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Abstract

We developed algorithms for spatial scaling of leaf area index (LAI) using sub-pixel information. The study area is located near Liping

County, Guizhou Province, in China. Methods for LAI spatial scaling were investigated on LAI images with 960m resolution derived in

two ways. LAI from distributed calculation (LAID) was derived using Landsat ETM+ data (30m), and LAI from lumped calculation

(LAIL) was obtained from the coarse (960m) resolution data derived through resampling the ETM+ data. We found that lumped

calculations can be considerably biased compared to the distributed (ETM+) case, suggesting that global and regional LAI maps can be

biased if surface heterogeneity within the mapping resolution is ignored. Based on these results, we developed algorithms for removing

the biases in lumped LAI maps using sub-pixel land cover-type information, and applied these to correct one coarse resolution LAI

product which greatly improved its accuracy.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introdoution

Remote sensing plays an important role in quantifying
the spatial distribution of different surface parameters and,
together with geographic information systems (GIS),
increases the availability of data for use in various
ecological models (Liu et al., 1997). Advanced satellite
systems and sensors provide us with unique information
that is critical to the modeling of natural phenomena at
regional and global scales. Remote sensing provides the
only way of observing global ecosystems consistently.

Various satellite sensors observe the Earth’s surface at
different spatial resolutions. In deriving surface parameters
using remotely sensed data, the transportability of algo-
rithms from one resolution to another is often of great
concern because of the underlying surface heterogeneity.
Inherent in the measurement approach, remote sensing
yields average radiative signals from the sub-pixel ele-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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mental grid cells which usually consist of various land
cover types. This signal-averaging process masks sub-pixel
variations and consequently the averaged signals can
induce biases when used to retrieve surface parameters,
even if the same algorithms are used. Spatial scaling
algorithms are therefore of great importance when remote
sensing is applied to land ecosystems.
Two approaches may be employed in quantifying spatial

heterogeneity. A textural approach based on the variability
in brightness of pixels in an image uses many different
parameters such as scale variance and variogram (Qi and
Wu, 1996; Wu and Dennis, 2000; Atkinson et al.,1996; Hay
et al., 1997) to define the spatial heterogeneity. More
recently, a contextural approach has been developed that
uses information about the size and shape of features
displayed on an image including their areas, spatial
distributions, and patterns (Chen, 1999). The former
approach uses image texture (variance and covariance) to
quantify surface heterogeneity (Hall et al., 1992; Friedl
et al., 1995), while the latter considers the various cover
types as sub-pixel information. The contexture-based
approach (Chen, 1999) was found to be more effective in
the LAI calculations, where the textural parameters
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provided just only an approximation for the scaling effect
in the same study. In this article, an ETM+ image of
Liping County was used to study the effect of spatial
scaling of LAI at two different scales (30m and 1 km) using
the contextural approach. The objective of the study was to
use the classification information of the fine resolution
image (ETM+) to develop spatial scaling algorithms for
LAI, and then apply the algorithm to correct a coarse
resolution (MODIS) LAI product.

2. Remote sensing data preprocessing

2.1. Remote sensing image preprocessing

The study area is located near Liping County in south-
western China. It covers the area from approximately
251440 to 261310 N and 1081370 to 1091310 E (Fig. 1), with
an altitude of about 600–800m above the sea level. The
remote sensing image used in this study was acquired by
Landsat-7 ETM+ (Path/Row: 125/42) on May 14, 2000.
Fig. 1. A NIR-Red–Green compos
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Fig. 2. Decision tree for ETM
Using the image header, we could ascertain that the
imaging quality was high and there was no cloud.
The surface reflectance values for three bands ETM3
(red), ETM4 (near infrared), and ETM5 (shortwave
infrared) were used to derive various vegetation indices
(VI). Two main steps of the remote sensing image
preprocessing were implemented, atmospheric correction
and geometric correction.
Hui and Tian (2003) demonstrated that atmospheric

correction should be applied before using the vegetation
indices to calculate LAI. In our case, the 6S model (Tanre
et al., 1986) was used to correct the ETM+ image for
atmospheric effects and to retrieve spectral reflectance at
the surface level. Because many 6S parameters were not
available at the time of image requisition, we selected the
mid-latitude summer option to characterize the air mass
during image acquisition.
The reason for the geometric correction was to match the

ground LAI plots with the corresponding image pixels. To
this end, 42 ground control points were located (mainly at
ite of the Liping ETM+ scene.
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Fig. 3. The classified map of Liping ETM+ image.
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Fig. 4. Relationship of LAI–NDVI of conifer forest.
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road crossings or river-road crossings) and used to
geometrically rectify the ETM+ image with a root mean
square error of 0.455 pixels.

