
N
f

L
K
a

b

c

d

e

a

A
R
A

K
F
T
F
L
D
C

1

e
m

(

0
d

International Journal of Applied Earth Observation and Geoinformation 13 (2011) 236–245

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journa l homepage: www.e lsev ier .com/ locate / jag

ormalized algorithm for mapping and dating forest disturbances and regrowth
or the United States

iming Hea,∗, Jing M. Chena,∗∗, Shaoliang Zhangb, Gustavo Gomezc, Yude Pand,
evin McCulloughd, Richard Birdseyd, Jeffrey G. Maseke

Department of Geography and Program in Planning, University of Toronto, 100 St. George St., Room 5047, Toronto, ON M5S 3G3, Canada
China University of Mining and Technology, Jiefang Road South, Xuzhou, Jiangsu 221008, China
Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
Newtown Square Corporate Campus, USDA Forest Service, 11 Campus Blvd, Newtown Square, PA 19073, United States
Biospheric Sciences Branch (Code 614.4), NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States

r t i c l e i n f o

rticle history:
eceived 18 January 2010
ccepted 14 December 2010

eywords:
orest disturbance
he continental US
ire
ogging
isturbance index
hange detection algorithm

a b s t r a c t

Forest disturbances such as harvesting, wildfire and insect infestation are critical ecosystem processes
affecting the carbon cycle. Because carbon dynamics are related to time since disturbance, forest stand
age that can be used as a surrogate for major clear-cut/fire disturbance information has recently been
recognized as an important input to forest carbon cycle models for improving prediction accuracy. In this
study, forest disturbances in the USA for the period of ∼1990–2000 were mapped using 400+ pairs of
re-sampled Landsat TM/ETM scenes in 500m resolution, which were provided by the Landsat Ecosystem
Disturbance Adaptive Processing System project. The detected disturbances were then separated into two
five-year age groups, facilitated by Forest Inventory and Analysis (FIA) data, which was used to calculate
the area of forest regeneration for each county in the USA.

In this study, a disturbance index (DI) was defined as the ratio of the short wave infrared (SWIR, band
5) to near-infrared (NIR, band 4) reflectance. Forest disturbances were identified through the Normal-
ized Difference of Disturbance Index (NDDI) between circa 2000 and 1990, where a positive NDDI means
disturbance and a negative NDDI means regrowth. Axis rotation was performed on the plot between DIs
of the two matched Landsat scenes in order to reduce any difference of DIs caused by non-disturbance
factors. The threshold of NDDI for each TM/ETM pair was determined by analysis of FIA data. Minor dis-
turbances affecting small areas may be omitted due to the coarse resolution of the aggregated Landsat
data, but the major stand-clearing disturbances (clear-cut harvest, fire) are captured. The spatial distri-

bution of the detected disturbed areas was validated by Monitoring Trends in Burn Severity fire data in
four States of the western USA (Washington, Oregon, Idaho, and California). Results indicate omission
errors of 66.9%.

An important application of this remote sensing-based disturbance map is to associate with FIA forest
age data for developing a US forest age map. The US forest age map was also combined with the Canadian
forest age map to produce a continent-wide forest map, which becomes a remarkable data layer for North
America carbon cycle modeling.
. Introduction
Forest disturbances interrupt the natural succession of for-
st; they range widely in type, duration, spatial extent, rate, and
agnitude (or severity) (Wulder and Franklin, 2007). Quantifying
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disturbance and recovery of ecosystems by remote sensing has
been regarded as critical to improve carbon budget estimates at
multiple temporal and spatial scales (Frolking et al., 2009). Types
of disturbance that can be detected by remote sensing and their
detection accuracies depend on the spatial and temporal reso-
lutions of remote sensed images (Wulder and Franklin, 2007).

Different change detection algorithms have been applied to map-
ping forest disturbance, with the specific data and method of the
algorithm depending on the nature of the project or research pur-
posed (Coppin et al., 2004; Lu et al., 2004; Hilker et al., 2009).
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Recently, the Landsat Ecosystem Disturbance Adaptive Process-
ng System (LEDAPS) project has produced wall-to-wall maps of
tand-clearing forest disturbance and regrowth for the North Amer-
ca continent over a decade (1990–2000) (Masek et al., 2008). A
asseled-Cap-based disturbance index was adopted and modified
n the project for disturbance detection (Healey et al., 2005). As an
ndex differencing algorithm, a threshold needs to be determined
or each Landsat TM/ETM scene or eco-region, and the determina-
ion of the threshold was somewhat subjective (Masek et al., 2008).
suitable threshold is critical to identify the changed areas because

enerally similar bidirectional reflectance distribution functions
BRDF), seasonal and phenological states between multi-temporal
mages are required in the implementation of the algorithm (Lu
t al., 2004). Available remote sensing images rarely conform to
uch assumptions (Masek et al., 2008, 2006).

