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[1] In this paper, we present an approach for generating a consistent long-term global leaf
area index (LAI) product (1981–2011) by quantitative fusion of Moderate Resolution
Imaging Spectroradiometer (MODIS) and historical Advanced Very High Resolution
Radiometer (AVHRR) data. First, a MODIS LAI series was generated from MODIS data
based on the GLOBCARBON LAI algorithm. Then, the relationships between AVHRR
observations and MODIS LAI were established pixel by pixel using two data series during
overlapped period (2000–2006). Then the AVHRR LAI back to 1981 was estimated from
historical AVHRR observations based on these pixel-level relationships. The long-term
LAI series was made up by combination of AVHRR LAI (1981–2000) and MODIS LAI
(2000–2011). The LAI derived from AVHRR was intercompared with that from MODIS
during the overlapped period. The results show that the LAIs from these two different
sensors are good consistency, with LAI differences are within �0.6 over 99.0% vegetated
pixels. The long-term LAI was also compared with field measurements, which has an
error of 0.81 LAI on average. Compared with the LAI retrieved directly from the
GLOBCARBON algorithm, the LAI derived by our method has a lower temporal noise,
which means uncertainties from the low quality of AVHRR measurements can be reduced
with the aid of high-quality MODIS data. This product is hosted on the GlobalMapping
Web site (http://www.globalmapping.org/globalLAI) for free download, which will
provide a long-term LAI over 30 years for modeling the carbon and water cycles.

Citation: Liu, Y., R. Liu, and J. M. Chen (2012), Retrospective retrieval of long-term consistent global leaf area index
(1981–2011) from combined AVHRR and MODIS data, J. Geophys. Res., 117, G04003, doi:10.1029/2012JG002084.

1. Introduction

[2] The world is experiencing persistent climate warming,
which will alter the vegetation structure, and the vegetation
feedback to the climate might amplify or dampen regional
and global climate change [Ciais et al., 2005; Heimann and
Reichstein, 2008]. The leaf area index (LAI), which is com-
monly defined as half the total all-sided developed area of
green leaves per unit ground surface area [Chen and Black,
1992], is a critical parameter for modeling vegetation’s
water, carbon, and energy exchange with the atmosphere
[Braswell et al., 1997; Gitelson and Kaufman, 1998]. To
better understand the interaction of terrestrial vegetation and

the climate, the global long-term LAI should be quantified
[Global Climate Observing System, 2006].
[3] Various sensors onboard satellite platforms have taken

global snapshots since the 1970s, such as NOAA/AVHRR,
SPOT/VEGETATION, TERRA-AQUA/MODIS, ENVISAT/
MERIS, and TERRA/MISR. Several global and regional LAI
products from those different sensors have been provided
routinely, such as ECOCLIMAP [Masson et al., 2003] and
ISLSCP-II (1982–1990) [Los et al., 2000] from AVHRR,
CYCLOPES (1999–2007) [Baret et al., 2007], GLOBCAR-
BON (1998–2003) [Deng et al., 2006] and Canada-wide LAI
map (1993–2002) [Chen et al., 2002] from VEGETATION,
MERIS LAI (2002–) [Bacour et al., 2006], MOD15 (2000–)
from MODIS [Myneni et al., 2002], and MISR LAI (2000–)
[Diner et al., 2008]. Some of these products have been applied
to study the global carbon and water cycles [e.g., Zhao and
Running, 2010; Leuning et al., 2008]. However, these pro-
ducts, which are all generated from single sensor observations,
are limited in their temporal coverage. Also, due to the dis-
crepancies of sensors characteristics and retrieval algorithms,
these various LAI products are not consistent enough to be
directly combined to make up a long-term LAI series. To ret-
rospectively estimate evapotranspiration [Zhang et al., 2010]
or vegetation primary productivity [Piao et al., 2009] back to
the 1980s, the LAI-related vegetation parameters are inferred
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directly from the long-term NDVI, which may introduce a
large uncertainty because the relationship between NDVI and
the vegetation parameter varies from site to site due to the
diverse canopy and background conditions [Baret and Guyot,
1991]. Moreover, the NDVI is also not consistent among the
different sensors [Tarnavsky et al., 2008]. Therefore, it is
valuable to design a new algorithm to seamlessly fuse the
multisource data to produce a consistent long-term LAI series.
[4] The AVHRR sensors onboard the NOAA 7–14 satellite

series have observed the earth continuously since 1981. Since
2000, the advanced sensor MODIS, onboard the Terra and
Aqua satellites, has provided a more reliable data source for
LAI estimation with its better spectral, temporal and spatial
resolutions as well as georeference and calibration accuracy.
The combination of observations from MODIS and AVHRR
may be a feasible approach to deriving long-term LAI records
back to 1981. However, the differences in data information
content due to various sensor spectral characteristics, spatial
and temporal resolutions, calibration and geometry make it
challenging to do so. For example, the reflectance from
AVHRR and MODIS are not consistent even in the same
atmospheric and terrestrial state [Gitelson and Kaufman,
1998; Trishchenko et al., 2002]. Some attempts have been
made recently to take these differences into account to gen-
erate a long-term LAI data set (1981–2006) from AVHRR
data with a comparable quality to MODIS MOD15 LAI by
a physically based radiative transfer approach, with param-
eterization of canopy spectral bidirectional reflectance with
consideration of the spectral bandwidth and spatial resolu-
tion differences among sensors [Ganguly et al., 2008a].
However, the red and near-infrared channels of AVHRR are
spectrally broad, which are highly sensitive to atmospheric
conditions, while the atmospheric contamination on these
bands are nearly impossible to correct without the SWIR
bands. In addition, the reflective channels are only calibrated
preflight and fewer bands available. These factors determine
that the data quality of AVHRR should be lower than that
of MODIS, which means the LAI directly derived from
AVHRR by the traditional retrieval procedures should be
inferior to that of MODIS.
[5] The vegetation index (VI), though which carries only a

fraction of the information available in the original NIR/red
bands, can enhance the information of vegetation while les-
sens the ill effects of other factors, such as canopy structural
shadows, soil/background, angular anisotropy and atmo-
spheric contamination, because of the correlation of the noise
between the red/NIR bands [Chen, 1996]. And the VI cor-
relates highly with the ground LAI measurements for various
biomes, such as grassland, cropland and coniferous and
deciduous forests [e.g., Fava et al., 2009; Aparicio et al.,
2002; Spanner et al., 1994; Heiskanen, 2006; Kraus et al.,
2009]. So, if the relationship between VI and LAI can be
established, retrieval of LAI from the VI should be better than
that directly from the band reflectances. Unfortunately, the
VI-LAI relationship varies from site to site that make it
impossible to establish this relationship using the measured
field LAI and the VI from satellite data for a global scale.
Since the MODIS are more advanced than AVHRR, it can be
believed that if the LAI from MODIS was taken as a refer-
ence to establish the pixel-based VI-LAI relationship for
AVHRR, the quality of LAI derived from AVHRR is more
likely improved.