2.2. Land cover types

Land cover information is crucial in quantifying surface
parameters such as LAI. This is because different vegeta-
tion types have different canopy structure and therefore
also exhibit differences in the absorption, reflection, and
transmission of radiation. In addition, many biological
parameters and variables such as LAI vary with vegetation
type, thus correct land cover information is essential for
quantifying such parameters.
In this study, we selected the decision tree method

(Fig. 2) (Li and Ding, 2002) to classify the ETM+ image
into 6 classes (Fig. 3). Conifers and mixed forest classes
occupied about 38% and 20% respectively, with 42% of
the land area belonging to other classes. Since broadleaf
forest is not dominant in the study area and usually mixed
or intermixed with conifers, it was incorporated into the
mixed forest. Due to the absence of field measurements, we
followed Chen et al. (2002), in combining grass, soil,
city, cement, and some water into an ‘‘open land’’ category.
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Fig. 6. ETM+ LAI map of Liping county.

Fig. 7. Flow chart of spatial scaling methodology.
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The open land also consists of different forms of natural
landscape within the area of interest. It is defined as a land
cover type consisting of recently burned areas, regenerated
areas, and barren soil/rock and wetland areas. Although the
LAI of water and city should be 0 or nearly zero, respectively,
their areas were very small and the error caused by
incorporating them into open land with non-zero LAI could
therefore be ignored. In this study, the LAI-VI algorithm
used for open land was adopted from Chen et al. (2002).

2.3. LAI mapping

LAI mapping was based on the LAI-VI relationship for
the three vegetation types developed from ground LAI
measurements. In August 2002, we used LAI (Pu and
Gong, 2000) to measure about 30 plots of the coniferous
and mixed forest, each plot approximately 150m � 150m
or 5� 5 pixels in the ETM+ image. In each plot, we made
measurements at four locations and calculated the average
LAI for the plot.
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Fig. 8. Regression of uncorrected LAIL against LAID: (a) con
By using the absolute surface reflectance of the ETM+
image to produce NDVI and the reduced simple ratio
(Chen et al., 2002), we built a linear regression model of VI
against the field LAI measurements. Figs. 4 and 5 show the
LAI-VI regression results for coniferous and mixed forests,
respectively. Although we assumed a linear relation
between LAI and NDVI which in this case is statistically
significant, it should be noted that the relationship need not
always be linear due to NDVI saturation level; depending
on the type of vegetation cover, the saturation is reached
asymptotically for LAI between 2 and 6. We could also see
from Fig. 4 that the NDVI is approaching saturation when
LAI is near 7–8 but, since we do not have enough LAI
measurements in this range, a nonlinear model has not
been chosen in this case.
Because no field LAI measurements were available for

the open land, we used the LAI-RSR Eq. (2.1) developed
by Chen et al. (2002).

LAI ¼ RSR=1:3, (2.1)
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where RSR is the reduced simple ratio defined based on
red, NIR, and shortwave infrared reflectances.

Combining the three LAI-VI algorithms and the ETM+
classification, we produced the LAI map (Fig. 6) for Liping
County using ENVI 3.5 remote sensing image processing
software.