As a result of the approach, sharp edges are sometimes found
etween image scenes in the LEDAPS forest disturbance mosaic
referred to as “edge effect” hereafter). This edge effect could be
aused by several factors, such as the mismatch of data acquisition
ear and date, phenological disparities (Coppin et al., 2004). Such
dge effects indicate the existence of systemic noise in the thresh-
ld algorithms used for change detection and should be corrected
efore map mosaicing. This is similar to the finding by Comber et al.
2004) that detected land cover changes between different years

ay be highly affected by noise because the surface reflectance of
nchanged cover types would change between the two moments
f observation. The same issue is encountered and addressed in a
ifferent way in this study.

To this end, we attempt to reveal and correct the effect of non-
isturbance factors which hinder the change detection, and to map
orest disturbance for conterminous United States in 500 m reso-
ution following the LEDAPS project approach. We focus on forest
isturbances of 500 m or larger corresponding to the data input.
method to determine the thresholds of disturbance degree for

ach TM/ETM scene has been developed to reduce the edge effect in
osaic maps by introducing the Forest Inventory and Analysis (FIA)

ata. The detected disturbances were separated into two five-year
ges groups, with the aid of FIA data. We discussed the applicability
nd limitation of our algorithms in Section 5. The forest stand age
s reconciled with the disturbance years and is critical information
or use in carbon cycle models (Chen et al., 2003; Luyssaert et al.,
008; Song and Woodcock, 2003). The forest stand age derived from
isturbance map in this study can be used to update the US forest
tand age map (Pan et al., 2010).

. Data sets

Forest disturbance in the United States was mapped using 400+
airs of cloud-free Landsat TM/ETM scenes, which were down-

oaded from the LEDAPS website and have been re-sampled into
00 m resolution (Masek et al., 2006, 2008). Small forest distur-
ances that could be detected at the original 30 m resolution can
e totally missed in the 500 m resolution images. This dataset is
entered on 1990 and 2000 epochs, but the actual image acqui-
ition dates vary depending on data availability. Most acquisition
ates are from 1986 to 1992 for the 1990-epoch coverage, and 1999
o 2001 for the 2000-epoch coverage. Not all images were acquired
uring peak-greenness conditions, and the 1990 and 2000 epoch
ata pairs were not acquired during the same month (Masek et al.,
008; Tucker et al., 2004). This inconsistency in acquisition dates
n the year for the two epochs is the primary error source for forest
isturbance mapping when various disturbance indexes are used
as shown in Section 3).

The Monitoring Trends in Burn Severity (MTBS) data are used
s reference data to assess the accuracy of forest disturbance maps
Fig. 1. Cumulative percentages of forest disturbance pixels and area for LEDAPS
500 m product.

(http://mtbs.gov/index.html). The MTBS project is designed to con-
sistently map the burn severity and perimeters of fires across all
lands of the United States for the period from 1984 to 2010. The
original MTBS product is mapped at 30 m resolution using the dif-
ferenced Normalized Burn Ratio (dNBR) (Key and Benson, 2005)
and includes all fires greater than 2 km2 in eastern United States
(east of longitude 97◦W) and greater than 4 km2 for the rest of the
country. The data in four states in western United States (California,
Idaho, Oregon, and Washington) between 1987 and 2001, which
are composed of 1405 fire events, were selected in this study. Only
whole fires or parts of fires occurring in forested land were included
in the analysis. These data were re-sampled to 500 m resolution,
rendering a reference map. We selected the four western states
because of their large disturbed areas that are detectable with the
500 m resolution images.

The FIA program reports on national status and trends in tree
growth, mortality, removal by harvest, forest area, and associated
human activities (Forest Inventory and Analysis, 2005). Yearly areas
of naturally regenerated and managed plantation stands were com-
piled from the FIA database using 2000 as the baseline year. These
data are classified by stand-age and grouped by county. For stand-
age 1–10 years, sample plots are classified in one-year increments.
These data are used to determine the thresholds in our change
detection algorithm and separate the recent 10-year forest distur-
bances into two five-year regeneration age groups.

