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Abstract. The current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak,
which began in 1999, continues to be the leading cause of pine tree mortality in British Columbia.
Information regarding the location and spatial extent of the current attack is required for mit-
igating practices and forest inventory updates. This information is available from spaceborne
observations. Unfortunately, the monitoring of the mountain pine beetle outbreak using remote
sensing is usually limited to the visible stage at which the expansion of the attack beyond its
initial hosts is unpreventable. The disruption of the sap flow caused by a blue-staining fungi
carried by the beetles leads to: 1. a decrease in the amount of liquid water stored in the canopy,
2. an increase in canopy temperature, and 3. an increase in shortwave infrared reflectance shortly
after the infestation. As such, the potential for early beetle detection utilizing thermal remote
sensing is possible. Here we present a first attempt to detect a mountain pine beetle attack at
its earliest stage (green attack stage when the foliage remains visibly green after the attack)
using the temperature condition index (TCI) derived from Landsat ETM+ imagery over an
affected area in British Columbia. The lack of detailed ground survey data of actual green attack
areas limits the accuracy of this research. Regardless, our results show that TCI has the ability to
differentiate between affected and unaffected areas in the green attack stage, and thus it provides
information on the possible epicenters of the attack and on the spatial extent of the outbreak at
later stages (red attack and gray attack). Furthermore, we also developed a moisture condition
index (MCI) using both shortwave infrared and thermal infrared measurements. The MCI index
is shown to be more effective than TCI in detecting the green attack stage and provides a more
accurate picture of beetle spread patterns. C© 2011 Society of Photo-Optical Instrumentation Engineers

(SPIE). [DOI: 10.1117/1.3662866]

Keywords: mountain pine beetle; water stress; monitoring; thermal infrared remote sensing.

Paper 10188RRR received Nov. 30, 2010; revised manuscript received Oct. 19, 2011; accepted
for publication Nov. 1, 2011; published online Nov. 28, 2011.

1 Introduction

Since 1999, the mountain pine beetle (Dendroctonus ponderosae Hopkins) has affected more
than 13 million ha of pine forest in western Canada,1 causing extensive mortality of its preferred
host trees (lodgepole pine, Pinus contorta Dougl. ex Loud. var. latifolia Engelm.), resulting
in a significant ecological change at the landscape level.2 The current outbreak in British
Columbia (BC) has reached epidemic levels, causing serious (∼46%) cumulative volume losses
of all merchantable pine stands in the province.3 The rapid expansion of mountain pine beetle
populations can be attributed to the abundance of mature and over-mature lodgepole pine
and to several years of favorable climatic conditions, particularly increasing winter minimum
temperatures.4,5
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The phenology of the mountain pine beetle and the associated host response are described
elsewhere.2,6–8 Generally, the interaction between the beetle and the host trees can be divided
into three stages:

1. The green attack (GA) stage, which is the period immediately following a successful
beetle attack, but before symptoms of the attack (i.e., color change) are visibly evident in
the crown.8,9 The main characteristic of a GA is a drop in sapwood moisture of visibly
unchanged trees.

2. The red attack (RA) stage that usually develops within 1 year after GA. During the RA
stage, the tree canopy gradually turns yellow and then red-brown.10

3. The last stage is called gray attack. This is the period when the needles drop down
from the tree following the desiccation of the leaves and the breakdown of the pigment
molecules.11,12

The mountain pine beetle attack begins in August when adult beetles attack trees and lay their
eggs in the phloem tissue beneath the bark. About 2 weeks later beetles hatch as white larvae and
aggressively feed on the tree soft tissue over the winter months resulting in host tree mortality.
The pupal stage usually ends in late spring, and from mid-July to mid-August, the beetles leave
their tunnels and fly to new trees, utilizing the prevailing wind patterns. Approximately 4 to
8 weeks after the attack a decrease in sapwood moisture of up to 50% has been reported.13

Visible symptoms of an attack are evident in the crown during late May to early June in the year
following the initial attack. In rare cases, particularly during unseasonably warm late summer
months, the symptoms become visible during the autumn of the attack year.9 This is also the
period when the sapwood moisture decreases further to less than 30% to 35% of the preattack
value and the first symptoms of fading become visible. The eggs that were laid in August develop
into mature adults approximately 1 year later. Thus, typically within a year of the original (i.e.,
GA) attack, the trees enter the RA stage that may last for several years until the needles shed
from the dead trees.

