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The spatial and temporal patterns of the forest background optical properties are critically important in
retrieving the biophysical parameters of the forest canopy (overstory) and in ecosystem modeling. In this
paper we carry out background reflectivity mapping over conterminous United States, Canada, Mexico, and
the Caribbean land mass using Multi-angle Imaging SpectroRadiometer (MISR) data at 1.1 km resolution. The
refined methodology uses the nadir and 45° forward directions of the MISR camera images. The background
reflectivity is shown to vary between coniferous and deciduous stands, particularly in the near-infrared band,
and with the overall amount of overstory vegetation. The largest seasonal differences were observed over a
boreal region. The main drawback is a high amount of missing MISR data due to the presence of clouds and
other atmospheric effects. The paper also contains a demonstration of the effect on LAI estimates when the
dynamic background reflectivity information is inserted into a global LAI algorithm. Multi-angular remote
sensing is thus shown to enable us to effectively map yet another forest structure parameter over large areas,
which was not possible using mono-angle data.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Quantitative description of vegetation structure has been identified
as one of the key requirements for major improvement in modeling
the terrestrial carbon cycle and global biosphere (Turner et al., 2004).
Vegetation canopy structure and its energy absorption capacity can
be described by leaf area index (LAI), defined as half the total devel-
oped area of green leaves per unit ground horizontal area (Chen &
Black, 1992) and by the Fraction of Photosyntetically Active Radiation
(FAPAR) absorbed by the leaves. It was noted that for models of
climate, hydrology, and ecology it is probable that only the LAI, FAPAR,
and information about the forest floor albedo have to be estimated
spatially (Diner et al., 2005). Other parameters can be derived fromLAI
or taken from the literature (Manninen & Stenberg, 2009).

While retrieving the information about forest vegetation structure
such as LAI, it is the spectral signal from the forest canopy (overstory,
see Fig. 1) that is the target in many remote sensing (RS) applications,
and not the background. However, the sensor receives a signal from
both the target and the background (Olofsson & Eklundh, 2007;
Peltoniemi et al., 2005a). By the term forest background, we refer to
all the materials below the forest canopy such as understory, leaf
litter, grass, lichen, moss, rock, soil, snow, or their mixtures (Fig.1).The

stand is thus conceptually divided into tree canopy and background
material+soil (Chopping et al., 2006).

The lack of spatial information about forest background and its
importance has recently gained increased attention (e.g. Eriksson et al.,
2006; Kuusk et al., 2004; Rautiainen, 2005). Particularly within relatively
open forest canopies, understory vegetation, its contrasting greenness and
senescence can be quite important to relationships between vegetation
indices (VI) andoverstory LAI (Pocewicz et al., 2007). Further, Garrigues et
al. (2008) noted in their validation and intercomparison of global LAI
products that the forest understory LAI is not systematically taken into
account in ground LAI measurements. This can result in substantial
differences with the satellite LAI product derived from the vertical
integration of the radiometric signalwithin the canopy (Abuelgasim et al.,
2006; Chen et al.,1997; Iiames et al., 2008;Wang et al., 2004). It is equally
important to take theunderstoryvegetation intoaccountwhenmeasuring
FAPAR, particularly in open canopies (Olofsson & Eklundh, 2007).

Driven by these calls, few efforts were carried out at collecting
various understory components and/or creating limited spectral banks
(Lang et al., 2002; Miller et al., 1997; Peltoniemi et al., 2005a,b;
Rautiainen et al., 2007; Rees et al., 2004). Monitoring the environment
at a continental or global scale over periods of multiple years requires
access to continuous fields of geophysical quantities, and satellite
RS is the only technology currently able to provide consistent data
at these scales (Pinty et al., 2008). The information conveyed about
canopy structure is small in the case of a mono-angle instrument,
whose footprint does not spatially resolve individual scene elements
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(Fig. 1). Therefore specifically in reference to LAI, a wide range of
natural variation in LAI and soil or understory reflectance can result in
the same value of the remotely sensed signal. This results in a high
uncertainty in retrieved values of LAI (Hu et al., 2003). Before the era
of simultaneously acquired multi-angle RS data by sensors such as

MISR (Diner et al., 1998) or POLDER (Leroy & Lifermann, 2000) really
started, Gemmell (2000) summarized that in the large majority of
situations, the background spectral characteristics cannot be effec-
tively obtained from the mono-angle RS data.