3. Spatial scaling model development

3.1. Products for spatial scaling

Methods for LAI spatial scaling were investigated using
LAI images with 960m pixels derived in two ways: (1) from
distributed calculations (LAID), where LAID was calcu-
lated first at 30m resolution and the averaged to 960m
resolution pixels; and (2) from lumped calculations (LAIL),
in which LAI was calculated using input 30m ETM+
vegetation index maps after resampling these to a resolu-
tion of 960m. Fig. 7 shows the flowchart of spatial scaling
steps.
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3.2. Regression analysis of LAIL and LAID

Linear least-square regression analysis, with LAID as
the independent variable, was used to investigate the
relationship between LAID and LAIL (Fig. 8). Based on
the lumped land cover map, each of the LAID and LAIL
maps were separated according to the three cover types.
The maps for the entire study area and for each land cover
type separately were converted into ASCII files. The results
are reported in terms of r2 values. LAID is assumed to
represent the reality; therefore, any deviation of LAIL
from LAID is equivalent to the error produced in the
coarse resolution LAI retrieval process.
Fig. 8 presents the correlation between uncorrected

LAIL and LAID. For coniferous-labeled coarse resolution
pixels, in view of the fact that the LAI is generally high for
conifer forest, mixed pixels labeled as coniferous generally
result in overestimation of LAIL, i.e. values are higher than
those derived at fine resolution. Biases are also generally
positive when pixels containing open water bodies are
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labeled as vegetation. In contrast, mixed pixels labeled as
open land commonly have underestimated LAI values
(Fig. 8c). In Fig. 8b, for the mixed forest-labeled coarse
resolution pixels, overestimation of LAIL occurs when they
contain significant fractions of conifers, while under-
estimation often occurs when they contain open land. It
is thus evident that ignoring sub-pixel land cover-type
information induces either positive or negative bias in LAI
estimation. These biases depend on the dominant cover-
type assigned to a lumped pixel (which is typically mixed).
So the key part of the spatial scaling model development
is to use sub-pixel land cover information to correct
the LAIL.

3.3. Spatial scaling model

A C program was used to produce an ASCII file for
cover-type area fractions within each 960m pixel based on
the known sub-pixel information from the 30m resolution
data. This step is most vital since the scaling algorithms
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Fig. 10. Regression of corrected LAIL against LAID: (a) coni
could not be derived without the knowledge of cover-type
area fractions (conifers, mixed forest, open land).
Since the goal of spatial scaling is to compute the LAI

values from coarse resolution sensor data in such a manner
that they equal the arithmetic average of the LAI values
derived from fine resolution sensor data (Tian et al., 2002),
the corrections of LAIL are based on the regression
coefficients retrieved by correlating the correction factor R

and each dominant cover-type fraction within the uniquely
labeled coarse pixel. The relationships are as follows:

R ¼ LAID=LAIL; (3.1)

Rtype ¼ anFrtype þ b, (3.2)

where Frtyoe is the fraction of the dominant cover type; a, b

are the linear regression coefficients for a particular
dominant cover type.
Fig. 9 shows the relationships between the correction

factor R and the dominant fraction within each lumped
pixel. It is apparent that: (1) strong positive or negative
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linear correlations exist between R and Fr for the three
cover types, so it is reasonable to develop the spatial scaling
algorithm using cover-type area fractions; and (2) when Fr
equals to 1, R equals to 1 as well. This proves that when
using a linear LAI-VI algorithm, pure coarse resolution
pixels will not cause differences between LAID and LAIL.
The more pure a coarse resolution pixel is, the less error the
LAIL will have.

According to the three equations in Fig. 9, we developed
the spatial scaling algorithm (Eq. (3.3)):

LAIcorrect ¼ LAILnR ¼ LAILnðanFrtype þ bÞ. (3.3)

For conifers, mixed forest, and open land separately, the
algorithms are, respectively, (3.4), (3.5), and (3.6):

LAIcorrect ¼ LAILnð0:65799nFrconifer þ 0:35735Þ, (3.4)

LAIcorrect ¼ LAILnð�0:95902nFrmixedforest þ 1:94239Þ,

(3.5)

LAIcorrect ¼ LAILnð�2:90288nFropenland þ 4:00222Þ. (3.6)

After using the three equations to correct the LAIL, we
employed linear regression analysis to investigate the
correlation between corrected LAIL and LAID (Fig. 10).
It could readily be seen that after the corrections, the
correlation between LAIL and LAID was much improved
as the correlation increased from R2 ¼ 0:68 to R2 ¼ 0:96
for the entire image. For conifer-labeled coarse resolution
pixels, the correlation increases from R2 ¼ 0:50 to
R2 ¼ 0:57, for mixed forest-labeled coarse resolution pixels
from R2 ¼ 0:20 to R2 ¼ 0:53, and for open land-labeled
coarse resolution pixels from R2 ¼ 0:65 to R2 ¼ 0:84.
These results demonstrate that the spatial scaling algo-
rithms developed using sub-pixel information could greatly
reduce the error in coarse resolution LAI mapping. Thus, if
land cover-type information is available at high resolution,
the above algorithms could be used to correct the coarse
resolution (MODIS) LAI product.