Information regarding the location of the affected areas and spatial extent of beetle attack
is required for mitigating practices and forest inventory updates. Obtaining this information,
however, is not straightforward because as it was shown in earlier work the distribution of an
MPB attack is governed by the behavioral responses of the attacking beetles to insect- and
host-produced odors, light intensity, temperature, humidity, gravitational force, and the surface
structure of the bark.14 Consequently, infection tends to occur in small, dispersed patches7 that
cannot be easily detected by ground surveys.

Since the structures of leaf tissues and leaf (and canopy) moisture content have character-
istic patterns of absorption and reflection of electromagnetic energy, the synoptic observations
provided by remote sensing could be an ultimate solution for decision making at the landscape
level. Unfortunately, the employment of remote sensing techniques for monitoring the effect of
the mountain pine beetle is usually limited to the visible (i.e., RA) stage (e.g., Refs. 7 and 15–17),
at which the expansion of the insect beyond its initial hosts is unpreventable and localization
of the affected areas is technically impractical. Consequently, a large amount of resources has
been devoted to utilizing remote sensing data to detect and map infested areas at the GA stage,
in hope of improving the efficacy of treatment practices. However, the applicability of remote
sensing observations (both space- and airborne) for GA detection and mapping has been argued
to be practically impossible due to several biological (e.g., the timing of specific phenomena
related to the infestation and movement) and technological (i.e., spatial, temporal, and spectral
resolution requirements) limitations (please refer to Refs. 7 and 18 for a detailed review).

As previously stated, one of the earliest signs of the infestation is a drop in the sapwood
moisture as a result of the introduction of a blue-staining fungi carried by the beetles as they bore
through the bark. The spores of fungi penetrate living cells in the phloem and xylem, resulting
in disruption of water flow,19 which causes the leaves to close their stomata as a first stress-
induced physiological response of vegetation in order to preserve water.13 This behavior leads to
a decrease in transpiration cooling and therefore to an increase in leaf and canopy temperature.
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The latter, in turn, leads to an increase in the emitted thermal infrared (TIR) radiation without
visible changes to the green fraction of vegetation during the first weeks of attack. Although
the land surface temperature (Ts) derived from the TIR portion of the electromagnetic spectrum
is widely implemented in formulating the energy and water budgets at the surface-atmosphere
interface and has been shown to be useful for monitoring plant–water relations (e.g., Refs.
20–22), its applicability to insect disturbance is yet to be explored.23 The tight coupling between
beetle activity, plant water status, and the thermal response allows us to assume that the increase
in Ts over the areas affected by the mountain pine beetle as well as the differences between Ts

of the infested areas and the areas that have not yet been affected could be employed for early
detection of GA epicenters.

The second effect of stomatal closure is a change in the amount of liquid water in the canopy
layer (e.g., Ref. 24) and consequent increase in the reflected short-wave infrared (SWIR)
radiation.25 Generally speaking, studies investigating the spectral detection of GA are sparse
(and not up to date), usually focusing on the examination of pigment-driven spectral variations
in the visible and near-infrared (NIR) regions (e.g., Refs. 26–30). Although declines in sapwood
moisture content resulting from a beetle attack have been documented as early as the 1960s
(e.g., Ref. 31), subsequent changes in leaf water content and in leaf spectral reflectance were
carefully investigated only recently through observing the comparable water features in the NIR
and SWIR regions in different datasets of infested trees.32 Thus, we assume that the difference
between stressed and unstressed vegetation could be emphasized even more by combining the
TIR and SWIR response to the changes in canopy water status.

Based on the life cycle of beetles, the timing of the surveys must be coordinated relative to
the appearance of attack symptoms in the tree-crown foliage. Generally speaking, the best way
to show the advancing water stress is by means of change detection techniques that make use of
image pairs: one for a preattack period and the other for a period immediately after the attack.
Such a pair, however, could not always be available primarily due to weather conditions (i.e.,
cloudiness). If it is so, the single image could also be satisfactory to observe the infested areas if
it is taken shortly after the infestation and has a reasonable spatial resolution relative to the size
of affected patches. Our objective is, therefore, to use single spaceborne Landsat ETM+ imagery
a. to test the applicability of thermal infrared imagery for detection of the mountain pine beetle
attack at its early stage and b. to evaluate whether the incorporation of thermal and shortwave
infrared spectral responses will improve the ability to detect GA through the use of moderate
spatial resolution remote sensing imagery. The proposed methodology reflects the desire to
anticipate end-user needs and at the same time develop an approach based on simultaneous
observations in thermal, near-, and shortwave infrared domains. This study is our first attempt
to detect GA level MPB outbreaks, and the results need simultaneous ground survey data for
further validation.