The use of multi-angle RS for characterizing surface properties
represents a new paradigm in optical RS application (Nolin, 2004),
where the variation in reflectance with view angle is considered a
source of new information rather than noise. Multi-angle RS enables
us now to describe surface properties by means that are not possible
using mono-angle data (for a comprehensive review of the progress,
see Chopping, 2008).

In this paper, we intend a) to document an improved retriev-
al strategy for the background reflectivity retrieval using geo-
metrical optical modeling theory with the 4-Scale model and MISR
data from the initial study published by Canisius and Chen
(2007); b) to examine the optical properties and seasonal changes
of the forest background over conterminous United States, Canada,
Mexico and the Caribbean land mass over the year 2007; and c) to
present on the example of the existing global LAI algorithms of
Deng et al. (2006) a preliminary analysis of the effects of using
the new background information dataset to correct the forest LAI
estimates.

The improved strategy has been previously field-testedwithmulti-
angle airborne Compact Airborne Spectrographic Imager (CASI) data
(Pisek et al., 2009). The current paper presents, for the first time, a
forest background dataset retrieved from MISR data at a continental
scale and the implications for global LAI mapping.

Fig. 1. Conceptual scheme of a forest stand. In vertical dimension the forest consists
of overstory tree canopy; everything below (in purple) is considered to be the forest
background. In horizontal dimension, the total reflectance of the stand is the sum of
(a) sunlit tree, (b) shaded tree, (c) shaded ground, and (d) sunlit ground fractions. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

2. Materials and methods

2.1. Background reflectivity algorithm

Since radiance is additive, the total spectral reflectance of a pixel (R) can be expressed as a linear combination of the contributions from the
scene components (Bacour & Bréon, 2005; Chen et al., 2000; Chopping et al., 2008; Li & Strahler, 1985):

R = RT · kT + RG · kG + RZT · kZT + RZG · kZG ð1Þ

where RT, RG, RZT, and RZG are the reflectances of the sunlit tree crowns, sunlit background, shaded tree crown, and shaded background. kj are the
proportions of the four components in the instantaneous field of view (IFOV). By using the observed reflectance at nadir and at another angle one
can derive the background reflectivity (RG).

The first condition is that the observations are made along a plane where the target reflectances change little with view angle. The directional
dependence of reflectance factors is the greatest in the principal solar plane and decreases fast as the viewing azimuth angle moves away from
this plane (Bicheron et al., 1997; Peltoniemi et al., 2005b; Sandmeier & Deering, 1999). MISR is an operational sensor overpasssing the equator at
approximately 10:30 local time while descending that provides high quality calibrated multi-angular measurements taken along an oblique
plane, not so close to the principal plane (Diner et al., 2002). The influence of BRDF is thenminimized and it has been observed that the azimuthal
dependency of the reflectance of forest floor in particular is typically not that strong (Peltoniemi et al., 2005b) and forward-scattering reflectances
of various targets were shown to be fairly constant (Bacour & Bréon, 2005; Deering et al., 1999; Kaasalainen & Rautiainen, 2005). The reflectance
at nadir (n) and another zenith angle (a) can be then expressed by the Eqs. (2) and (3):