[6] The Simple Ratio (SR), the ratio of the near-infrared
(NIR) to red band land surface reflectance, is nearly linearly
related to LAI. In this paper, an approach based on the
pixel-based SR-LAI relationships is presented to generate
a long-term (1981–2011) global LAI product through the
combination ofMODIS and historical AVHRR data. The SR-
LAI relationships are established pixel-by-pixel by the LAI
derived fromMODIS and the SR from AVHRR, and then the
LAI from historical AVHRR observations are retrieved
based on these relationships. Because these SR-LAI rela-
tionships are based on theMODIS LAI, the LAI derived from
AVHRR should be consistent with MODIS LAI. The outline
of this paper is as follows. A brief introduction of data sets is
presented in section 2. The implementation of the algorithm
is detailed in section 3. Section 4 presents the results of the
algorithm and evaluates its performances. The limitation
and potential improvements of the algorithm are discussed in
section 5. Finally, the conclusion is presented in section 6.

2. Data

2.1. GIMMS NDVI and MODIS Data

[7] The Global Inventory Modeling and Mapping Studies
(GIMMS) NDVI data set from AVHRR (1981–2006) and
several MODIS products (2000–2011) are used in this study.
The LAI for AVHRR and MODIS are retrieved from
GIMMS NDVI and MODIS land surface reflectance product
MOD09A1, respectively. The land cover type is defined by
MODIS land cover product MCD12Q1. The performance of
the algorithm is compared with the MODIS LAI product
MOD15A2.
[8] GIMMS provides NDVI two times per month with a

spatial resolution of 4/55 degrees (approximately 8 km) of
the geographic coordinate over the global land surface except
Greenland and Antarctica (63�S–90�N, 180�W–180�E) and
spanning from July 1981 through December 2006. These
data sets were derived from observations of the AVHRR
instrument onboard the NOAA satellite series 7, 9, 11, 14,
16, and 17. The GIMMS NDVI has been corrected for
residual sensor degradation and sensor intercalibration dif-
ferences, view geometry effects due to satellite drift, distor-
tions caused by persistent cloud cover globally, aerosols of
the two major volcanic eruptions and other effects not related
to vegetation change [Tucker et al., 2005]. Flag files are also
provided to indicate the quality of the corresponding NDVI
values. The flag value ranges from 0 to 6, with a good flag
value equal to 0 or 1. All of the GIMMS NDVI data were
downloaded from http://glcf.umiacs.umd.edu/data/gimms/.
[9] The MODIS Surface Reflectance Product (MOD09)

contains the surface reflectance in seven spectral bands.
MOD09A1 provides global 8 day composite 500 m land sur-
face reflectance with atmospheric effects corrected since
February 2000. The MODIS land cover product (MCD12Q1)
supplies a yearly 500 m land cover classification map of the
globe derived through a supervised decision tree classification
method with 5 different classification schemes. In this study,
the IGBP global vegetation classification scheme product is
selected, which includes 11 natural vegetation classes, three
developed and mosaicked land classes and three nonvegetated
land classes. The MODIS MOD15 LAI product contains a
global 8 day composite true LAI of the land surface in a 1 �
1 km grid by the inversion of a three-dimensional radiative
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transfer model using a look-up table approach for eight
biomes [Myneni et al., 2002]. The back-up algorithm based
on the relationship between LAI and NDVI is employed
when the main algorithm fails. The MOD09A1, MCD12Q1
and MOD15A2 products are all provided in the Sinusoidal
grid. All the MODIS data were downloaded from https://
lpdaac.usgs.gov/.
[10] All data were preprocessed to the same projection

with GIMMS NDVI data set. MOD09A1 and MCD12Q1
images from 2000 to 2011 were transformed to the geo-
graphic projection at a 500 m � 500 m spatial resolution
through the nearest neighbor interpolation, 1000 m� 1000 m
for MOD15A2. The reprojected data were composed to form
global maps. The MODIS land surface reflectance and LAI
standard products were then screened for cloud contamina-
tion and snow with the state flags in MOD09A1 and
MOD15A2 products, respectively.

2.2. LAI Field Plot Measurements and Fine Resolution
LAI Maps

[11] Ground LAI measurements are available for the evalu-
ation of the derived LAI products. These include 45 field plot
LAI measurements at 28 global sites from 2000 to 2005 gath-
ered by Ganguly et al. [2008b] and 81 fine resolution LAI
maps over a network of 41 Benchmark LandMultisite Analysis
and Intercomparison of Products (BELMANIP) sites between
2000 and 2004 compiled by Garrigues et al. [2008] through a
coordinated international effort of the CEOS-WGCV LPV
Sub-Group. Among these LAI maps, 39 maps of 29 global
BELMANIP sites are available (Table 1). Some of the LAI fine
resolution maps provided effective LAI, while true LAI is
provided for other sites (Table 1). The field plot LAI from
Ganguly et al. [2008b] is assumed as true LAI since no detailed
description was provided.

Table 1. Summary of Fine Resolution LAI Maps Used for Validation With the GLOBMAP LAI

Site (Country) Latitude Longitude Biome Date Mean LAI CI Reference

Baohe (China) 34.22 107.23 MF early June 2003 3.8 Y Chen et al. [2007]
Liping (China) 26.27 109.24 MF 15 Aug 2003 3.8 Y Zheng et al. [2007]
Jian (China) 26.88 115.06 NF 24–27 Jul 2008 2.6 Y Li et al. [2010]
Maoershan (China) 45.37 127.60 MF 12–18 Jul 2009 4.7 Y Zhu et al. [2010]
Hulunbeier (China) 49.34 119.99 Grass 21–26 Jun 2010 1.5 Y Liu et al. [2011]
Xilinhaote (China) 43.62 116.71 Grass 28 Jun 2010 to 3 Jul 2010 1.2 Y Liu et al. [2011]
Chequamegon (USA) 45.95 �90.27 MF 1 Aug 2002 3.4 N BigFootb

Harvard (USA) 42.53 �72.17 MF 26 Jul 2001 4.6 N BigFootb

24 Aug 2002 4.7 N BigFootb

Konza (USA) 39.09 �96.57 Grass 16 Aug 2001 2.6 Y BigFootb

18 Jun 2001 2.9 Y BigFootb

Metolius (USA) 44.45 �121.57 NF 24 Sep 2002 2.5 N BigFootb

Sevilleta (USA) 34.35 �106.69 Grass 26 Jul 2002 0.1 Y BigFootb

22 Aug 2002 0.3 Y BigFootb

9 Sep 2002 0.4 Y BigFootb

15 Nov 2002 0.3 Y BigFootb

23 Jun 2003 0.6 Y BigFootb

28 Jul 2003 0.5 Y BigFootb

15 Sep 2003 0.5 Y BigFootb

21 Nov 2003 1.0 Y BigFootb

Tapajos (Brazil) �2.87 �54.95 EBF 15 Feb 2002 6.1 N BigFootb

Alpilles01 (France) 43.81 4.75 Crop 15 Mar 2001 1.0 N Yang et al. [2006]b

Flakaliden (Sweden) 64.11 19.47 NF 20 Aug 2002 2.3 N Yang et al. [2006]
Ruokolahti (Finland) 61.53 28.71 NF 10 Jun 2000 1.7 Y Yang et al. [2006]b

