Here
we reported an analysis showing that the monthly GPP in four
northern grasslands were correlated to the precipitation intensity
(Pa) derived from the half-hourly measurements. This precipitation

Fig. 7. Relationships between Pa and (a) light use efficiency (LUE) and (b) absorbed
photosynthetic active radiation (APAR).
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intensity was further normalized to revise two remote sensing
based GPP models and results of multi-year analysis indicated that
a ScaledPa can help to improve the monthly GPP estimates by 10%
improvement in precision. A possible explanation of such
improvements is the positive impacts of Pa on the absorbed radi-
ation. These results provide a possible solution for the incorpora-
tion of precipitation intensity in future applications of ecosystem
models and validate the role of precipitation patterns in the
determination of ecosystem production. The potential use of the
revised models in other landscapes is needed and the mechanisms
of precipitation intensity on ecosystem production are also the
future objectives.
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