Rn = RT · kTn + RG · kGn + RZT · kZTn + RZG · kZGn ð2Þ

Ra = RT · kTa + RG · kGa + RZT · kZTa + RZG · kZGa ð3Þ

Canisius and Chen (2007) originally assumed the shaded reflectivities (i.e. RZT and RZG) to be comparatively small and replaced them by a
constant value (RZ=RZT=RZG) for individual wavelengths. However, Gemmell (2000) observed that reflectances from different shaded crowns
could differ up to a factor or two. Pisek et al. (2009) tackled the issue in the new version of the algorithm (Eqs. (2) and (3) and used in this study
for the first time with satellite RS data), by expressing shaded components of trees and ground dynamically as functions of their sunlit part and
the multiple scattering factor (White et al., 2001, 2002a,b), giving RZT=M·RT and RZG=M·RG, whereM=Rz /R for a reference target. Solving Eqs.
(2) and (3), the background reflectivity RG can be then calculated as:

RG =
Rn kTa + kZTa · Mð Þ− Ra kZTn · Mð Þ

−kTn · kGa + kGn · kTa + M −kTn · kZGa + kGn · kZTa − kGa · kZTn + kTa · kZGnð Þ + M2 −kZTn · kZGa + kZGn · kZTað Þ ð4Þ
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where the total reflectances Rn and Ra are acquired from the nadir and chosen angle direction, M is predetermined by the 4-Scale model
inversion, and the proportions of the components can be predicted from a GOmodel. We compare the performance of the algorithms by Canisius
and Chen (2007) and Pisek et al. (2009) using MISR data in the Results section.

2.2. Estimating probabilities of viewing scene components

The proportions of the components in Eq. (4) are calculated using the 4-Scale model (Chen & Leblanc, 1997, 2001; Leblanc et al., 1999). This
is a geometric–optical radiative-transfer model with an emphasis on the structural composition of forest canopies at different scales. From the
model output, only the proportions of the components were used in the background reflectivity retrieval. The two most important properties of
the 4-Scale from this point of view are:

a) Tree crowns are simulated as discrete geometrical objects: cone and cylinder for conifers, and spheroid for deciduous species, as this has been
found to be an important parameter for correct BRDF model inversions (Rautiainen et al., 2004; 2008a). The non-random spatial distribution
of trees is simulated using the Neyman type A distribution (Neyman, 1939).

b) The tree surface created by the crown volume is treated as a complex medium rather than a smooth surface so that shadowed foliage can be
observed on the sunlit side and sunlit foliage on the shaded side.

Although the 4-Scale model requires many input parameters, it can be run with a fixed set of general parameters. Simulations by Nilson and
Peterson (1994) pointed to the main factors in geometric–optical modeling of stand reflectances being LAI, canopy closure, tree type, and
background reflectivity. Since according to their results parameters such as stand density, tree height, and tree stem diameter were not the most
important factors, we used fixed values for these tree architectural parameters of coniferous and deciduous types as input to the 4-Scale model
(Table 1). The parameters such as LAI, solar and view zenith angles (SZA and VZA), the relative azimuth angle between the sun and the viewing
camera (PHI) varied between pixels. These parameters were obtained from the satellite images as described in the following section.

Running 4-Scale on multi-angle images pixel by pixel is computationally impractical with regard to the size of the assembled data. An
alternative method of look-up tables (LUTs) has been previously applied for similar large dataset processing (Gobron et al., 2000; Myneni et al.,
2002; Weiss et al., 2000). Ten LUTs, five for the coniferous and deciduous forest type each, were developed using the 4-Scale model. Ranges of
values agree with the original LUT dimensions of Canisius and Chen (2007): LAI from 0.1 to 10, SZA from 0° to 70°, PHI from 100° to 170° along
with the nominal VZA of MISR cameras. Despite advances in the retrieval of stand density from multi-angle RS (Heiskanen, 2006; Nolin, 2004),
operational retrieval of the parameter over large areas is yet to be seen. However, the performance of the background reflectivity algorithmwas
shown not to be critically sensitive to the assumed stand density in case of low to intermediate densities (Pisek et al., 2009) when the influence of
the background reflectance on the total canopy signal is the greatest (Rautiainen et al., 2007). The background reflectivity is thus calculated here
as an average value of five results predicted with MISR data and multiple scattering factor M dependent on the wavelength while component
fractions are retrieved from LUTs for five different stand densities for the given biome (Table 1).