To test our algorithm, we applied it to a subset of a
MODIS LAI product produced by the University of
Toronto, similar to that discussed by Liu et al. (1997).
The corresponding ETM+ image of the study area consists
of 2048�2048 pixels. Figs. 11 and 12 show the correlations
between MODIS LAI and LAID before and after
correction, and Fig. 13 includes both original MODIS
LAI map and the corrected map. From Figs. 11 and 12 it is
evident that the linear correlation between corrected
MODIS LAI and LAID was stronger than between
uncorrected MODIS LAI and LAID. After the correction,
the coefficient of determination R2 increased from 0.54 to
0.79. The spatial scaling algorithm using sub-pixel infor-
mation therefore significantly reduced the error in the
MODIS LAI product. It also demonstrated that sub-pixel
classification information for coarse resolution data is of
great importance in the spatial scaling process.
4. Discussion

If only coarse resolution images are available for an area,
a meaningful spatial scaling is severely limited. To meet the
scaling requirement, the traditional practice in land
classification based on ‘‘hard labeling’’ may be replaced
with ‘‘soft labeling’’ approaches, i.e., giving the percentage
of major cover types within each pixel. This soft classifica-
tion approach has been successfully demonstrated by
DeFries et al. (1997). However, it is generally difficult to
apply the soft classification approach in case of multiple
cover types through spectral unmixing, because the unique
dimensions of optical remote sensing are generally smaller
than the dimensions of surface variability (Verstrate et al.,
1996). Therefore, greater attention should be paid to
regional and global land cover mapping at high resolution.
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Fig. 13. Image of uncorrected MODIS LAI and corrected MODIS LAI (1 km).

Z. Jin et al. / Journal of Environmental Management 85 (2007) 628–637636
This is in agreement with the suggestion by Chen (1999)
that at least a high-resolution water area mask is required
for spatial scaling of surface parameters.

Examples shown in this article are limited to two
different scales and one biophysical parameter. However,
the concept of scaling using contextural parameters could
be applied in other surface parameters (such as FPAR,
temperature, etc). In this study, only three types of
vegetation are considered, and the coefficients determined
in our scaling algorithm would be applicable to similar
cover types in other regions. However, if we attempt to
expand this method to other regions with different cover
types, new sets of coefficients can be developed by
following the examples given in this study.

5. Conclusions

Surface parameters derived at different spatial resolu-
tions can be considerably different even though they are
derived using the same algorithms, especially when coarse
resolution pixels consist of various land cover types. In this
study, we developed a spatial scaling algorithm for LAI
between two scales (30 and 960m) using a Landsat ETM+
image of Liping County. The following main conclusions
are drawn:
(1)
 Errors in coarse resolution LAI mapping occurred
mainly because coarse resolution pixels are generally
mixed and they are labeled as the dominant cover type
in the LAI retrieval. LAI–NDVI relationships used in
the LAI algorithm are inherently different among
various structurally distinct cover types. This suggests
that regional and global LAI maps produced without
considering the sub-pixel vegetation-type variation
would be in considerable error.
(2)
 An effective way of correcting errors in coarse
resolution LAI images is to employ sub-pixel land
cover information. It is demonstrated that when this
information for three major cover types in Liping
County was derived from a Landsat ETM+ image at
30m resolution and used to correct MODIS LAI at
1 km resolution, the error in the MODIS LAI was
greatly reduced. This reduction in error was shown as a
large increase in the correlation between the MODIS
LAI and a high resolution LAI map derived using the
ETM+ image and ground data; the R2 value increased
from 0.54 to 0.79 after performing the correction using
sub-pixel land cover fraction information. Our results
demonstrate the need for high resolution land cover
maps at regional and global scales for the purpose of
accurate mapping of biophysical parameters which are
land cover-dependent.
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