Larose (Canada) 45.38 �75.17 MF 19 Aug 2003 3.2 Y CCRSa

Appomattox (USA) 37.22 �78.88 MF 5 Aug 2002 1.9 Y Iiames et al. [2004]b

Los Inocentes (Costa Rica) 11.03 �85.5 EBF 15 Jun 2000 2.5 N Kalacska et al. [2004]b

AekLoba (Sumatra) 2.63 99.58 EBF 1 Jun 2001 3.5 N Garrigues et al. [2008]
Alpilles02 (France) 43.81 4.71 Crop 20 Jul 2002 1.7 Y Garrigues et al. [2008]
Barrax (Spain) 39.07 �2.10 Crop 3 Jul 2003 1.0 N Garrigues et al. [2008]
Concepcion (Chile) �37.47 �73.47 NF 23 Jan 2003 3.1 N Garrigues et al. [2008]
Gilching (Germany) 48.08 11.32 Crop 8 Jul 2002 5.4 Y Garrigues et al. [2008]
Gourma (Mali) 15.32 �1.56 Grass 1 Oct 2001 1.2 N Garrigues et al. [2008]
Haouz (Morocco) 31.66 �7.60 Crop 25 Mar 2003 1.2 N Garrigues et al. [2008]
Hirsikangas (Finland) 62.64 27.01 NF 2 Aug 2003 2.5 N Garrigues et al. [2008]
Jarvselja (Estonia) 58.3 27.26 MF 13 Jul 2002 4.2 N Garrigues et al. [2008]

26 Jun 2003 4.2 N Garrigues et al. [2008]
Laprida (Argentina) �36.99 �60.55 Grass 13 Nov 2002 2.8 Y Garrigues et al. [2008]
Larzac (France) 43.94 3.12 Grass 12 Jul 2002 0.8 Y Garrigues et al. [2008]
Rovaniemi (Finland) 66.46 25.35 NF 23 Jul 2004 1.3 N Garrigues et al. [2008]
Sud-Ouest (France) 43.51 1.24 Crop 20 Jul 2002 2.0 Y Garrigues et al. [2008]
Sonian (Belgium) 50.77 4.41 MF 28 Jul 2004 5.6 Y Garrigues et al. [2008]
Nezer (France) 44.57 �1.05 NF 21 Apr 2002 2.1 Y Garrigues et al. [2008]
Camerons (Australia) �32.6 116.25 EBF 6 Apr 2004 2.1 Y Garrigues et al. [2008]
Puechabon (France) 43.72 3.65 MF 12 Jun 2001 2.8 Y Garrigues et al. [2008]

aCI stands for clumping status. For Biome, MF, NF and EBF stand for mixed forest, needleleaf forest and evergreen broadleaf forest, respectively. For CI,
the value Y(N) means the clumping have (have not) been taken into account in the LAI measurement. For BigFoot, see Cohen et al. [2006] and for CCRS,
see Abuelgasim et al. [2006].

bAlso refer to Garrigues et al. [2008].
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[12] In addition, the field LAI data from six sites in China
are also used for comparison (Table 1). The LAI was
measured in sampling plots with area of about 30 m � 30 m
using a LAI-2000 or TRAC instrument with consideration
of foliage clumping. Different methods could upscale the
plot measurement to scale of satellite product with multi-
kilometers resolution in direct validation, such as statistic
analysis of the field measurements sampled with consider-
ation of scaling issue [Privette et al., 2002], or generating
the fine resolution parameter maps from high-resolution
images based on the regression relationships with in situ
measurements [Steinberg et al., 2006]. Here, fine-resolution
LAI maps were generated with the TM/ETM+ images as a
proxy. The clear-sky TM/ETM+ images, which are tempo-
rally closest to the field measurements, were georeferenced,
radiation corrected, and atmospheric corrected. After that,
the TM/ETM+ radiances were converted to spectral reflec-
tances to calculate vegetation indices, such as NDVI, SR,
and Reduced Simple Ratio (RSR). The VI values for the
sampling plots were used to establish empirical relationships
with the field LAI measurements. Then fine-resolution LAI
maps with 30 m resolution were generated based on the
relationships with best correlation with field LAI measure-
ments. At the Hulunbeier and Xilinhaote sites, the clumping
index was assumed to be 1.0 for these grassland regions. At
theMaoershan site, the fine resolution effective LAI map was
generated on the basis of the empirical relationship between
RSR and in situ effective LAI. The vegetated pixels in TM
imagery were classified to be coniferous forests, broadleaf
forests, and mixed forests. The effective LAI was then con-
verted to the true LAI with the average value of field-
measured clumping index for each biome type, which are
0.63 for coniferous forests, 0.83 for broadleaf forests, and
0.75 for mixed forests [Zhu et al., 2010]. These fine resolu-
tion LAI maps cover large areas, and the sampling plots may
be too sparse to characterize the local vegetation in some
regions. The maps around the sampling plots were extracted
with a general area of approximately 60–80 km2 to ensure the
reliability of the fine resolution LAI maps. Finally, 45 field
plot measurements and 45 fine resolution LAI maps were

compared with the retrieved LAI series to evaluate its accu-
racy. Figure 1 shows the distribution of these ground data.

3. Methodology
3.1. Implementation of the Algorithm

[13] The algorithm includes following steps (Figure 2).
First, the MODIS LAI series was derived from the MODIS
land surface reflectance data using the GLOBCARBON LAI
algorithm [Deng et al., 2006]. Then, the relationship between
AVHRR SR and MODIS LAI was established pixel-by-pixel
using thoseMODIS LAI and AVHRR observations during the
overlapped period from 2000 to 2006. And then, these pixel-
based relationships were applied to historical AVHRR data to
estimate LAI series back to 1981. The long-term LAI was
made up by combination of AVHRR LAI (1981–2000) and
MODIS LAI (2000–2011) after scaling to same spatial and
temporal resolution (8 km, half month) by averaging the valid
retrievals in each 8 km grid and selecting the valid retrievals
with larger LAI values during the composite period.
3.1.1. Retrieval of MODIS LAI Series
[14] A MODIS LAI series (hereinafter referred to as the

MODIS LAI) from 2000 to 2011 was derived from the
MOD09A1 land surface reflectance and illumination and
view angles based on the GLOBCARBON LAI algorithm
[Deng et al., 2006], which produces LAI based on the land
cover-dependent relationships between LAI and SR as well
as RSR with the consideration of BRDF effects explicitly
based on the four-scale model and Chebyshev polynomials.
First, the effective LAI (LE) is derived based on the function
of SR or RSR:

