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Abstract

Aboveground biomass (AGB) of forests is an important component of the global carbon cycle. In this study, Landsat ETM+ images

and field forest inventory data were used to estimate AGB of forests in Liping County, Guizhou Province, China. Three different

vegetation indices, including simple ratio (SR), reduced simple ratio (RSR), and normalized difference vegetation index (NDVI), were

calculated from atmospherically corrected ETM+ reflectance images. A leaf area index (LAI) map was produced from the RSR map

using a regression model based on measured LAI and RSR. The LAI map was then used to develop an initial AGB map, from which

forest stand age was deduced. Vegetation indices, LAI, and forest stand age were together used to develop AGB estimation models for

different forest types through a stepwise regression analysis. Significant predictors of AGB changed with forest types. LAI and NDVI

were significant predictors of AGB for Chinese fir (R2
¼ 0.93). The model using LAI and stand age as predictors explained 94% of the

AGB variance for coniferous forests. Stand age captured 79% of the AGB variance for broadleaved forests (R2
¼ 0.792). AGB of mixed

forests was predicted well by LAI and SR (R2
¼ 0.931). Without differentiating among forest types, the model with SR and LAI as

predictors was able to explain 90% of AGB variances of all forests. In Liping County, AGB shows a strong gradient that increases from

northeast to southwest. About 64% of the forests have AGB in the range from 90 to 180 t ha�1.

r 2006 Published by Elsevier Ltd.
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1. Introduction

For climate change research, it is important to know
how much net CO2 is released to the atmosphere from
terrestrial ecosystems (IPCC, 1996). Forest ecosystems are
an important component in the terrestrial ecosystems that
exchange CO2 with the atmosphere. Forest biomass
resulting from the long-term accumulation of carbon (C)
is an important part of the C cycle. In modeling the C
balance of terrestrial ecosystems, biomass is often required
as an input to models because it affects autotrophic
respiration and the amount of C transferred to the soil as
litter.

In recent decades, efforts have been made to estimate
forest biomass, including field measurements and model
e front matter r 2006 Published by Elsevier Ltd.
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simulations. For example, Xu (1999) presented a model
for estimating biomass from the diameter-at-breast
height (DBH), tree height, crown size, crown length, and
crown volume. Measurements of these parameters are
time- and labour-consuming, thus limiting use of this
approach over large areas. Other scientists calculated
biomass using traditional methods such as the dry-
weighted algorithm (Haripriya, 2000; Jing-Yun Fang
et al., 1998).
Due to its large spatial and frequent temporal coverage,

remote sensing allows scientists to examine properties and
processes of ecosystems and their inter-annual variability
at multiple scales (Goetz et al., 2000; Prince and Goward,
1995; Running et al., 2000; Zheng et al., 2004). It has been
demonstrated that the Landsat ETM+ imagery is very
useful in forest management when combined with field
measurements (Dorren et al., 2003). The spectral informa-
tion detected by remote sensing has a good correlation with
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forest biomass (Spencer et al., 1997). Forest biomass
depends on the land cover, canopy chlorophyll content and
forest density, all of which influence spectral reflectance
recorded by satellite sensors). Recently, data from radar
remote sensing was also used to estimate the aboveground
biomass (AGB) (Moreau and Le Toan, 2003; Rauste,
2005).

Some remote sensing-based biomass models consider
processes of radiative transfer in plant canopies such as the
absorption, reflection, and transmission of solar radiation
in the canopy which are related to biomass. Statistical
models can also be developed using remotely sensed
information and ecological factors. The accuracy of these
biomass models using remote sensing data has been
questioned (Zhang and Fu, 1999) because in reality, optical
remote sensing provides information on canopy leaf
density rather than on biomass. Biomass may therefore
be estimated from parameters quantifying canopy density,
such as LAI.

In practical remote sensing applications, LAI is calcu-
lated from remotely sensed vegetation indices through
regression analysis or the inversion of geometric radiation
models. Since the saturation of vegetation indices often
caused the underestimation of high LAI values (Gitelson,
2004), remotely sensed LAI alone is unable to give reliable
estimates of biomass. Therefore, other parameters, such as
stand age and forest type, are also required for the retrieval
of AGB.