2.3. MISR data and processing

The multi-angular satellite data were provided by MISR, which is onboard the Earth Observing System (EOS) satellite Terra (Diner et al., 1998,
2002). MISR consists of nine cameras; four point to the forward direction (denoted as AF, Bf, Cf, Df in the order of increasing off-nadir angle), one
points towards the nadir (An) and four point to the aftward direction (Aa, Ba, Ca, Da). The nominal view angles of the cameras are 0°, ±26.1°, ±
45.6°, ±60.0°, and ±70.5°. Each of the nine cameras obtains images at four spectral bands: blue (centered at 446 nm; bandwidth 42 nm), green
(558 nm; 29 nm), red (672 nm, 22 nm) and near infrared (NIR) (866 nm; 40 nm) (Diner et al., 1998). MISR data employed in this study were
acquired from all blocks arranged in orbits covering the North America in 2007. The data were provided by the Atmospheric Science Data Center
(ASDC) at NASA Langley Research Center and ordered with the MISR Order Tool (2008).

A set of standard MISR data products is available, ranging from the raw instrument data to the calibrated and geolocated radiances, and
geophysical retrievals of atmospheric and surface properties (Bothwell et al., 2002). MISR Level 2 products are resampled to 1.1 km resolution and
are screened for contamination from sources such as clouds, cloud shadows, sun glitter over water, and topographically shadowed regions
(Bothwell et al., 2002). MISR Level 2 MIL2ASLS Land Surface Parameters (surface bidirectional reflectance factor (BRF) and LAI), MISR Level 1B2
MI1B2GEOP Geometric Parameters (sun/view, zenith/azimuth angles), and MISR Ancillary Geographic Product (longitude and latitude of pixels)
were used here.

MISR Level 2 products were provided in the Space Oblique Mercator (SOM) projection in equally sized blocks of an ellipsoidal surface defined
by the World Geodetic System 1984 (WGS84). The block construct enables the co-registration of nine-angle, four-band images and allows
stacking all the blocks of an orbit into a single dataset.

The MISR Level 2 Land Surface Product also includes biome information. Since Hu et al. (2003) observed incorrect assignment in 80% of pixels
across five biomes, and serious misclassifications were noted in other papers as well (e.g. Pocewicz et al., 2007), we used the biome information

Table 1
Input parameters to 4-Scale.

Parameter Unit Coniferous Deciduous

Stand density Trees/ha 500, 1000, 2000 500, 1000, 2000
3000, 4000 3000, 4000

Clumping index (ΩE) 0.7 0.8
Tree shape Cone+cylinder Spheroid
Crown base height m 4 5
Crown vertical dimension m 12 15
Crown radius (r) m 0.75 2
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from the GLC2000 dataset (Bartholomé & Belward, 2005; Loveland et al., 2000), instead. The same classification is used as an input into the global
LAI algorithms of Deng et al. (2006) that are used later in the paper for the demonstration of the background reflectivity effect on LAI retrieval.
Internal consistency between the two algorithm inputs (background reflectivity and LAI) is thus secured.

An IDL code was developed to read the data stored in stack-block and compute background reflectivity (RG) from nadir and angular images.
Canisius and Chen (2007) used 60° (Cf) camera for the angular information; 45.6° camera (Bf) is used in this paper. Previously, small co-
registration errors were found for the Bf camera, but the revised algorithm fixed this and co-registration for all channels meets the expected goals
now (Jovanovic et al., 2007). Smaller view angles than 60° are theoretically better due to the probability of observing larger proportions of
background. Indeed, Pisek et al. (2009) observed slightly more accurate background reflectivity retrievals at smaller view zenith angles. These
conclusions are also indirectly supported by findings of Rautiainen et al. (2008b), who noted that if the viewing azimuth angle is at the least
20° away from the principal plane (i.e. oblique plane), 56.7° view zenith angle is considerably more efficient than 37.2° in excluding the influence
of the background especially in coniferous stands. The smaller view zenith angle also allows us to avoid the observed slight increase of BRF in
the largest view angles in the forward-scattering direction in broadleaved species in particular, caused by the high canopy transmission and
specular reflectance from the leaves (Deering et al., 1999).