LE ¼ fLE SR SR � fBRDF qv; qs;fð Þð Þ ð1Þ

LE ¼ fLE RSR

�
SR � fBRDF qv; qs;fð Þ

� 1� rSWIR � fSWIR BRDF qv; qs;fð Þ � rSWIRmin

rSWIRmax � rSWIRmin

� ��
ð2Þ

Figure 1. Locations of the LAI field plot measurements and the reference maps used for the MODIS and
AVHRR LAI comparison and validation.
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where SR is simple ratio; rSWIR is the band 5 (SWIR)
reflectance for MODIS; rSWIRmax is the maximum value of
SWIR reflectance and rSWIRmin is the minimum value of
SWIR reflectance, both being determined from 1% cutoff
points in the histogram of the input SWIR image; fLE_SR and
fLE_RSR are functions defining the relationships between
LE and SR and between LE and the RSR, which can partly
remove the background soil effect [Brown et al., 2000], at a
specific view and sun angle combination (qv, qs, fs). Func-
tions fBRDF and fSWIR_BRDF, quantifying the BRDF effects,
depend on the angular reflectance behavior of the spectral
bands involved.
[15] Then the true LAI is generated from effective LAI

retrievals based on the relationship between LE and the true
LAI which is defined as [Chen et al., 2005]

LAI ¼ LE=Wb ð3Þ

where Wb is the clumping index for a specific biome b.
[16] The IGBP land classes in MCD12Q1 were grouped

into six biomes (grasses and cereal crops, conifer, tropical,
deciduous, mixed forest and shrub) and one nonvegetated
class. The vegetation clumping effect at the plant and canopy
scales was accounted for by a land cover-dependent empiri-
cal clumping index, which derived from the statistics of
the clumping index for global major biomes by Chen et al.
[2005]. The GLC2000 land classes in statistics of Chen
et al. [2005] were ground into six biomes, and the mean
values of the clumping index for the classes of each biome
is averaged, 0.65 for conifer forest, 0.67 for tropical and
deciduous forest, 0.69 for mixed forest, 0.71 for shrub, and
0.74 for crop, grass and others.
3.1.2. Establishment of Pixel-Based AVHRR
SR–MODIS LAI Relationship
[17] Both GIMMS and MODIS have global measurements

from February 2000 to December 2006. Based on these
overlapped observations of 7-year period, the pixel-based
SR-LAI relationships could be established from the GIMMS

NDVI and the MODIS LAI. SR is approximately linearly
related with LAI for most biomes [Chen and Cihlar, 1996;
Chen et al., 2002]. To reduce the uncertainty from the
assumption of linear SR-LAI relationship, SR was divided
into 10 bins according to the 10 equally sized NDVI bins
ranging from 0 to 1.0 at an interval of 0.1. In each bin, the
SR-LAI relationship is assumed to be linear. The binned
method is flexible to describe various canopy and soil prop-
erties for the globe. The pixel-by-pixel SR-LAI relationships
were established for each bin from GIMMS NDVI and the
coincident MODIS LAI by the following procedures.
[18] 1. The GIMMS NDVI data sets (1981–2006) were

converted to SR using

SR ¼ 1þ NDVIð Þ= 1� NDVIð Þ ð4Þ

[19] 2. The temporal and spatial resolutions of the MODIS
LAI and AVHRR SR data sets were scaled to be consistent.
The MODIS LAI has a 500 m spatial resolution and an 8 day
temporal resolution, while it is 8 km and 15 days for AVHRR
SR. The MODIS LAI was scaled to the corresponding tem-
poral and spatial resolution with the AVHRR SR. The
MODIS LAI was resampled to an 8 km resolution by aver-
aging the valid retrievals in each 8 km grid. Then, the tem-
poral resolution was reduced to 16 days by selecting the valid
retrievals with larger LAI values in the two adjacent MODIS
LAI images.
[20] 3. The scaled MODIS LAI and AVHRR SR data were

matched in pairs to generate the pixel-specific LAI–SR
relationships. For each pixel, the SR-LAI pairs were divided
into 10 groups according to SR ranges of [0, 1.22), [1.22,
1.5), [1.5, 1.86), [1.86, 2.33), [2.33, 3), [3, 4), [4, 5.67),
[5.67, 9), [9, 19), [19, + ∞). The LAI values in the SR-LAI
pairs were normalized to the mean SR value for the middle
value of each bin range through linear interpolation. The
mean LAI corresponding to the middle value of each bin was
calculated as the reference LAI for this bin. For those pixels
that vegetation shows regular seasonal variations, there are
enough observations to build relationship for most of bins.
However, for those that seasonal fluctuation in vegetation is
small, the observations is concentrated only on several SR
bins. For example, for evergreen vegetation, mainly on those
bins approximate to the maximum NDVI; and for semiarid
vegetation, mainly on those low SR bins. For those bins
without enough valid MODIS LAI values to build the rela-
tionship, their corresponding LAI values were regressed from
all observations assumed the linear relationship of SR-LAI.
3.1.3. Retrieval of AVHRR LAI Series Back to 1981
Based on Pixel-by-Pixel SR-LAI Relationships
[21] After the pixel-based SR-LAI relationships were

established, these relationships were applied to AVHRR SR
data to derive the LAI series back to 1981 (hereinafter the
AVHRR LAI). For each pixel in the AVHRR SR images, the
background LAI values of the two adjacent SR bins closest to
the AVHRR SR value were obtained from the SR-LAI rela-
tionship. Then the retrieved LAI was determined through
linear interpolation. Pixels with a SR less than 1.22 were
labeled as nonvegetated and assigned zero LAI values. For
those pixels with SR larger than 19, the LAI is set to the
reference LAI of the SR bin of [9, 19). Since the clumping
effects have been taken into account inMODIS LAI retrieval,

Figure 2. General flowchart for the pixel-based relation-
ship LAI algorithm.
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our LAI series provides true LAI estimation of global
vegetation.

3.2. Evaluation of the Consistency of LAI Data Sets

[22] The average state of consistency of the LAI series for
a specific location during the statistical period is evaluated
by the mean difference (MD(i, j)) for each pixel (i, j), which
is defined as

MD i; jð Þ ¼
XN

t¼1
AVHRRLAI i; j; tð Þ �MODISLAI i; j; tð Þð Þ

N
ð5Þ

Here AVHRRLAI (i, j, t) and MODISLAI (i, j, t) refer to the
LAI values derived from AVHRR and MODIS for pixel (i, j)
in time t, respectively. N is the total number of the valid LAI
values for both AVHRR and MODIS simultaneously.

3.3. Evaluation of Temporal Smoothness

[23] The temporal smoothness of the LAI data sets was
quantified by a measure of noise, which was estimated as
[Vermote et al., 2009]

Noise yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�2

i¼1
yiþ1 � yiþ2 � yi

dayiþ2 � dayi
dayiþ1 � dayi
� �� yi

� �2

N � 2

vuuut

ð6Þ

where N is the total number of valid LAI values, i refers
to a specific LAI in the time series data set, yi+1 and yi are the
(i + 1)th and ith LAI values, respectively, and dayi+1 and dayi
are the day numbers corresponding to the (i + 1)th and ith
LAI values, respectively.
[24] The LAI was assumed to change linearly between

two dates. This linear change hypothesis is valid only when
the period is short [Vermote et al., 2009]. Therefore, the noise
was computed when LAI values are valid for three

continuous composite periods. To avoid the effects of out-
liers, the 5% of triplets having the largest biases in LAI,
which result in large values of the numerator in equation (6),
were discarded.