The objectives of this study are: (1) to develop an
algorithm for estimating AGB from remote sensing data;
and (2) to produce a high-resolution AGB map for further
modeling net primary productivity (NPP) and C balance
for Liping County, Guizhou Province, China.
N
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Fig. 1. The location of study area indicates the dependen
2. Materials and methods

2.1. Study area

Liping County (251440–261310N, 1081370–1091310E) is
located in the southeast of Guizhou Province, China. This
area represents the transition from Yunnan-Guizhou
altiplano to Guangxi Zhuang Autonomous Region, and
to Hunan low mountains and hills. It is a typical karst area
in south China (Fig. 1), with an elevation generally ranging
between 600 and 800m above sea level (asl). The highest
peak of Laoshan circle is 1598masl. The entire area falls
within the monsoon moist climate area of the middle
subtropical zone. Annual rainfall ranges from 1100 to
1700mm. Forest unevenly distributes in its 29 villages and
towns. The total forested land area is 371,934.8 ha,
accounting for 83.78% of its total land area
(444,288.7 ha) and 58.44% of the whole territory of the
Liping County. Among these forests, 16.22% are difficult
to utilize. Forest species are abundant with 76 families, 224
genus, and 521 species, including 24 state-protected species.
The four major species are China fir, pine, tea-oil camellia,
and bamboo. Coniferous forests occupy 43.36% of the
forested areas.

2.2. Methods

In this study, we employed various methods to measure
ecological parameters, to process remote sensing images,
and to develop regression models for calculating biomass
from remotely sensed information.
During the field campaign, topographic characteristics

(slope, aspect, coordinates) and vegetation parameters
Guizhou Privince

Study area

t which participate in the regression model building.



ARTICLE IN PRESS
G. Zheng et al. / Journal of Environmental Management 85 (2007) 616–623618
(LAI, DBH, tree height, forest age) were measured. Forest
biomass was calculated by the relative-growth method, for
which the necessary parameters are available easily and
effectively, and a great deal of studies done in China prove
that it is very useful and practical. Three vegetation indices,
including normalized difference vegetation index (NDVI),
simple ratio (SR), and reduced simple ratio (RSR), were
calculated from remotely sensed reflectance in the red, near
infrared and shortwave infrared ETM+ bands. A LAI map
was produced using a RSR-based algorithm developed
according to measured LAI and remotely sensed RSR
values. The relationship between AGB and LAI was
analyzed to calculate AGB values from the LAI map.
Based on this initial AGB map, stand age was deduced
using a forest age estimation model with AGB as the input.
Finally, three vegetation indices, LAI, and stand age were
used to develop AGB models for different forest types.
From these models and maps of vegetation indices, LAI,
and stand age, a final AGB map was produced. The major
steps in mapping AGB from remote sensing and inventory
data are shown in Fig. 2.
2.3. Field measurements and biomass estimation

Field campaigns were conducted in August 2003 and
2004. In total, 60 plots of mason pine, Chinese fir and
mixed forest plantations were investigated. At each plot,
LAI and soil measurements were made. LAI was measured
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Fig. 2. Flow chart of mapping aboveground biomass from remote sensing and

up regression models.
with a fish-eye camera and TRAC (Chen and Cihlar, 1995).
Topographic parameters (slope, aspect) were also mea-
sured. The latitude and longitude of each plot were
recorded with a high-accuracy global positioning system
(GPS). Parameters required to calculate AGB were
observed at 14 among the 60 plots only, including tree
height and the annual tree ring increment at the breast
height from tree core samples taken from about 10 trees at
each plot. For each sampled tree, ABG was calculated
from DBH and tree height, i.e.

AGB ¼ aðD2HÞb, (1)

where D and H are, respectively, the DBH and tree height;
a and b are regression parameters. Eq. (1) was previously
used to estimate AGB for Chinese fir, mason pine and
other forests in areas close to Liping County by others
(Feng et al., 1999). The biomass of each physiological
organ was first calculated and summed up to get the AGB
value of a tree. The AGB value of a plot is the average of
AGB values of all sampled trees.
2.4. Remote sensing data processing and vegetation index

calculation

Two ETM+ images acquired on May 14 and 21, 2000
were employed in the study. Using gain and offset
coefficients included the header files, the ETM+ raw
digital numbers were first converted into radiance, from
ession 
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which the reflectance of each band (except the thermal
and panchromatic bands) was calculated using the ‘‘6S’’
model (Vermote et al., 1997). Next, reflectance images
from the 2 days were joined to produce a reflectance
image for the whole study area. The boundary of Liping
County was then overlaid to exclude pixels outside the
study area. All images were geo-rectified to the UTM
projection.

Liping County is a typical area with hills and varying
terrain. Topography thus imposes considerable noise on
remote sensing signals, as terrain shadows reduce reflec-
tance and cause errors in derived vegetation parameters.
The removal of this shadow effect was implemented by the
Sun-Canopy-Sensor (SCS) sub-pixel removal method
(Degui Gu, 1998), which is suitable for forest mapping
using Landsat ETM+. This method quantifies the, para-
meterizes the interaction between solar radiation and
vegetated sloping terrain.