The code was developed for a global application and automatically switches between forward and backward positioned cameras according to
the value of PHI, as the scattering directions change with the sensor-sun configuration across the Earth. The background reflectivities were
retrieved for the red and the NIR band and every orbit over North America in 2007. The orbit retrievals were then re-projected and combined into
10-day composite scenes in the Plate-Carree projection with the WGS84 coordinate system. The spatial and temporal interpolations, described
below, were carried out on pixels within a latitude/longitude bounding box about the conterminous United States, Northern Canada, and the
Caribbean landmass. The intent is to use a geographic domain of sufficient extent to illustrate the seasonal and regional variations while
simultaneously restricting the computing time to a manageable level.

2.4. The spatial and temporal consistency

The global coverage time is 9 days for MISR (Diner et al., 2005), while the large-scale LAI algorithms produce results at around 10-day time
steps (Baret et al., 2007; Fernandes et al., 2003; Myneni et al., 2002; Pisek et al., 2007). Fig. 2a,b shows the quantity and spatial coverage of
retrieved background reflectivity values at 10-day time steps at the original MISR spatial resolution. Cloud contamination, persistent clouds, and
other suboptimal atmospheric or illumination conditions can reduce the data quality and cause missing values in MISR Land Surface Products.
About 20% of all forest pixels in the domain do not have a single successful retrieval; the percentage of pixels quickly drops with the number of
retrieved background reflectivities. Additionally, the retrievals were not distributed evenly across the temporal domain, either.

Interpolation is essential under these conditions to reach continuous series free of missing data and of acceptable quality, as required by many
climate modeling applications at the continental scale. Combination of spatial and temporal approaches offers superior interpolative capabilities
to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this (Borak & Jasinski, 2009). The
satisfactory temporal coverage, which enabled further temporal interpolation and reconstructing seasonal trajectories, was reached by upscaling
the within one standard deviation background reflectivity retrievals to 1 decimal degree spatial resolution (Fig. 2c). Initial local window
operations over the pixels withmissing data, similar to the approach of Gao et al. (2008), with an automatic increasing of the spatial domain from
5×5 km/pixels in search of the successful retrievals were slow, prone to the outliers' bias and overall were not effective due to the occurrence of
extensive areas of missing data.

Fig. 3 illustrates the consequent procedures of temporal interpolation and seasonal trajectories reconstruction with a series of moving
temporal windows. The still missing data were replaced with the mean value of the observations recorded for that location in the preceding and
the subsequent time period. A 5-value moving window was run next with the largest and the smallest value dropped before averaging. Finally,
the monthly mean background reflectivity maps in the red and NIR band were produced.

2.5. Global LAI algorithms

Based on previous studies (Brown et al., 2000; Chen, 1996; Chen & Cihlar, 1997; Chen & Leblanc, 1997, 2001; Chen et al., 2002; Roujean et al.,
1992), Deng et al. (2006) developed a set of LAI algorithms for the purpose of deriving global LAI products frommultiple sensors. The algorithms
are used for the production of the GLOBCARBON LAI product (Plummer et al., 2007). This set of algorithms has some unique features, including (a)
explicit consideration of BRDF, (b) separate algorithms for several structurally distinct biomes, and (c) derivation of the effective rather than the
true LAI from spectral indices. Deng et al. (2006) provide full accounts and theories for the algorithms used in this study. The input into the
algorithms can also include background reflectivity data or vegetation clumping; if not specified, empirical values of background reflectivity and
clumping index for different land cover types are used. Presence of an understory layer can substantially amplify the canopy LAI estimate (Chen
et al., 1997; Eriksson et al., 2006) and it is an acknowledged source of uncertainty in global LAI modeling (Garrigues et al., 2008). Here, for the first
time, we document the effect of using the derived MISR background reflectivity dataset on the output from the global LAI algorithms.