2 Materials and Methods

2.1 Study Site, Field Data, and Study Assumptions

For our purposes we used the single-scene approach utilizing satellite data from a Landsat
ETM+ image (Path/Row: 50/23) acquired on August 2, 1999 with almost zero percent cloud
cover. The specific area of interest has been chosen arbitrarily within the entire Landsat scene
and is delineated in Entiako Provincial Park, North-East of lake Entiako in British Columbia
(AOI, Fig. 1, an inset). This area is located within a larger extent of the affected areas in the
province (east to the provincial boundary in the Rocky Mountains, and west to a line over the
Coastal Mountains) and excludes habitats largely unsuitable for MPB outbreaks (i.e., Pacific
maritime and boreal forests).

The mountain pine beetle reference data were provided by British Columbia Ministry of
Forests and Range33 collected as an aerial survey of the entire province that records areas of
tree mortality, judged from red and/or gray crowns on 1:250,000 NTS topographic maps. The
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Fig. 1 NDVI map of the studied area. The specific area of interest is presented by an inset with
a black line that indicates the boundary of a current RA area.

aerial survey data contains information on the spatial extent of all mortality inducing agents
active in the province. For the purposes of this study only polygons delineating MPB affected
areas were extracted. These polygons represent entire tree stands that contain both affected
and unaffected trees and probably a mixture of red and green attacks. A severity classification
based on the percentage of trees undergoing red attack within the stand is then assigned to each
polygon (Table 1). It should be noted that since such a classification is heavily dependent on the
subjective opinion of the surveyor, observation errors of infestation extent, such as inclusion of
unsuitable habitat or overestimation of mortality due to the higher visual perceptibility of red
foliage, are expected to occur at all severity classes.

Table 1 British Columbia Ministry of Forests and Range severity classification scheme.

Class number Class name Area infested (%)

1 Trace <1
2 Light 1 to 10
3 Moderate 11 to 30
4 Severe 31 to 50
5 Very Severe >50
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The general assumption that we made regarding the aerial survey is that the area reported as
RA in any year could be treated as GA in the preceding year.34 Though this assumption relied
on beetle phenology, the major drawback of such generalization is that reported RA areas are
much larger than one could expect from GA, which is usually represented by several initially
attacked trees. In other words, in every polygon reported as RA, the epicenter of increased
temperature (as compared to adjacent areas) should be found, localized, and classified as GA in
the preceding year.

The second assumption is that the GA areas (i.e., the areas that include the next generation
of MPB) can usually be found in close vicinity to the areas classified as RA in the same year
as beetles move gradually through the space.7 The areas survey polygon data was overlaid onto
the Landsat imagery in order to extract areas attributed to a certain severity class.

2.2 Image Processing and Moisture Condition Index Formulation

The Landsat scene was processed to retrieve a. surface reflectance in SWIR (band 5)
and NIR (band 4) spectral domains and b. Ts from the thermal band data using the
equations provided by the National Aeronautics and Space Administration (NASA;35,36

http://landsathandbook.gsfc.nasa.gov/handbook.html) and a monowindow algorithm.37 The
thermal image was linearly resampled to 30 m resolution using ERDAS Imagine software
in order to match the spatial resolution of NIR and SWIR bands.

Recognizing that surface temperature provides useful information about vegetation moisture
conditions,38 we formulated a temperature condition index (TCI) as:

TCI = BTmax − BT

BTmax − BTmin
, (1)

where BT, BTmin, and BTmax are measured, averaged for a composite period or multiyear
absolute minimum and maximum brightness (i.e., at-sensor) temperatures, respectively. We
incorporated Ts (instead of BT) to Eq. (1) using “hot” and “cold” pixels as a proxy for extreme
temperatures.39 To do that BT has been converted to Ts by means of Plank’s equation:

Ts = BT

1 + (
λBT
ρ

) lnε, (2)

where λ wavelength of emitted radiance (=11.5 μm); ρ = hc/σ with σ = 1.38 × 10−23 J/K), h
= 6.626 × 10−34 Js, c = 2.998 × 108 m/s and ε = 0.98 for vegetation.

As suggested earlier, the disruption of water flow induced by MPB’s inoculation into the tree
phloem will influence canopy reflectance in the SWIR domain. As the latter is also confounded
by leaf and canopy properties40 and it is sensitive to solar and sensor viewing geometry,41

radiative transfer simulations at both leaf and canopy level42–46 indicated that the ratio between
NIR and SWIR reflectances could minimize the effect of these parameters.