Forest cover is an essential input for mapping forest type and
forest biomass (Blackard et al., 2008; Ruefenacht et al., 2008) and
forest/non-forest masks can be made from MODIS products (Justice
et al., 2002), such as percent tree cover (Hansen et al., 2003a,b,
2002). We use the forest cover mask from the US Forest Service
(USFS) (Ruefenacht et al., 2008). Water pixels are sometimes shown
in the forest cover map due to error in geo-referencing and mixture
of pixels in the coarsened TM/ETM images.

The LEDAPS disturbance map in 500 m resolution is used for
comparison (Masek et al., 2008). The product includes percent-
ages of disturbed forest area for each 500 m grid over continental
North America. The percentages vary from 1 to 100 in steps of 1%. In
total, there are ∼6.2 million grid cells with disturbance area vary-

ing from 1 to 100%. Fig. 1 shows the cumulative percentages of
forest disturbance pixels and the areas based on the disturbance
level (% disturbed area) in 500 m grids. For example, the number
of grids that contain disturbance percentage less than or equal to

http://mtbs.gov/index.html
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0%, is ∼4.3 million, which count for 69.1% of total disturbed grids
Fig. 1); however, the corresponded disturbance area of these grids
s 7.4 million ha, only count for 25.1% of total disturbed area. This
gure implies that it is possible to capture most area of the forest
isturbance in 500 m resolution even though smaller disturbance
vents are missed because bigger disturbance events are easier to
e detected and they occupy most of the disturbed area.

. Mapping and dating forest disturbance

The method of detecting forest disturbance in this study may be
onsidered a Bi-temporal change detection algorithm (Coppin et al.,
004): disturbance index (DI) is used as a differential index and for

ndicating forest status; then the difference in DIs between two
imes indicates the change of forest status. The DI can be formed
rom one or more spectral bands of remote sensing, and has variants
n name dependent on the study subject, such as Normalized Burn
atio (NBR) (Key and Benson, 2005; Roy et al., 2006; Wimberly and
eilly, 2007), Normalized Difference Water Index (NDWI) (Chen
t al., 2005; Gao, 1996; Gu et al., 2007). The principle of these
ndexes is to identify the vegetation water content by combining a
hort wave infrared (SWIR) band with a near infrared (NIR) band.

The DI used in this study is defined as the ratio of SWIR (band 5)
o NIR (band 4) reflectances (Amiro and Chen, 2003). The changes
n forest status are represented by the Difference of Disturbance
ndex (DDI) between circa 2000 and 1990, where the positive DDI

eans disturbance and the negative DDI means regrowth.

.1. The non-disturbance factor in DI and its correction

The DDI values of forest pixels can be altered by non-disturbance
actors, such as seasonal change, BRDF, as shown in Fig. 2. The x-axis
nd y-axis show DI values of forest pixels, in two years respectively,
or four different TM/ETM scenes, as indicated by paths and rows
n Fig. 2(a)–(d). Fig. 2(a) shows that regrowth and disturbance are
ymmetrical to the dash line (1:1 line), which indicates x equals y.
ig. 2(b) shows most DDIs are greater than zero, and Fig. 2(c) shows
he opposite. Some water pixels, which cannot be fully masked by
he forest map, show stable and higher DIs. Their DIs are close to
and DDIs are close to zero, as indicated by the circles in Fig. 2(a)

nd (b). Fig. 2(d) shows there are more positive DDIs than negative
DIs; burn scars are observed in this ETM scene, and most pixels are
lose to an obvious axis (refer to the main axis), slightly departing
nd above the dash line. Pixels close to this axis are not disturbed.

The distribution of pixels in Fig. 2(a)–(d) is generalized in
ig. 2(e). Most pixels are within a triangle outlined by points C,
, and D. The undisturbed pixels are closer to line AB, and the pix-
ls with disturbance or regrowth departs from line AB. The slope
f line AB is generally not equal to one. The point A indicates dark
ense forest (DDF) pixels with little or no disturbance, where there
re both strongest reflectance in NIR and strongest absorption in
WIR. Along the line AB from A to B, a gradual transition occurs
rom DDF to young forest or partially forested pixels. The absorp-
ion in SWIR and the reflection in NIR are both weaker for pixels
loser to point B. The spread of scatter plots increases gradually
rom A to B. This increase implies that the pixels with bigger DI
end to vary more with disturbance or regrowth. The reason is not
ntirely clear to us, but the pixels in the spread near B are likely
ithin transition zones from forest to other land covers, such as