3. Results

3.1. Total and background reflectivity

The evaluation of effect of background on forest reflectance and
the improvements of the background reflectivity algorithm are dem-
onstrated first. As an example, we will now examine the retrievals
covering path 21, orbit 18572 (mid-June) over Canada (Fig. 4). The
orbit has been selected due to the excellent cloud-free conditions, a
relatively high share of both deciduous and coniferous pixels (for each
of the categories more than 15,000 pixels are reliable), and the cover-

age of the area of the original validation of the algorithm with in-
situ spectral measurements and airborne CASI data (Pisek et al.,
2009). The performance of the algorithm can be studied without the
effect of later spatio-temporal interpolation and smoothing proce-
dures, described in Section 2.3.

If the background reflectance signal did not differ from the over-
story canopy, the understory effect on the canopy LAI retrievals would
not be too high and could have been ignored. Fig. 5 illustrates the
importance of not neglecting the background reflectivity on the ex-
ample of coniferous forest. The plotted background reflectivities show
non-negligible shifts in the spectral space from the total reflectances.
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The behavior is the same as the one observed by Pisek et al. (2009)
with airborne data. The background reflectivities tend to be higher
in both the red and the NIR band than the total reflectances. This
is because the large shadow fractions at the stand level reduce the
overall apparent reflectances from above the stand, while the back-
ground reflectivity refers to its inherent reflectivity.

3.2. Dynamic vs. constant shaded background reflectivities

Next, Table 2 offers a comparison of the retrievals to the ones using
the algorithm of Canisius and Chen (2007) over the area in Fig. 4.
The algorithms deliver slightly different frequency distribution of the
results for both the coniferous and deciduous forest, particularly in the
red band. The differences are the largest in case of deciduous forest,
where the algorithm of Canisius and Chen (2007) predicts 62.3% of

the reflectivities in the red band to be higher than 0.12 (Fig. 4b). This
would indicate a presence of a very bright background such as snow
(Peltoniemi et al., 2005b) in June. The algorithm of Canisius and Chen
(2007) was originally developed for mapping over a limited area of
boreal region only, with only a small fraction of deciduous forest. The
variation of the background might have been then smaller and the
constant shaded values corresponded to local conditions; results from
Table 2 indicate this approach might not be optimal for a large-scale
mapping. The current versionwith the non-constant shaded reflectiv-
ities places most of the values in the red band within the 0.04–0.08
reflectance interval (Fig. 4c), as would be expected at this time of the
season.

The algorithm can occasionally predict negative background re-
flectivities that are screened out from the final results. Their share is
not very high (maximum is 0.4% of retrievals over deciduous forest in

Fig. 2. (a) The spatial coverage and (b) quantity of retrieved forest background reflectivity values within the study area (red box) aggregated by 10-day time steps at original MISR
spatial resolution of 1.1 km. (c) The distribution of values by the number of retrievals after aggregating the results to 1-degree resolution. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2416 J. Pisek, J.M. Chen / Remote Sensing of Environment 113 (2009) 2412–2423
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the sample area of Fig. 4; Table 2), but the break-down of negative
retrievals by canopy LAI offers an insight into the role of overstory in
the process (Table 3). The share of negative retrievals is increasing
with canopy LAI in the case of deciduous forest, where a significant
portion of the biome within the path area (Fig. 4a) does attain LAIN4.
The higher amount of canopy LAI makes the understory more difficult
to see from above, particularly from the slanted view angle. A high
accuracy of the background retrievals for dense canopies is not pos-
sible due to this low visibility of the understory through the dense
canopy. The stand reflectance at high LAI values is nearly independent
of view directions, and as mentioned, the background has only a very
small contribution to the total forest reflectance (Kaufmann et al.,

2000; Zarco-Tejada et al., 2001; Zhang et al., 2002). If there is almost
no visible understory, then there is no ability to measure background
reflectivity. This inability results in the production of the negative
values. The role of the background is not important then as well, as
the background does not affect the total signal in case of these dense
canopies (Lang et al., 2002; Olofsson & Eklundh, 2007). The dominant
role of the spectral properties of understory compositions is at low
canopy cover (Rautiainen et al., 2007), and the algorithm delivers
stable results in this domain.