4. Results

4.1. The Long-Term LAI Series Results

[25] Based on this new algorithm, The MODIS LAI
series were generated from MODIS data based on the
GLOBCARBON LAI algorithm and the AVHRR LAI back to
1981 was estimated from historical AVHRR observations
based on the pixel-level relationships. Because the AVHRR
LAI is highly consistent with theMODIS LAI (see section 4.2),
this LAI product called Long-term Global Mapping LAI
(GLOBMAP LAI) over a 30 year period from July 1981 to
December 2011was thenmade up by combination of AVHRR
LAI (1981–2000) and MODIS LAI (2000–2011) with a tem-
poral resolution of half month and a spatial resolution of 8 km.
[26] As examples, the retrieved global AVHRR LAI maps

dated January and July 2004 are shown in Figure 3. The data
sets reasonably represent the global vegetation characteristics
and their seasonal dynamics. The seasonal variations are
much more obvious for the region of 30� to 70�N compared
with the southern hemisphere and the tropical zone. Decid-
uous forest and crops are widely distributed in the northern
latitudes (30� to 70�N). Due to the changes of radiation and
temperature, the vegetation in this region has significant
seasonal variations, which are represented by the derived LAI
maps. In the tropical zone, the LAI of the evergreen tropical
forest is greater than 4 with little seasonal variation. In the
southern latitudes (30� to 63�S), the vegetated area is rela-
tively small, resulting in inconspicuous seasonal variations.

4.2. Evaluation of the Consistency of the LAI
From AVHRR and MODIS

[27] The AVHRR and MODIS LAI differ in their spatial
and temporal resolutions. First, the MODIS LAI was
resampled to an 8 km resolution by averaging the valid
retrievals in each 8 km grid. Then, its temporal resolution was
reduced to 16 days by selecting the larger LAI values in the
two adjacent composite dates. The larger values are selected
because GIMMS AVHRR data are composed by maximum
NDVI selection.
4.2.1. Comparison at the Global Scale
[28] The consistency of the AVHRR and MODIS LAI

data sets was evaluated at the global scale by intercomparing
statistically the satellite measurements in the overlapped
period during 2000–2006. The MD(i, j) were calculated over
all vegetated pixels with 8 km data derived from AVHRR
and MODIS.
[29] Figure 4 shows the global results of the mean difference

between the AVHRR and MODIS LAI for global vegetated
regions. Figure 5 presents a histogram of the mean LAI dif-
ference. The MD is concentrated on zero with a mean differ-
ence of 0.005 and a standard deviation of 0.047 for global
vegetated pixels. The difference is within�0.6 LAI units over
99.0% of the vegetated sites in 2001 based on LAI derived
from the SR-LAI relationship established with observations in
2000 and 2002–2006, which indicates the good temporal
consistency of the two LAI data sets derived from AVHRR
and MODIS observations. This result is somewhat better than

Figure 3. Color-coded maps of the derived global LAI in
(a) January 2004 and (b) July 2004.
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that ofGanguly et al. [2008b], with 96.7% pixels for the same
LAI difference range.
[30] Table 2 presents the mean value of the LAI difference

(MDbio) and the standard deviation (SD) of the AVHRR LAI
with respect to the MODIS LAI for six major biomes. The
mean LAI difference is less than 0.01 for the herbaceous
biomes, including shrub, grass and crop, while the woody
biomes show amean LAI difference within the range of�0.02
to 0.02 for coniferous forests, deciduous forests, mixed forests
and tropical forests. All biomes show a SD within 0.06. The
AVHRR LAI slightly underestimates the MODIS LAI for
deciduous forest, with a MD of �0.013 and mixed forests of
�0.006. In tropical zones, such as the Amazon in South
America, tropical Africa, the Congo basin and Indonesia, the
LAI difference is approximately �0.5, with a mean value of
0.02 and a SD of 0.06 because the LAI of dense forests is
relatively large in these regions, which would result in a
greater difference between the two LAI data sets.
4.2.2. Temporal Consistency at Typical Sites
[31] The AVHRR and MODIS LAI were compared at 352

global BELMANIP vegetated sites during the overlapped
period of 2000–2006 to further evaluate the consistency of
the two data sets. To minimize the bias of geolocation, the
LAI values of 3� 3 pixels around the site of the same biome
with the site were averaged. Figure 6 represents the pixel-by-

pixel scatterplot of the two LAI data sets. The plots are close
to the 1:1 line, with a slope of 1.01 and an offset of 0.01. The
R2 (0.99) and RMSE (0.11) indicate good agreement
between the two data sets. Table 3 presents a statistical
analysis for the major biomes. The two LAI data sets are
very close for crop and grass, with an R2 above 0.98 and an
RMSE less than 0.1. For woody biomes, including mixed
forest, needleleaf forest and deciduous broadleaf forest, the
AVHRR LAI agree well with those from MODIS, with an
R2 above 0.94 and an RMSE ranging from 0.13 to 0.14. For
evergreen broadleaf forest, the two LAI data sets show
somewhat large differences, with an RMSE of 0.19. Its
complex vegetation structure may lead to the large differ-
ence between the AVHRR and MODIS LAI series.
[32] The temporal profiles of the LAI time series derived

from AVHRR and MODIS were compared over four
BELMANIP sites to evaluate the temporal consistency and
seasonal variation for four main biomes, including Konza
Prairie (KONZ, USA, grassland), Harvard Forest (HARV,
USA, deciduous broadleaf forests), Ruokolahti (Finland,
needleleaf forests), and SantaRosa (PortoRico, mixed forests).
Several ground data throughout the 2000–2003 periods are
also presented here. Figure 7 shows the temporal profiles of
the AVHRR and MODIS LAI. The seasonality of these four
sites is well depicted. The two data sets show good consis-
tency in all four sites, with LAI differences within 0.5 for
most pixels. At the SantaRosa site, the derived LAI show
some low values during the growing season, which may be
due to frequent clouds in this tropical region. The MODIS
LAI is somewhat higher than the AVHRR LAI for a few
pixels, possibly because the MODIS sensor is more sensitive
to flourishing vegetation. Some outliers exist in the LAI
series, which can probably be attributed to atmospheric
contamination.

Figure 4. Mean LAI difference between the AVHRR and MODIS LAI from 2000 to 2006.

Figure 5. Histogram of mean LAI difference between the
AVHRR and MODIS LAI from 2000 to 2006.