rassland or cropland, whose DI values may be easily affected by

easonal changes or weather related events. The shape of the distri-
ution depends highly on ecosystem, season, BRDF, etc. A spindle
r comet shape is common and the core axis (main axis, line AB)
s generally obvious among most pairs of images. The position of
ertex A is the minimum DI around 0.5–0.6, influenced by a range
rvation and Geoinformation 13 (2011) 236–245

of factors. If the minimum DI for a specific TM/ETM scene is greater
than 0.6, the forest is not in its mature stage of regrowth or the
pixels are not pure forest.

Obvious seasonal changes in TM/ETM data pairs can cause
departure of the main axis from the 1:1 line, as shown in Fig. 2.
The DDF maintains a stable greenness during most of the growing
season while the sparse forest is susceptible to various non-
disturbance change factors. If these non-disturbance change factors
are uncorrected in mapping forest disturbance, either pixels near
the point A or point B in Fig. 2 can be overestimated using the
original DDI.

To spectrally match each pair of Landsat scenes for accu-
rate quantification of DDI, axis rotation is performed on the plot
between DI of the two matched scenes. For each TM/ETM pair,
vertex A, representing the limit of DI, is first identified with its coor-
dinate (DIx, DIy), according to the enveloping lines (along lines AC
and AD in Fig. 2(e)). For scene pairs whose enveloping lines are not
clear, vertex A is defined with its coordinate closer to (0.5, 0.5).
Another point is defined as long as it is within the axis AB so that
the slope of AB can be calculated. The rotated DIs are computed as:

DI1990′ = (DI1990 − DIx) × cos (r) + (DI2000 − DIy) × sin (r)
DI2000′ = −(DI1990 − DIx) × sin (r) + (DI2000 − DIy) × cos (r)

(1)

where, DI1990 and DI2000 are the original DI values in 1990 and
2000, DI1990′ and DI2000′ are the rotated DIs in 1990 and 2000,
and r is the slope of line AB expressed in radians. This rotation is
demonstrated in Fig. 2(e) and (f): the origin of coordinate is shifted
to (DIx, DIy); then all points are rotated in clockwise direction by an
angle r, so the main axis will be coincided with X axis after rotation.
After the rotation, DI1990′ is actually its relative DI value in 1990,
and DI2000′ is the increase or decrease (difference) of DI from 1990
to 2000.

It follows from Fig. 2(f) that we assume that the pixels along
line A′B′ are undisturbed and pixels on lines A′e or A′f have the
same disturbance intensity. A normalized DDI (referred to NDDI) is
defined as:

NDDI = DI2000′

DI1990′ (2)

In this way, any DDI caused by non-disturbance factors, such
as seasonal change, BRDF, are expected to be reduced. This trian-
gulation and axis rotation method may be regarded as a form of
normalization, and it allows a larger range of variation of DDI points
to be disturbed around B′ before disturbances are identified as they
are more easily confounded by non-forest disturbance factors.

3.2. Determination of thresholds and dating of forest disturbance
using the constraint of FIA data

The temporal change of forest area is often related to different
forest management practices, including afforestation (the perma-
nent change in land cover from non-forest to forest), deforestation
(forest changed to non-forest), and regeneration from previous
disturbances which have led to forest mortality. Following the
assumptions that the disturbed areas regenerate in the second year
and the fact that the regenerations occurs in the afforested and
disturbed forests, the regeneration statistics from FIA data for the
specific periods of time are linked to the remotely sensed forest
pixels:

2000∑
Ri = f · (A + D) + ı (3)
i=1990

where Ri is the regeneration area (km2) in the ith year from the FIA
statistics; A and D are total afforested and disturbed areas within
the same period, which are the product of the number of pixels (to
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Fig. 2. Demonstration of effect of non-distu

e determined) and the area of a pixel (1/4 km2); f is a scale factor
elated to the sub-pixel fraction of afforestation or disturbance;

nd ı is the error. The afforestation area, A, is difficult to acquire
rom the 500 m TM/ETM data, and generally only constitutes a small
roportion compared with the forest disturbances, so it is neglected

n this study.
factors within the DIs and the adjustment.