3.3. Changing spectral properties of background with canopy LAI

The background spectral properties change with canopy openness,
overall growing conditions, and the seasonal cycle (Fuller et al., 1997;
Rautiainen et al., 2009). These variations can be observed in derived
background reflectivities in June over both types of forest (Fig. 6). The
range of values in the red and NIR band is quite wide for canopies
with low LAI due to two reasons: first, high values in the red band and
relatively low values in the NIR band correspond to surfaces with
exposed bare soil and a minimum of vegetation cover, as the overall
growing conditions are not favorable and result in low canopy LAI.
Where the climatic and substrate growing conditions are more favor-
able to the understory vegetation, sufficient light can penetrate the
overstory of open sites, and increasing amount of present understory
vegetation lowers the reflectivity in the red band via higher absorp-
tion of chlorophylls and increases it in the NIR band, respectively
(Haboudane et al., 2004; Nilson et al., 2003). It is at these extremely
low coverages where the difficulties of canopy RS are the greatest due

Fig. 5. Distribution of the total reflectance (black) and calculated background reflectivities
(light grey) for coniferous forests over the parts of Ontario and Quebec in Fig. 4(a).

Fig. 4. (a) The coverage of MISR path 21, orbit 018572, over Ontario, Quebec, Hudson Bay
and a part of Michigan. The MISR red, green and blue bands are used to create the color
image, which has been clipped and gamma-stretched to make cloud, ocean and land
features visible. Green lines refer to state/provincial boundaries and waterbody outlines
(Original image a property of NASA Langley Research Atmospheric Sciences Data
Center). Forest background reflectivity in the red band calculated with constant (b) and
dynamic (c) reflectivities for the shaded fractions. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Example of reconstructing seasonal-variation curves in the red band. Location of the sample area is 50° N, 77° W. The missing data were replaced first with the mean value
(circles) of the valid observations (crosses) recorded in the preceding and subsequent time period. The smoothed values with a 40-day moving average window and the largest and
the smallest values discarded before every averaging step (grey line); final monthly mean background reflectivity values (black line).
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to the overwhelming influence of soil and understory background on
the spectral signature (DeFries et al., 2000). As the general growing
conditions improve, both the canopy LAI and the amount of under-
story vegetation increase to the point where the decreasing amount
of light transmitted through the overstory starts becoming a limiting
factor (LAI=3–4; Fig. 5). The amount of understory vegetation can
start decreasing after this point and so does the reflectivity in the
NIR band. The behavior in the red band seems to be slightly different
between deciduous and coniferous stands at high LAI values (Fig. 6a,
c). This may be a result of the observed greater aggregation of foliage
in coniferous forests (Rautiainen & Stenberg, 2005), which permits
more light to reach the understory layer. The degree of understory
vegetation cover can be higher then in coniferous stands than in
deciduous stands having the same LAI.

3.4. Differences in background reflectivity between coniferous and
deciduous forests

Reflectances from coniferous and broadleaved trees differ signif-
icantly especially in the NIR band (Häme et al., 1997). Does the overall
background reflectivity differ between coniferous and deciduous
forests as well? Two background reflectivity sets at 1 decimal degree
were created for June 2007, the first one by upscaling 1-km resolution
retrievals over coniferous forest, the other one with deciduous for-
est only. There are no significant differences between the two forest
backgrounds in the red band (Fig. 7). The retrieval differences are
normally distributed around zero. The differences in the NIR band

between the upscaled background reflectivities from the two biomes
are normally distributed as well, but the coniferous forest background
reflectance in NIR tends to have lower values than that of deciduous
forest (Fig. 7). Our results are in line with field measurements of
Goward et al. (1994), who observed higher NIR reflectance of broad-
leaf shrubs and herbs, such as sworn fern, big leaf maple, or black-
berry, whereas moss and litter dominated under the coniferous forest.