Table 2. Global-Scale Analysis of LAI Differences Across Major
Biomes

Biome
Conifer
Forests

Tropical
Forests

Deciduous
Forests

Mixed
Forests Shrub Grass and Crop

MDBio 0.002 0.017 �0.013 �0.006 0.006 0.004
SD 0.003 0.056 0.039 0.035 0.034 0.035
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4.2.3. Evaluation of the Removal of Spectral
Inconsistency From Multisensors
[33] The AVHRR and MODIS observations have great

differences in spectral characteristics. Here, the character-
istics of spectral measurements of the red and NIR bands are
represented by the NDVI. The MODIS and AVHRR NDVI,
which is equivalent to SR in terms of spectral information,
were compared during the overlapped period from February
2000 to December 2006. The MODIS NDVI was resampled
to the same spatial resolution of 8 km by averaging valid
pixels and the temporal resolutions of 15 days with maxi-
mum selection. Statistical analyses were only performed in
those vegetated pixels, with MODIS and AVHRR NDVI
both above 0.2. In addition, the cloudy pixels labeled by the
MOD09 state and the GIMMS NDVI flag were excluded.
[34] Figure 8a presents histograms of the AVHRR and

MODIS NDVI, showing that the measurements of MODIS
differ significantly from those of AVHRR. Unlike AVHRR
NDVI, there are considerably fewer pixels with values less
than 0.4 for MODIS NDVI, while there are more pixels with
high values above 0.7. For MODIS, the percentage of pixels
with NDVI value less than 0.45 is approximately 33.7%,
while this percentage is 38.4% for AVHRR. Also, the per-
centage with an NDVI value greater than 0.70 is above
22.8% for MODIS, in contrast to the 18.3% for AVHRR.
Figure 8b shows histograms of the AVHRR and MODIS
LAI. For MODIS, the retrieved LAI ranges are 0–2, 2–3.5
and above 3.5 in proportion to 75.0%, 15.2% and 9.8% of
the global vegetated pixels, respectively, while they are
74.2%, 17.3% and 8.4% for AVHRR. The two LAI data sets

show a good consistency despite the great differences in the
measurements as inputs of these two sensors, indicating that
our algorithm can remove the inconsistency from multi-
sensor data.

4.3. Comparison With NASA MODIS MOD15A2 C5
LAI Products

[35] The globally retrieved LAI series from AVHRR were
compared with the latest version of NASAMODISMOD15A2
(C5) product for major biome types during the overlapped
period of February 2000 to December 2006. Cloudy pixels and
pixels from the back-up algorithm forMOD15A2 are screening

Figure 6. Comparison of the AVHRR and MODIS LAI at
352 global BELMANIP sites.

Table 3. Comparison of the AVHRR and MODIS LAI Over 352
BELMANIP Sites

Biome Crop Grass
Mixed
Forest

Needleleaf
Forest

Evergreen
Broadleaf
Forest

Deciduous
Broadleaf
Forest

Slope 1.03 1.00 1.05 0.99 0.96 1.02
Offset �0.01 �0.0003 �0.05 0.05 0.11 0.01
R2 0.98 0.99 0.95 0.97 0.95 0.94
RMSE 0.08 0.06 0.13 0.14 0.19 0.13

Figure 7. Temporal profiles of the AVHRR LAI from
1981 to 2006 (red line) and MODIS LAI from 2000 to
2009 (blue line) and field measurements (green square) over
BELMANIP sites: (a) KONZ grassland site, (b) HARV
deciduous broadleaf forest site, (c) Ruokolahti needleleaf
forest site, and (d) SantaRosa mixed forest site.
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(see section 2.1). After that, the MOD15A2 data sets were
aggregated to an 8 km spatial resolution and to a temporal
resolution of 16 days with a maximum LAI. Only those pixels
with valid LAI values for theMOD15A2 and the AVHRRLAI
were included in this comparison.
[36] The histograms of MOD15A2 and the AVHRR LAI

for six main biomes are shown in Figure 9. The two data sets
show similar shapes while a slight shift toward high values is
presented for the MOD15A2 product. There are more pixels
with very low LAI values in the derived product for shrub,
grasses and crops than that of MOD15A2, which may be due
to the soil effects for the sparse vegetation. For tropical for-
ests, the discrepancies among the two data sets are obvious.
The two data sets shows similar histogram shapes with dif-
ferent peaks for LAI values (3.8 for AVHRR LAI and 5.0 for
MOD15A2 LAI). The high LAI values are mainly concen-
trated on about 6 for AVHRR LAI and 7 for MOD15A2 LAI.

Generally, MOD15A2 products present more pixels with
high LAI values than that of our results, and only a few pixels
are larger than six for our results, the landscape clumping
which is taken into account in MOD15A2 algorithm but not
in the GLOBCARBON algorithm may explain part of the
lower LAI estimates in the derived product [Knyazikhin
et al., 1998; Deng et al., 2006]. For coniferous forest, the
derived product shows more pixels with LAI > 3 than that of
MOD15A2, which may be due to the different ways in con-
sidering the clumping effect.

4.4. Validation With Ground Data

[37] The GLOBMAP LAI was compared with 45 field plot
measurements over 28 global sites and 45 fine resolution LAI
maps over 29 sites that cover major global biome types. The
performance of our pixel-based relationship algorithm was

Figure 8. Comparison of NDVI and the derived LAI from AVHRR and MODIS. (a) Histogram of
NDVI. (b) Histogram of the derived LAI.

Figure 9. Histogram of the AVHRR LAI (thick solid line) and MOD15A2 (thin solid line) for global
vegetated pixels during 2000–2006. (a) Coniferous forests, (b) tropical forests, (c) deciduous forests,
(d) mixed forests, (e) shrubs, and (f) grasses and crops. Only the main algorithm is considered here for
MOD15A2.
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evaluated by the AVHRR LAI before 2006 and MODIS LAI
after 2007.
[38] Comparing satellite LAI data sets with spatial reso-

lutions from several hundreds of meters to kilometers with
field measurements is complex due to the uncertainties from
scaling, heterogeneity, geolocation, and the limited spatial
and temporal sampling of ground data, among other factors
[Privette et al., 2000; Weiss et al., 2007]. To reduce the
uncertainties of these factors, the LAI retrievals on 3 � 3
pixels around the site were averaged and then compared with
the field plot measurements. In contrast, fine resolution LAI
maps are generated based on the regression relationship
between field measurements and vegetation indices in high-
resolution images, such as Landsat TM/ETM+, SPOT and
ASTER. These LAI maps are then aggregated to the same
resolution with the retrieved LAI so that the effects of spatial
scaling and the heterogeneity of the land surface can be
greatly reduced. The typical extent of these maps is
approximately 9–100 km2. For each site, the LAI value for
the pixel covers most area of the site in the image which is
temporally closest to the field measurements was directly
compared with the average value of the fine resolution LAI
map. Figure 10a presents the pixel-by-pixel comparison of
these two data sets. The GLOBMAP LAI explains 59% of
the variability in ground LAI and is biased by 1.08 LAI on
average.
[39] The MOD12 land cover product is one of inputs in

generation of LAI from MODIS observations. The misclas-
sification in the input MOD12 land cover map would result
in large bias in LAI estimation [Liu et al., 2007]. To focus
on evaluation of the uncertainties of our algorithm, those
retrievals were excluded if the land cover type of MOD12
mismatch with that of the field observations to eliminate
the uncertainties due to land cover maps misclassification.
Besides, some of the LAI fine resolution maps provided
effective LAI (Table 1). Since our product provides true LAI
by accounting vegetation clumping effects using land cover-
dependent clumping index (see section 3.1.1), these effective
LAI maps were excluded in final comparison. The field plot
LAI from Ganguly et al. [2008b] is assumed as true LAI and
compared directly with derived LAI. As a result, 38 field plot
measurements over 24 global sites and 19 reference maps
over 11 global sites (including 5 BELMANIP sites) were

selected for comparison. Figure 10b shows results of the
comparison of the two data sets. The GLOBMAP LAI and
the ground data are close to the 1:1 line, with a slope of 0.92
and an offset of �0.05. The RMSE decreases from 1.08 to
0.81 and the R2 increases from 0.59 to 0.71. The retrieved
results generally agree well with the ground data for grass,
cereal crop, broadleaf crop, broadleaf forest and mixed for-
est, with plots close to the 1:1 line. The GLOBMAP LAI
underestimates low LAI values for grass, crop, savanna and
shrub, which may due to the influence of soil effects of
sparse vegetation. For crops, the GLOBMAP LAI under-
estimates the ground data for those at approximately 3,
which may be attributed to the uncertainties from the high
heterogeneity of croplands. Additionally, the model para-
meters for crop type used to generate LAI may not corre-
spond well with the characteristics of dense crops. Our
algorithm overestimates the LAI of coniferous forests with
significant clumping phenomenon, which may due to the
uncertainties of empirical land cover-dependent clumping
index employed in transferring of effective LAI to true LAI.