Three vegetation indices (NDVI, SR, RSR) were
calculated from the reflectance image, i.e.

NDVI ¼ ðNIR�RedÞ=ðNIRþRedÞ, (2a)

SR ¼ ðNIR=RedÞ, (2b)

RSR ¼ SR 1�
ðSWIR� SWIRminÞ

ðSWIRmax � SWIRminÞ

� �
, (2c)

where NDVI, SR and RSR are, respectively, NDVI, SR
and RSR; NIR, Red, and SWIR are surface reflectance
values in the red, near infrared, and shortwave infrared
Fig. 3. Land cover map and LAI an
bands; and SWIRmin and SWIRmax are the minimum and
maximum values in the shortwave infrared reflectance
(taken as 1% cutoff points in the reflectance histogram).
The minimum and maximum SWIR values correspond

to reflectance by a completely closed canopy and an open
canopy. It has been shown that RSR has advantages of
reducing the effect of background reflectance, increasing
sensitivity to LAI changes, and reducing the differences
between deciduous and coniferous species in LAI retrieval
algorithms (Brown et al., 2000).

2.5. LAI, land cover, initial AGB, and stand age maps

Measurements of LAI and calculated RSR were used to
build a statistical model for calculating LAI. Based on this
model and the RSR map, a LAI map of Liping County was
produced. This LAI map was employed for estimating the
initial values of AGB according to the observed relation-
ship between LAI and AGB. The initial AGB map was
further used to deduce stand age, which is an input to the
model calculating the final values of AGB.
Land cover is a very important factor in mapping

AGB. The land cover was classified into two steps.
The NDVI map was first used to classify forested and
non-forested pixels through setting a NDVI threshold.
Subsequently, forests were further classified into four
categories (broadleaf, coniferous, mixed forests and bam-
boo) through parallelepiped supervised classification.
Mixed and coniferous forests are the major forest types
in the area (Fig. 3).
d AGB sites of Liping County.
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3. Results

3.1. Correlation between AGB and LAI

In this study, AGB is defined as the biomass of live trees
greater than 3.0 cm in DBH and taller than 1.3m.
Measured LAI has a good relationship with AGB
calculated from DBH and tree height at the plot level
(R2
¼ 0.6099, N ¼ 14). When LAI is below 4.5, AGB

increases linearly with LAI. For plots with LAI larger than
4.5, the correlation between AGB and LAI was less
significant (Fig. 4). This model was used to estimate
y = 111.19 Ln (x) - 56.119
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Fig. 4. The relationship between aboveground biomass and leaf area
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Table 1

Models based on stepwise regressions for predicting aboveground biomass fro

Descriptions Models

Overall AGB ¼ 43.351*LAI+4.443*AGE�166.565

Chinese fir AGB ¼ 36.941*LAI+197.411*NDVI�125.951

Conifer AGB ¼ 55.185*LAI+3.862*AGE�204.038

Broadleaf AGB ¼ 7.238*AGE�15.792

Mix forest AGB ¼ 26.808*LAI+15.181*SR�60.584
AGB from the LAI map. However, the AGB value
calculated from LAI has considerable uncertainties due
to the insensitive response of AGB to high LAI values
above 4.5. Therefore, AGB calculated in this way was
considered as the initial AGB. In the initial AGB map
(Fig. 5), the inferred AGB had a low spatial variation as
the AGB of most forests ranged from 40 to 100 t ha�1. The
value of the initial AGB map was to provide input to
deducing stand age, which would be used as a predictor for
the final estimate of AGB.

3.2. The relationship between tree age and AGB

Tree age is closely related to its AGB. A second-order
polynomial model with AGB as the predictor could explain
53% of age variance for the 60 sampled trees (Fig. 5); it is
evident that AGB increases nonlinearly with stand age. The
polynomial model was employed to infer stand age from
the initial AGB map. Most of the forests were less than
21 yr old in 2004. The age map provides useful information
about the forest age structure, not only for mapping AGB
but also for managing forest and estimating C balance of
forested ecosystems (Chen et al., 2003).