The value of the scale factor f depends on the disturbance types
(for example, the patch size and the possibility of detection after

five or more years) and the resolution of remote sensing data. It is
shown from Fig. 1 that many forest disturbance events are at a sub-
pixel scale within 500 m grid so f should be less than 1 to let more
pixels be taken from the NDDI map. From statistics in LEDAPS 500 m
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ata (Section 2), f is ∼0.19 (29.5 million ha/6.2 million grids/25 ha).
t is already known that large omission errors exist if TM/ETM pairs
n the 10-year interval are used in detecting forest disturbance. So
f 0.19 is used, significant commission errors would be introduced.
o avoid excessive commission errors, f is fixed to one in this study.
n this way, the total detected disturbed areas in each county are
orced to agree with FIA statistics of regeneration data. This also

eans that remaining commission errors from the detected pixels
ith partial disturbance are compensated by omission errors from
uch smaller disturbed areas in these selected pixels. Our final

roduct would therefore capture the large disturbed patches and
nsure the integrity of FIA statistics at the county level, even though
he sub-pixel disturbance information is lost. As a result, this prod-
ct is primarily useful for regional applications, such as carbon and
ater cycle modeling, having the advantage of moderate resolution
ithout involving the complexity of subpixel information.

Based on the fact that the NDDI is generally higher for newly
isturbed areas, the NDDI values of all disturbed pixels with
I2000′ values greater than 0.02 within each county were sorted

n descending order. Then an amount of pixels, N, determined by
q. (3), is chosen. The threshold NDDI value that produces N is then
ound for each county. These N pixels were separated into the two
ve-year age groups, 1990–1995 and 1996–2000, according to the
DDI values and the corresponding areas of the first and second
ve-year age groups from the FIA statistics. A small threshold of
I2000′ (0.02) to detect disturbance areas is selected to avoid pix-
ls around vertex A′ (in Fig. 2(f)) because NDDI values around A′

re very sensitive to errors caused by selection of points A and B in
ig. 2(e).

The dating of forest disturbance can be influenced by the spa-
ial resolution of remotely sensed data and the omission errors in
he product in two ways: (1) the NDDI value of new forest distur-
ance in the sub-pixel scale can be diminished by the background
o it cannot be differentiated from the forest disturbance with low
DDI in highly covered forest pixels. This would result in overes-

imation of disturbance age for forests smaller than a full pixel. (2)
e matched the reliable FIA regeneration area to the pixel area

n the algorithm (f = 1) in order to avoid introducing commission
rrors in the result. So FIA regeneration areas over 10 years are rep-
esented by these forest disturbances which can be easily detected
n the later part of 1990s by remote sensing. This approach will also
esult in overestimation of forest disturbance age.

.3. Application of the algorithm to the continental U.S.

The general processing steps for each TM/ETM scene (or each
ounty) are described in Fig. 3. First, DI1990 and DI2000 are derived
rom a TM/ETM pair for the forest pixel using the forest/non-forest

ask. Second, point A and the slope of line AB (in Fig. 2(e)) are
etermined from their scatter plot. Third, the NDDI are derived
s described in Section 3.1. Fourth, the threshold for the NDDI is
etermined according to the FIA data (Section 3.2), and the for-
st disturbance pixels are obtained. Finally, the forest disturbance
ixels are separated into two age-groups. Then all the disturbance
aps for each county are mosaiked to produce a conterminous
.S. map. The point A and slope of line AB are determined semi-
utomatically (Fig. 2) and all other processing steps are made using
atlab software from MathWorks, Inc. The point A is first selected
anually from a scattering plot then the slope of line AB is deter-
ined by regression (least square method). The determination of
osition of line AB may be slightly influenced by the choice of A and
he regressed line AB needs inspection to ensure it is not affected
y a small group of pixels with extreme values.

Three ways were also used to further reduce the errors which
an be introduced by non-disturbance factors:
rvation and Geoinformation 13 (2011) 236–245

(1) TM/ETM scenes that have the same acquisition date in 1990 and
also same acquisition date in 2000 (the two dates may be dif-
ferent) are grouped together first. A total of 128 TM/ETM pairs
were found in 58 groups (each group has several TM/ETM pairs,
with all TM scenes in the same date, and all ETM scenes in the
same date). The pixels within the same group are put together
to determine point A and the slope. Adjacent pairs within the
same group are directly mosaiked to a patch, in order to increase
the possibility that a county is entirely covered by an image.