4.5. Comparison With the LAI Retrieved Directly
From AVHRR Data

[40] The AVHRR LAI was compared with the LAI directly
retrieved from AVHRR data based on the GLOBCARBON
LAI algorithm [Liu et al., 2010] (hereafter referred to as direct
AVHRR LAI) for a 26 year period from 1981 to 2006. The
temporal smoothness of the two LAI series was evaluated with
the noise. The accuracy is defined as the bias of the retrieved
LAI and the ground LAI measurements. The accuracy of the
direct AVHRR LAI was evaluated and then compared with
that of the AVHRR LAI.
4.5.1. Comparison of the Temporal Smoothness
[41] The temporal smoothness of the AVHRR LAI and the

direct AVHRR LAI were evaluated with the noise calculated
from 1981 to 2006. The noise of the two data sets was cal-
culated for vegetated pixels, and only those pixels with valid
noise estimation for both LAI series were included in the
statistical analysis. Figure 11 shows a histogram of the noise
of the two LAI sequences. The noise for the AVHRR LAI is
concentrated on zero, with an average value of 0.14, while it
is much larger for the direct AVHRR LAI series, with aver-
age noise value of 0.32. Thus, our method can decrease the

Figure 10. Comparison of the derived LAI and ground LAI data: (a) results with all ground data avail-
able and (b) results that exclude the ground data if the MOD12 land cover type differs from the field def-
inition or the clumping effects were not corrected.
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temporal noise by 56%, which suggests that this method can
improve the quality of retrievals from low-quality inputs.
4.5.2. Comparison of Accuracy
[42] The accuracy of the direct AVHRR LAI was also

evaluated through validation against field plot measurements
and fine resolution LAI maps acquired before December 2006
(section 2.2). Retrievals and ground data were only included
if the MOD12 land cover type agreed with the field obser-
vation and the clumping effects were corrected. Figure 12
presents the results. The plots are dispersive with an RMSE
of 1.65, which is much larger than that of the AVHRR LAI
(0.81). Thus, our method can decrease the RMSE by
approximately 51%. The R2 of the direct AVHRR LAI is
0.36, which is less than that of the AVHRR LAI (0.71). It is
suggested that the pixel-based SR-LAI relationship method
could help to improve the accuracy of LAI retrieved from
low-quality historical AVHRR observations by using the
high-quality LAI produced from MODIS as constraints.

5. Discussion

[43] It is challenging to generate such a multidecade time
series that spans several sensors. The differences of spectral
response function, data quality and band information content
should be the causes of inconsistency between products from
different sensor data. The differences of spectral response
function could be lessened by physically based radiative
transfer approach [Ganguly et al., 2008a]. However, it is
difficult to account for the differences for diverse vegetation
of the globe using a radiative transfer model with limited
constraints from remote sensing. Moreover, the low-quality
and limited spectral bands of historical AVHRR hamper
direct retrieval of LAI from the reflectances based on radia-
tive transfer method. The discrepancy of data quality for
different input would also lead to inconsistency of products.
In this paper, the pixel-based AVHRR SR-MODIS LAI
relationships were established from overlapping observations
and applied for AVHRR retrieval. Thus, the consistency of
the long-term LAI data set is improved by establishing the
direct relationship between MODIS and AVHRR data. Since
this relationship is established pixel-by-pixel, this VI-based
approach could be applied to the globe with accounting for

the differences of canopy shapes, understory vegetation
composition, moisture and soil properties for global sites.
Because the SR is more reliable than reflectances for low-
quality data, the input as SRwould improve the AVHRR LAI
quality. And the SR-LAI relationships were established by
the LAI derived from MODIS that means that the retrieval of
AVHRR LAI is constrained by MODIS observations with
high quality, which helps to improve the LAI retrieval from
low-quality AVHRR data.
[44] The relationship between VI and LAI can be described

by mathematical model or binned method. The former pre-
scribes a mathematical form of the SR-LAI relationship in
whole value range, such as linear, logarithmic or polynomial
models. Although the parameters of the model may vary with
pixels, it is hard to find a prescriptive model suitable for all
vegetation over the globe. The latter actually generates the
look-up table between LAI and VI for each pixel. Without
assuming the functional form between the VI and LAI in
whole value range, this method is more flexible to charac-
terize diverse canopy and soil properties at the global scale.
Although the assumption of linearity relationship between
SR and LAI in each bin may introduce uncertainties of the
results, this binned method could partly reduce its influence
with more bin ranges.
[45] Optical remote sensing measurements made at a single

angle provide information of the effective LAI, taken as the
product of LAI and the clumping index [Chen, 1996]. The
observed disparity between the derived LAI and MOD15A2
as well as ground data could be partly attributed to the dif-
fering definition of LAI, especially the various mechanisms
in considering the clumping effects. The GLOBCABON and
MOD15 LAI algorithm both estimate LAI, but the clumping
effects are considered in different ways in canopy structure
modeling. The GLOBCARON LAI algorithm accounts for
the clumping effects of vegetation at plant/shoot and canopy
scales by a land cover-dependent empirical clumping index,
while MOD15 algorithm considers the vegetation clumping
at plant/shoot and canopy scales through 3D radiative trans-
fer formulations, and the clumping at the landscape scale is
partly addressed through mechanisms based on the radiative
transfer theory of canopy spectral invariants [Knyazikhin
et al., 1998]. These discrepancies probably result in larger

Figure 11. Histogram comparison of the noise of the two
AVHRR LAI data sets based on the GLOBCARBON LAI
algorithm and the pixel-based SR-LAI relationship method.