We thus introduce the Moisture Condition Index (MCI) formulated as follows:

MCI = TCI

(
NIR

SWIR

)
. (3)

As formulated, both TCI and MCI decrease with Ts, being lower for stressed vegetation.
The reason for focusing on 1999 is that in earlier years the infestation had limited spatial

extent so the attacked areas might be completely dissolved in moderate-resolution spaceborne
TIR imagery, while in any year subsequent to 1999 the infestation in BC (as reported) was
already widespread and different stages of the attack could co-exist within one pixel requiring
implementation of more sophisticated within-pixel unmixing procedures, along with detailed
field survey.
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It must be noted that both the above-mentioned indices could be derived from any single
image; such an approach would usually be complicated by natural surface variability other than
the insect attack. This variability caused by topography, land cover, and land use variations
(e.g., high surface temperature clear-cuts or low surface temperature snow-covered areas), has
an influence on extreme values of surface temperature and thus on calculated indices widely
stretching their range and blurring the real picture of infestation. Identifying and excluding these
variations by means of change detection techniques is an important step in using TCI or MCI
for insect detection. We found that the earliest available cloud-free Landsat scene of a preattack
period covering the study area (see Sec. 2.1) was from September 1995. As Ts in September
is expected to be naturally lower and thus incompatible to that in August, neither TCI nor
MCI were calculated for 1995, and Ts-differences between two dates were used only to detect
ground elements that can greatly stretch the Ts range. Since we do not have enough information
about what these elements are and what are the reasons for a specific change in land-cover, we
excluded them from further examination by filtering out pixels where the Normalized Difference
Vegetation Index (NDVI) is lower than 0.4 (Fig. 1). We assume that these pixels represent either
unforested areas or advanced phases of beetle attack (either red or gray attacks).47,48 Providing
the empirical nature of the comparison between the ground features at two different dates, the
actual physical meaning of the pixel value was not crucial and the normalization between images
has been deemed unnecessary in this particular case.47

2.3 Statistical Analysis

The severity classification scheme employed by BC’s Ministry of Forests and Range has a
large uncertainty (i.e., wide range of the percentage of affected areas) primarily because it
is based on visual evaluation of the severity of infestation and manual sketching of infected
stands. In such a way, the Ministry does not report within-polygon percentage of severity
remaining only with a large-scale overall classification scheme as specified by Table 1. The main
disadvantage of such an approximation is the allowance of almost arbitrary interpretation of the
results.

Statistical analysis of the results has been performed by proportioning the number of pixels
attributed to a highest MCI values (2 ≤ MCI ≤ 4) within a certain polygon to the total number
of pixels that belong to that polygon assuming that in an ideal case the pixels with the same MCI
value will be equal to the total. We decided to refer only to severity classes 3 and 4, assuming
that those classes of both MCI’s and Ministry’s (i.e., the only data available for validation)
classifications represent the most distinct phases of an infestation detectable at the specific
spatial resolution.

In an attempt to evaluate the quality of the results in the most appropriate and quantitative
way that is possible under the current circumstances, we separated the range of values of each
studied severity class (Table 1) into 5% subclasses (for instance, Class 3 has been separated
into 11% to 15%; 15% to 20%; 20% to 25%, and 25% to 30% of severity). Finally, an error per
subclass (ε) has been calculated as a relative difference between the total number of pixels in
i-subclass (Ni) and the number of pixels with 2 ≤ MCI ≤ 4 (n):

ε = 100

(
Ni − n

Ni

)
. (4)

It should be noted that due to the way the severity classes are defined, the calculated errors
are expected to be highly dispersed around a mean value. We also expect them to be higher
for low severity classes (as they can be hardly detectable from the aircraft) decreasing with
increasing severity of infestation (i.e., increase in infested area).
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Fig. 2 The distribution of TCI over the specific area of interest. (a) RA areas as they were
reported in the annual survey of the year 1999 are boarded by a black line. (b) GA areas (i.e., the
areas that were reported as red attacked in the annual survey of the year 2000) are boarded by
a black line.