3.3. Models for estimating AGB

Three vegetation indices, LAI, and stand age were used
as predictors to build AGB prediction models for different
forest types using the stepwise region regression method.
Table 1 shows predictors selected in each model and the
variance in AGB explained. LAI and NDVI are significant
predictors of AGB for Chinese fir (R2

¼ 0.93, N ¼ 8).
The model using LAI and stand age as inputs explained
94% of AGB variance for coniferous forest (N ¼ 11).
Stand age accounted for 79% of AGB variance for
broadleaved forest (N ¼ 5). AGB of mixed forest was well
predicted by LAI and SR (R2

¼ 0.931, N ¼ 3). This model
explained 90% of AGB variations. Stand age and land
cover were therefore factors contributing improved AGB
calculation.
Due to the limitations of field measurements, the number

of sites with all measured parameters was insufficient for a
complete model validation. 26 sampled trees were ran-
domly chosen for model validation of each tree predicted
by models in Table 1 were compared with those calculated
from measured DBH and tree height using Eq. (1). In the
m vegetation indices, LAI and stand age

R2

0.895

0.930 (n ¼ 8)

0.937 (n ¼ 11)

0.792 (n ¼ 5)

0.931 (n ¼ 3)
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estimation of AGB, plot means of measured LAI,
calculated vegetation indices, and measured tree age were
used to drive the model. 91% of the AGB variance among
the 26 trees was captured by the model; however, high
AGB values were slightly underestimated (Fig. 6).

3.4. Spatial distribution of modeled AGB

Using the AGB model for each forest type, the final
AGB map was created (Fig. 7). In Liping County, forest
y = 0.9336x + 8.7244
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Fig. 6. Validation of modeled AGB against measured AGB.

Fig. 7. Spatial distribution of mapped finial a
AGB shows a definite gradient increasing from the
northeast to the southwest. Forests in areas close to roads,
rivers, and towns usually have AGB less than 40 t ha�1. In
the southwestern part, AGB values are fairly high, ranging
from 120 to 200 t ha�1.
About 64% of forests have AGB between 90 and

180 t ha�1 (Fig. 8). AGB values of 46.3% of forests range
from 90 to120 t ha�1. The frequency distribution of AGB
values in the final AGB map is very similar to that of
measured tree AGB values (Fig. 8).
Values in the initial AGB map, which was produced

using LAI only, are clustered in the range from 41 to
60 t ha�1 (Fig. 8). Overall, AGB in the initial AGB
map was significantly underestimated, as only a few
stands had AGB above 140 t ha�1, showing that the AGB
range in the initial map does not represent the reality. In
the final AGB map, about 28% of AGB values are
above140 t ha�1.
4. Conclusions and discussion

In this study, AGB models for different forest types were
developed to calculate AGB values with the aid of remotely
sensed forest parameters. The results clearly show that
inclusion of stand age and land cover in AGB can
effectively improve the accuracy of AGB estimation.
Nevertheless, some issues remain to be addressed. In this
study, the stand age map was inferred from the initial
boveground biomass for Liping County.
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AGB map, which was in turn created from the LAI map.
In the final AGB mapping, maps of stand age, vegetation
indices, and LAI were all used as the predictors of AGB.
The information of vegetation indices may thus be over-
used. The application of near infrared and shortwave
infrared remote sensing data will reduce this limitation
somewhat.

Terrain correction is especially important in processing
remote sensing data for hilly areas like Liping County. The
shadow effect imposes noise in remotely sensed signals. The
reduction of the soil background effect by using RSR and
the correction of the terrain effect improved the reliability
of retrieved forest parameters.

In mountainous terrains, the accuracy of land cover
classification based on ETM+ data is fairly low due to the
heterogeneity of land surface within a 30� 30m pixel.
Dorren et al. (2003) added digital elevations as an extra
band to improve the accuracy of Landsat ETM+-based
forest stand type mapping, and also compared the
object-based classification with per-pixel classification.
These authors divided forests into four types (dense
conifer, open conifer, mixed forest and broadleaf). In our
study, based on field investigations the supervised classi-
fication method was adopted to classify forests into
different types; discrimination of forest species was not
attempted because of the limitations of the Landsat ETM+

data. Although bamboo occupied about 1.94% of the land
area in Liping County, it was scattered in many spots
smaller than a ETM+ pixel (30� 30m). Any non-
uniformity of vegetation distribution within a pixel of
remote sensing imagery deteriorates the precision of AGB
calculation.

Stand age served as an important and useful factor in
estimating AGB. Leaf area remains almost the same once
the stand age is above a threshold for forests in a similar
environment while forest biomass continues to accumulate.
The integration of stand age into an AGB model can to a
large extent alleviate the underestimation of high AGB
values. For regional applications, a robust method to infer
stand age from remote sensing is required for reliable
mapping of AGB.
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