(2) Counties fully covered within the same TM/ETM pairs or
patches are processed first. A total of 2392 counties satisfied
this condition. Most of these counties are in eastern and mid-
dle United States, and their areas are relative small compared
with western counties.

The yearly regeneration areas from the FIA statistics for
all counties within the same pair of images, or patches, are
summed up and used to determine the threshold of NDDI (step
4). FIA data representing regeneration before 1990 are not used
for the determination. We did not include these areas because
the focus of this study is to detect recently disturbed areas
between 1990 and 2000. We determined a threshold for each
image pair but not county by county because this approach
would reduce the errors of mismatching with FIA data which
could be directly passed to the algorithm. In this way, the deter-
mined disturbance area for each county does not have to be
exactly equal to the county’s regeneration area from FIA statis-
tics.

(3) For the remaining 843 counties included in FIA statistics, a
mosaic processing is done before the disturbance pixels are
determined. For each county, the processing step 4 shown in
Fig. 3 is followed separately for each TM/ETM pair within a
county boundary. The scene that contains the largest area of this
county is used as the master image and all its pixels are kept;
then the remaining scenes, as minor images, are merged into
the master image in descending order of the areas of the county
they contained, until the whole county is within the mosaic
patch. This approach is used to minimize the NDDI’s difference
between adjacent pairs with different acquisition dates.

After these processing steps, the results for all counties are
mosaiked, and a forest age map of recent forest disturbance is
produced for conterminous USA (Fig. 4). The acquisition dates of
TM/ETM pairs are also recorded during the processing.

4. Results and validation

The quality of the forest disturbance mapping was assessed
through both visual examination and quantitative analysis against
an independent dataset. The disappearance of the edge effect in the
mosaiked map indicates the effectiveness of our algorithm in pro-
viding consistent results among counties (Fig. 5). Panels a1, b1, c1
and d1 in Fig. 5 shows LEDAPS forest disturbance percentage maps
at 500 m resolution, and panels a2, b2, c2 and d2 in Fig. 5 shows our
disturbance age maps of the same areas, respectively. The imprints
of TM/ETM frames (light blue lines) in the LEDAPS maps indicate
that their algorithm is susceptible to the differences among image
pairs. These artifacts are greatly reduced in our product. Minor edge
effects can still be observed at some county boundaries if those
counties have relatively large or small areas of forest regeneration
from the FIA statistics, compared with their adjacent counties. For

example, a county with blank area implies there is no FIA data or
no disturbance.

A single fire event in the MTBS data generally occurred in the
same year. From checking the disturbance age map, some burn
scars are entirely classified into the same age groups, while oth-
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Fig. 3. Flow chart illustrating the forest disturbance mapping method.

Fig. 4. Forest disturbance age map in two age-groups from 1990 epoch to 2000 epoch.
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Fig. 5. Comparison of the LEDAPS forest disturbance (pane

rs are divided into two age groups, with the central part of a burn
car classified in the 0–5-year age group, and the fringe areas in the
–10-year age group. This indicates that our algorithm is effective in
etecting recent forest disturbance but the dating accuracy may be

naccurate. The error in dating fire scars may be caused by errors in
mitting small disturbed areas due to the coarse spatial resolution
f the images. Some counties have FIA regeneration areas mainly in
he first or the last five-year age groups, and the dominating red or
reen color within these counties shown in Fig. 5 (d2) reflects that
he use of FIA statistics as the additional control is very important
n dating the disturbance.

An error matrix can be produced if an entire forest disturbance
ap in the testing area exists, so both commission and omission

rrors can be quantified (Lu et al., 2004). However, the limited
vailability of reference disturbance data, MTBS burn scar maps,
nly enable us to validate the omission errors of our algorithm
n detecting burn scars. It was found that there are 282,245 dis-
urbed pixels in the 500 m LEDAPS map for the four western US
tates, and 87,553 disturbed pixels in our map. There were 52 coun-
ies with zero regeneration area in FIA data, out of 162 counties
n these four states. It was found that 22 counties in the LEDAPS
roduct, or 23 counties in our product, had MTBS burn scar areas

arger than zero and also zero FIA regeneration area, within the
our states. The thresholds are forced to zero for 16 out of the 23
ounties in our product due to the constraint of FIA data, so omis-
ion errors are caused by such a constraint. The LEDAPS algorithm
etected 19,255 burned pixels, out of the whole 53,089 burned pix-

ls in the reference map (an omission error of 63.7%), while our
lgorithm detected 16,241 burned pixels, out of the whole 50,833
urned pixels (an omission error of 68.1%) for all the 162 counties.