3 Results and Discussion

3.1 Temperature Condition Index

Figure 2(a) shows the distribution of TCI over the specific AOI, indicating that the majority of
the areas that were classified as RA (bordered by black line) have lower TCI (i.e., higher Ts)
than their surroundings (average of ∼0.53 as compared to ∼0.58, respectively). Further analysis
of the area in Fig. 2(a) reveals several hotspots of lower TCI (∼0.48 on average) that appear
within each RA boundary, presumably representing the epicenters of an outbreak. Figure 2(a)
further shows that similar hotspots could be found at the adjacent areas (as indicated by arrows)
representing the extension of the attack and the stands that include the next generation of the
host trees. Those areas could be classified as GA areas in the current year and expected to be
included in the next annual report (i.e., 2000). This last point is supported by Fig. 2(b) that
presents the distribution of TCI overlapped by the results of the 2000 (black line) annual survey.
The latter covers all the areas that were expected to be under GA in the preceding year. This is in
agreement with our reasoning that GA areas are adjacent to RA areas as beetles move gradually
through the landscape.

Another point that should be mentioned is the close similarity between TCI values of RA
and GA hot spots as well as the small range of the values found (0.45 < TCI < 0.55). This
similarity could be explained by the fact that once the water flow is disturbed and the tree closes
its stomata to preserve water during the first weeks of attack, further changes in its temperature
are only expected as part of the annual temperature oscillations. Consequently, the RA areas
are not expected to have higher Ts than those that are under the GA. Furthermore, during the
advanced stages of the attack, an increased canopy opening results in increased penetration
of solar radiation to the forest floor, stimulating the growth of the secondary overstory and
understory vegetation. The latter will lower Ts, causing an increase in the calculated index,
potentially providing a reason for the close similarity between the values of both indices that
have been observed for GA and RA. This similarity may be a limiting factor for using currently
available spaceborne TIR observations as a stand-alone tool for detailed synoptic monitoring
of the initial phases of mountain pine beetle infestation. This supports our initial assumptions
that a combination of TIR with visible and/or near- and shortwave infrared (VNIR-SWIR)
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observations is required for a successful separation between RA and GA areas. The above
argument is correct if the area surveyed is already infested and includes patches of all three
phases of the infestation.

It should also be noted that the lowest values of TCI that have been found in the specific
Landsat scene (and consequently over the AOI; ∼0.45) could not be always assigned to a “real”
stress condition since, as emphasized by Refs. 34 and 43, stressed vegetation frequently have
TCI < 0.3. The larger values found in our study with Landsat data may be due to the fact that
insect-infected areas are generally patchy and smaller than the image resolution, so that some
healthy trees are often mixed in the pixels. In consideration of the limitation of the image spatial
resolution, the spatial variability in the index would certainly be more important than its exact
range. A more detailed analysis involving ground measurements of sap flow in infected trees in
conjunction with the high spatial resolution, airborne TIR and VNIR images acquisition would
be useful to overcome this limitation and highly desirable for quantitative assessment of the
insect damage in relation to TCI.

3.2 Moisture Condition Index

Figure 3 presents the distribution of MCI over the specific AOI overlapped with the boundaries
of RA and GA areas [Figs. 3(a) and 3(b), respectively). As expected, inclusion of the SWIR
reflectance band emphasizes the disparity between affected and unaffected areas in a sharper
way than does TCI alone. It also shows that the difference between MCI’s average values of
the affected and the unaffected areas (3 and 5, respectively) is about 25% higher than their
TCI-based counterparts (0.53 and 0.58, respectively). In addition, Fig. 3 demonstrates that the
epicentres of a GA (dark-orange colored areas) in the current (i.e., 1999) year could be found
and delineated in a more accurate and easier way with MCI than with TCI.

The quantitative comparison between observed and estimated datasets of each severity class
separately [shown by colored polygons in Fig. 3(b)] shows a gradual decrease in calculated
errors from ∼81 ± 44% (± standard deviation) to ∼14 ± 11% on average for higher and lower
ends of sub-severity classification (11% to 30% for class 3 and 31% to 50% for class 4) following
the increase in the area affected by MPB (i.e., the percentage of the severity; Table 2). Such

Fig. 3 The distribution of SWIR-corrected TCI over the specific area of interest overlapped by
the boundaries of red and green areas [(a) and (b), respectively].
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Table 2 Distribution of errors for British Columbia Ministry of Forests and Range severity classes
3 and 4 calculated per sub-severity class. All values are in percent.

Class 3 Class 4

Area infested (%) Error Area infested (%) Error Average error STD

11 81.20 31 50.37 81 44
15 55.59 35 33.19 44 16
20 16.69 40 16.54 17 0
25 6.64 45 3.59 5 2
30 22.20 50 6.77 14 11

an error distribution can be explained by the fact that the ability of the surveyor to distinguish
between affected and unaffected areas increases with an increase in the infested area itself. On
the other hand, the Landsat spatial resolution limits the sensitivity of MCI to low severity classes
(and sub-classes) and is expected to increase with an increase in the area affected by insect.