Figure 12. Comparison of direct AVHRR LAI against
ground LAI data (for legend, see Figure 10).
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MOD15 LAI values than that of GLOBCABON LAI for
major biomes [Garrigues et al., 2008] and may also explain
part of the lower LAI estimates of our algorithm. For ground
data, the various measurements methods provide LAI with
different meanings. LAI obtained from the direct measure-
ment methods and the allometric method generally are con-
sidered as true LAI. While measurements obtained from the
indirect optical methods without clumping correction corre-
spond to the effective LAI derived from measured canopy
gap fraction. Although the foliage clumping effects have
been accounted for at some sites with the TRAC instrument,
such as the six sites in China, some of the ground data are the
effective LAI. The effective LAI have been excluded to
lessen its influence, but the empirical land cover-dependent
clumping index employed in our algorithm may also intro-
duce uncertainties in comparison results for diverse vegeta-
tion in the field sites.
[46] Several factors may introduce uncertainties to the

GLOBMAP LAI data set, such as land cover, land cover
change, atmospheric effect, and BRDF effect. Since vegeta-
tion structure is distinctly different among land cover types,
the land cover map is a critical input in LAI retrieval [Liu
et al., 2007]. In the GLOBCARBON LAI algorithm, the
functions of LAI and SR/RSR considerably differ among
land cover types according to simulations of four-scale model
[Deng et al., 2006]. The MOD12 land cover product is one of
inputs in generation of the MODIS LAI which is the base of
the AVHRR SR-LAI relationship. Since the AVHRR LAI is
retrieved from this MODIS LAI data set, the accuracy of the
input MCD12Q1 land cover map would affect LAI estima-
tion of our algorithm.
[47] Land cover change is another source of uncertainties.

In our algorithm, it is assumed that the LAI–SR relationship
is stable throughout the processing period. If the land cover
changes during this period, this SR-LAI relationship may
change and introduce uncertainties in the LAI retrieval from
AVHRR. However, this land cover change may introduce
little uncertainty for most situations. If the vegetation was
destroyed, the vegetation became sparse with low SR value,
so the SR-LAI relationship will also be applicable. If the
forests change into grassland or crops, the SR-LAI relation-
ship may somewhat change. But the vegetation index (SR)
will largely decrease in that case, and the change of SR-LAI
relationship will have little effect on LAI retrieval because
the vegetation index can represent the vegetation regrowth to
the first order of accuracy. In contrast, the retrieval may be
greatly affected if the land cover changes happen between
different forest types, especially conversion between broad-
leaf and conifer vegetation. However, this type of chances
may not be common.
[48] Due to the limited number of bands of AVHRR, it

is difficult to correct the atmospheric effects in AVHRR
observations. No atmospheric correction is performed for the
GIMMS NDVI data sets, except for the stratospheric aerosol
produced by the El Chinchon and Mt. Pinatubo volcanic per-
iods. The GIMMS NDVI is the maximum NDVI selection in
the compositing period, and the SR can lessen the atmospheric
effects. Even so, atmospheric effects still cannot be removed
completely and may introduce uncertainties in SR-LAI rela-
tionships and LAI retrieval from AVHRR observations.
[49] The BRDF effects would have also played a role

in LAI retrieval from AVHRR directional land surface

reflectance. The 55� sensor swath width and the variable
solar angle result in variable illumination and view angles
of AVHRR measurements. Besides, the overpass times of
NOAA AVHRR satellites series used for GIMMS NDVI
generation drifted by 1–2 min per month to as much as 4.5 h
later in the day, creating variable Sun-target-sensor geometry
over the period of record [Tucker et al., 2005]. Although the
solar zenith angle and viewing angle effects due to satellite
drift have been corrected based on the Empirical Mode
Decomposition (EMD) algorithm [Pinzon et al., 2004], BRDF
normalization is not performed in GIMMS NDVI data sets.
Due to the limited angular sampling and low data quality,
it is hard to retrieve BRDF parameters based on AVHRR
data. A long period of acquisition is generally required to
obtain clear-sky multiangle measurements. However, it is not
guaranteed that the BRDF of vegetation remains constant
over time, and atmospheric conditions can vary considerably
[Shepherd and Dymond, 2000]. Thus, angular normalization
probably introduces uncertainties in LAI retrieval. Several
attempts have been made to reduce the influence of BRDF
effects in our algorithm. SR could partially reduce the influ-
ence of BRDF effects because of the correlation between red
and NIR reflectances [Chen, 1996]. Additionally, as pixel-
level SR-LAI relationships is established from the multiyear
observations, the influence of BRDF effects may be partially
counteracted based on these measurements on various illu-
mination and view angles for each pixel.
[50] The performance of our algorithm may be improved by

employing a better mechanism in considering the clumping
effect. Global foliage clumping index map has been generated
based onmultiangular POLDER data [Chen et al., 2005]. Since
the GLOBCARBON LAI algorithm accounts for vegetation
clumping at the plant and canopy scales by application of a land
cover-specific clumping index, the uncertainties in derived LAI
series could be reduced with consideration of the clumping
effect at the pixel level by employing global clumping index
map. BRDF and atmospheric effects of AVHRR data are major
factors that affect the performance of the algorithm. Combi-
nation with other sensors may help to correct atmospheric
andBRDF effects of AVHRR data [Los et al., 2005]. The high-
quality observations from MODIS during the overlapping
period may also provide constraints for atmosphere and BRDF
parameters inversion. The performance of our algorithm may
be improved with better AVHRR surface reflectance data with
more elaborate atmospheric correction, calibration, geolocation
and angular normalization. With development of remote sens-
ing, more and more physical and biochemical parameters of
vegetation and land surface may be mapped. With these para-
meters as constraints, the physical radiative transfer model
may be performed better for each pixel, and the historical low-
quality observations may be better processed.

6. Conclusion

[51] An approach for generating a consistent long time
series (1981–2011) of LAI products through the combination
of MODIS and historical AVHRR data is presented. The
consistency of the long-term LAI data set from multisensors
is a critical issue because of the significant differences of
many factors, such as the spectral response function and band
information content. Our algorithm addresses this issue by
establishing pixel-by-pixel relationships between MODIS
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and AVHRR observations. This approach ensures the consis-
tency of retrievals from these two different sensors and helps
to reduce the uncertainties introduced from the low-quality
and limited band information of AVHRR observations.
[52] The long-term LAI derived from AVHRR was com-

pared with that from MODIS during the overlapped period
from 2000 to 2006. Although there are significant differences
between MODIS and AVHRR observations due to their
variations in spectral response function and other character-
istics, the two derived LAI data sets show a good consistency.
Intercomparisons between them show that pixels within a
�0.6 LAI difference constitute 99.0% of the total global
vegetated regions, with a mean difference of 0.005. A com-
parison of the AVHRR and MODIS LAI at 352 global
BELMANIP sites also indicates a good agreement, with an
RMSE value of 0.11 LAI. The derived AVHRR LAI series
shows a similar statistical distribution of LAI values with the
NASA MODIS MOD15A2 LAI products for global major
vegetation types. The results were also validated against field
measurements and fine resolution LAI maps. After excluding
the uncertainties of the input land cover map and clumping
effects, the long-term LAI could explain 71% of the vari-
ability in the ground LAI over global sites covering all major
vegetation types, and it was biased by 0.81 on average.
Compared with the method directly retrieving LAI from
AVHRR data based on the GLOBCARBON LAI algorithm,
the pixel-based SR-LAI relationship method decreased the
temporal noise of the LAI series from AVHRR by 56%, from
0.32 to 0.14, and decreased the RMSE by approximately
51%, from 1.65 to 0.81, compared with the ground data with
constraints from high-quality MODIS data.
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