n contrast, LEDAPS algorithm detected 18,933 burned pixels, out
1, c1, and d1) product with ours (panel a2, b2, c2, and d2).

of 51,286 burned pixels in the reference map (an omission error
of 63.1%), and our algorithm detected 16,216 burned pixels, out of
the 48,949 burned pixels (an omission error of 66.9%) for the 110
counties with FIA regeneration area larger than zero. The numbers
of burned pixels in these two reference maps are different because
the mosaicked disturbance maps used for two algorithms have dif-
ferent overlap areas of the adjacent TM/ETM scenes. The omission
error of our algorithm is slightly higher than that of the LEDAPS
algorithm (∼4%), but the result is still encouraging for two reasons:
(1) since our detection is processed at 500 m resolution, it is under-
standable that partially burned pixels can be missed when using
such middle-resolution images; (2) our algorithm uses only 30% of
the LEDAPS disturbance pixels to achieve almost the same level of
omission errors as LEDAPS.

The regeneration area within the 10-year interval (1990–2000)
from the four states’ FIA statistics is 2.06 × 104 km2. The disturbed
area in the LEDAPS product for the four states is 1.20 × 104 km2

(taking account of the percentage of disturbance area in each pixel).
Our algorithm reports a disturbance area of 2.19 × 104 km2, as we
set up the scaling factor = 1 for the pixels with FIA regenerated areas.

The regeneration area in FIA statistics for the conterminous
United States in 1990s is 2.28 × 105 km2. The forest disturbance
area detected by 500 m LEDAPS product is 1.30 × 105 km2 (sum up
all the percentages × 0.01 × 0.25 km2), which is different from the
area reported by previous LEDAPS product (21.7 million ha). The
disturbance area in our product is 1.81 × 105 km2. This area is close
to but still less than the FIA statistics. It is understandable that this

area is less than the FIA statistics because some image acquisition
dates are later than 1990 for the 1990 epoch, or earlier than 2000
for the 2000 epoch, which missed disturbance information in the
time gaps.
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Fig. 6. Comparison of county-level forest regeneration area in 1990s fro

Fig. 6(a) shows the scatter plot of county-level 10-year regener-
tion areas from FIA statistics vs. corresponding forest disturbance
reas from the LEDAPS product. Fig. 6(b) shows the comparison
etween FIA statistics and forest disturbance areas from our prod-
ct. The scatter in Fig. 6(b) is much closer to the 1:1 line than that

n Fig. 6(a), demonstrating the improvement made by using the FIA
ata in disturbance mapping and also showing that the county-

evel forest disturbance statistics are reasonably well represented
y our product. 89 counties are excluded from Fig. 6 due to obvious
ismatch between remote sensed data and FIA data.

. Discussion

We have demonstrated that non-disturbance factors can hin-
er the disturbance detection using satellite images acquired at
wo different dates. The triangulation and axis rotation techniques
or DI normalization are some of the ways to minimize the influ-
nce of such non-disturbance factors. The forest in southern US
an recover from last disturbance very quickly within 10 years. We

ave realized that such disturbance can only be accurately observed

rom TM/ETM data in shorter intervals (Masek et al., 2008), and our
esults for southern USA can be much improved when more fre-
uent data are used. However, the techniques developed in this
tudy would pave the way for such large volume data processing
FIA statistics with the disturbance area from LEDAPS and our product.

for disturbance detection.
It should be pointed out in Fig. 6 that the results from NDDI

are constrained using the FIA data so the dots in scatter plot are
forced to match the 1:1 line. This constrain is one of ways to deter-
mine the threshold of NDDI to map disturbance, and it may also
propagate any errors in the FIA data itself, which may still be con-
siderable at the county level because of the representativeness of
sampling plots. To reduce the possible county-level bias errors, we
have used the total areas from all the counties within same TM/ETM
pair or patch, where possible, to determine one threshold for this
pair/patch. Because the degree of reflectance change in undisturbed
areas between two dates can vary spatially for a variety of rea-
sons, the FIA data are the best available nation-wide dataset for
individually determining the threshold for every image pair.