Although all the results match our preliminary expectations, we are convinced that due to
an uncertainty in the way the severity classes are defined and the lack of proper reference
information, the overall performance of MCI could only be meaningfully evaluated by the error
of either median or mean at each sub-class. This representative error is almost equal for both
severity classes (∼17.1 ± 0.6%) and fairly sufficient to conclude that the proposed index is
an appropriate way to differentiate between different phases of the attack and under certain
conditions could be used to detect the earliest stages of infestation. Figures 2 and 3 provide
several other interesting spatial patterns with respect to the location of GA areas in relation
to RA areas. First, GA areas are not always found in the immediate vicinity to RA [see, for
example, the North-East corner of Fig. 2(b)]. This may be related to the fact that the mountain
pine beetle does not attack every tree in the stand at its endemic state but only those that are
of sufficient size,49 although it is not completely understood how suitable trees are selected by
bark beetles.6 Second, the annual survey in 2000 does not include all the areas that are expected
to be GA in the preceding year. We assume that at the time of the survey, those areas had not
developed distinct visual signs and could possibly be missed by the surveyors. This fact, along
with the similarity between Ts of GA and RA areas discussed earlier, is a limiting factor that
could be overcome by simultaneous observations in TIR, SWIR, and VNIR domains.

4 Conclusions

A detection of the areas affected by the mountain pine beetle at the early stages of attack
by means of remote sensing is of value to the monitoring and management of forests. Based
on our understanding of the beetle-induced disruption of the sap-flow leading to a decrease
in transpiration cooling and an increase in canopy temperature, we demonstrate that thermal
infrared imagery could be useful for differentiating between infested and healthy vegetation.
The TCI is used for this purpose. We further elaborate this issue by developing a new MCI,
which is the TCI multiplied by the NIR to SWIR reflectance ratio, to account for the decrease
in the amount of liquid water in the canopy as a second consequence of the insect attack. We
show that MCI is more effective in detecting GA than TCI.

The current research is a first attempt to identify GA areas by means of thermal infrared
imagery and an effort has been made to map the future extent of beetle infestation. Although
the major uncertainty of our work comes from the lack of a proper field data as, to the best of
our knowledge, such data does not exist over a large spatial scale, it is encouraging to note that
areas reported as GA by the MCI index closely resemble the expected pattern of mountain pine
beetle dispersal: beetles attack clusters of trees rather than entire areas. It is rare to encounter
an area of forest that is completely infected by the beetle, especially on the leading edge of
the outbreak. In this respect, further research should focus on a much smaller spatial scale (in
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order of several hectares) where the beetle activity is well known and the mixture of RA and
GA within a certain area could be validated by detailed field observations of actual green attack
areas, and where proper and simultaneous measurements of water use (i.e., sap flow or water
potential) could be carried out. The above-mentioned data collection, along with multispectral
and thermal imagery, would serve to confirm the assumptions made in this study.

For the purposes of practicality, the prediction of GA areas using a combination of TIR and
VNIR data can serve as a tool for mitigation purposes, such as directing harvest efforts to GA
areas in order to prevent widespread dispersal from these areas in the following year, or as a
tool to highlight areas to acquire higher spatial resolution imagery to be combined with aerial
survey data for guiding finer scale surveys. At the same time, however, TIR imagery alone
could be a useful tool for monitoring unmixed and unaffected areas since, all else being equal,
the observed spatial differences in Ts (or any of its derivatives) is the first indicator of possible
stress induced by the insect. Ground surveyors could then be guided to locations with the largest
stress detected by remote sensing.

Such a strategy provides practical usefulness and is relatively cost effective when compared
with aerial overview survey operations performed by British Columbia Ministry of Forests and
Range. Since the outbreaks of the mountain pine beetle are very widespread, the management
of the large affected area would necessitate a mosaic of a significant number of Landsat scenes,
and the normalization of these images would be an additional step for large-area GA detection.

It should also be noted that the beetle naturally attacks trees that are already stressed, often
at locations with low soil moisture levels. In these locations, the canopy temperature would
generally be higher than the surroundings and could produce MCI values similar to those under
GA. Such persistently stressed areas may be identified from a multiyear series of images. In this
respect, the accuracy of the GA detection can be further improved.
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