Our method is designed for detecting major forest disturbances
for use in regional carbon cycle modeling. It would be questionable
to assign forest ages to mixed pixels or pixels containing partial
disturbance (e.g., thinning). In Eq. (3), f is set to 1 in this study. Its
value is used to match the regeneration area from FIA data and the
real disturbance area within mixed pixels. As we have discussed

in Section 3.2, its value is highly dependent on the disturbance
type and the image spatial resolution. When the disturbed area
is larger than a pixel, it is reasonable to set f to 1. However when
subpixel disturbance occurs, it must be set to values less than 1
in order to capture the disturbance. However, in this way “appar-
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nt” commission errors are introduced. For fast recovery forest, f
lso should be given relatively large values as the detectable distur-
ance area would otherwise be less than the FIA area. When high
esolution and short interval data are used to map disturbance, f
hould obviously be set to 1.

In short, our algorithm is most applicable to the conditions that
1) the disturbance extent is larger than the pixel size; (2) the dis-
urbance is still detectable from the data from two temporal phases;
nd (3) FIA data are available. In fact, the first two conditions are
lways required in any disturbance detection algorithms, and these
wo conditions can be satisfied as long as short interval and high
esolution data (such as TM, ETM, and ASTER) are available. When
IA data are unavailable, the LEDAPS approach to determine thresh-
lds is still applicable to our algorithm.

This study is based on the 500 m data from the LEDAPS project
hen the TM and ETM data were not free. Now it is feasible to map

he forest disturbance in shorter intervals at less cost. The distur-
ance map for the 1990s is still useful in updating the forest age map

n US (Pan et al., 2010), because forest age is generally accepted as a
rimary driver of forest structure and function, and many compo-
ents of the forest carbon cycle are related to forest age (Bradford
t al., 2008).

. Concluding remarks

This study demonstrated the capability of moderate resolution
emotely sensed data for mapping and dating forest disturbance
t the continental scale. A change detection algorithm for detect-
ng forest disturbance was developed and tested using Landsat
M/ETM data aggregated to 500 m resolution. The algorithm uses
isturbance index (DI), the ratio of short-wave infrared (band 5)
o near-infrared (band 4) reflectances of TM/ETM, as an indica-
or of forest status, and the Normalized Difference in DI (NDDI)
etween two dates as a means to detect changes in forest status.

mage pairs acquired around 1990 and 2000 were used for distur-
ance detection. Several techniques were developed to reduce the
oise in the detected disturbance map caused by non-forest dis-
urbance factors, including seasonal variations and gradual forest
ensity changes between 1990 and 2000 images. The DI values
or the 1990 epoch and 2000 epoch are normalized against each
ther to reduce the effects on the variations through rotating the
ain regression line through their scattering plot. The normal-

zation and adjustment of original DIs for reducing the impact of
on-disturbance factors enables the algorithm to detect changes
aused by real disturbances. The separations of all forest distur-
ances into two age-groups are also made through using the FIA
nnual forest stand age statistics at the county level. A forest dis-
urbance map of the conterminous United States in the period from
990 to 2000 is therefore produced.

The forest disturbance map was evaluated through both visual
xamination and comparison against MTBS reference data. Com-
ared with the existing LEDAPS product, our disturbance product
ade two improvements: (1) artifacts shown as distinct bound-

ries on the Landsat image mosaics were greatly reduced using our
I normalization procedure (Fig. 5); and (2) the disturbance statis-

ics at the county level were brought to close agreement with FIA
tatistics after they were used for setting thresholds in the distur-
ance detection. However, our algorithm has a greater omission
rror than the LEDAPS product (66.9% vs. 63.1%) due to the coarse
esolution of the images used. In spite of this limitation, our algo-

ithm can still capture most of the area of forest disturbances at the
ounty level. This disturbance product has been used for improv-
ng a FIA-data based forest age map (Pan et al., 2010) and can used
or carbon cycle studies at continental and regional scales. Similar
o the LEDAPS project, our result also suggests that the omission
rvation and Geoinformation 13 (2011) 236–245

errors can only be reduced by introducing data in shorter intervals.
Despite discernible improvements, our product cannot provide

the exact percentage of forest disturbance in each pixel due to the
limitation of the image resolution. The determination of the main
regression line in a scatter plot of an image pair needed in our DI
normalization algorithm may be influenced to some extent by sub-
jectivity. In the future, the product quality is expected to be further
improved by developing an automatic method to determine the
regression line and by using high resolution data with short repeat
intervals. This study provides a benchmark for continent-wide
disturbance mapping using moderate resolution remote sensing
imagery. Our disturbance mapping methodology can be further
used with high-resolution images to improve mapping small dis-
turbance areas.
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