3.5. Seasonal maps of forest background reflectivity

The seasonal changes of the forest background signal are best
illustrated over the red band, as this wavelength regionwith lowmean
reflectance (e.g. the red spectral region around 672 nm) exhibits a
relatively large reflectance variation compared to a high reflectance
region with a rather small variation (e.g., the NIR region; Strub et al.,
2003). Wide ranges of forest background reflectivities are present
over the continent in January–March (Fig. 8). The presence of snow
increases the foreground/background contrast in forest. The regions
with very high red band reflectivities indicate the presence of the
snow and the high values are close to the observed reflectances of
snow by Miller et al. (1997) and Peltoniemi et al. (2005b). The
southern parts of the continent are then characterized by lower re-
flectivities, corresponding to bare soil or understory vegetation. Melt-
ing of snow implies dramatic changes occurring at the forest floor
(Pinty et al., 2008). This can be observed especially over Canada
during the period from March to June (Fig. 8). The maps show the
disappearance of the snow over the mid-west as well with the gradual
transition to bare soil or low cover of the understory. The continental
distribution is fairly stable during the main growing period from June
to September, when both overstory and understory BRFs in the red
band decrease over a large extent of the continent because of the high
absorption by the chlorophylls as leaf area of canopy layers increases
(Heiskanen, 2006). The picture starts to change again in October
when the background reflectivity increases. This corresponds to the
decay of absorbing chlorophylls and the beginning of the senescence
period. By December a highly reflecting background covered by snow
can be observed over most of the continent. The understory showed
in this study exhibits vegetation indices that may be lower than but
fall within a similar range of the overstory canopies, which are in
agreement with the field studies by Goward et al. (1994) and Miller
et al. (1997) over different parts of the United States and Canada.

3.6. Inclusion of the background reflectivity information in global LAI
algorithms

These derived background reflectivity maps enable us to examine
the realistic effect of forest background on LAI retrieval. The effect is
illustrated with an example of an LAI map derived with the global LAI
algorithm of Deng et al. (2006) and SPOT-VEGETATION satellite data
over North America for June 2007. Two LAI maps were produced:
the first one with the original version of the algorithms that uses
constant background values corresponding to the bare soil (Fig. 9a),
and another one where the dynamic forest background reflectivity
retrievals from MISR were incorporated into the algorithm (Fig. 9b).
The biggest difference between the two maps can be observed in a
boreal region (Fig. 9c), where the background reflectivity information
from MISR reduces the estimates of LAI by over 1. The reductions are
in agreement with measured understory LAI in a boreal region e.g. by
Sonnentag et al. (2007). The largest relative differences between the
two LAI maps correspond to regions with low to intermediate canopy
cover. Regions with higher canopy cover experience smaller reduc-
tions in LAI, as the influence of background reflectivity on total stand
reflectance decreases. In addition, the understory vegetation might
not be as abundant as well, as illustrated in Section 3.3. The reductions
in LAI might not appear very large, yet the amounts correspond to the
range of overestimations between various global LAI products and

Table 2
Frequency of forest background reflectances in the red and the NIR bands over the area
in Fig. 4, as predicted by the algorithm with dynamic and constant reflectances by
shaded fractions.

Forest Coniferous Deciduous

RZT, RZG Dynamic Constant Dynamic Constant

Band BRF

671.7 nm (red) Less than zero 0.1 0.2 0.2 0.0
0–0.019 0.2 0.2 1.0 0.0
0.02–0.039 7.9 0.5 5.9 0.1
0.04–0.059 36.1 6.7 23.4 1.8
0.06–0.079 34.3 23.1 29.5 11.1
0.08–0.099 16.2 33.6 18.5 14.0
0.1–0.119 4.1 24.3 11.5 10.6
N0.12 1.1 11.4 10.0 62.3

866.4 nm (NIR) Less than zero 0.0 0.4 0.4 11.7
0–0.09 0.1 0.5 1.1 2.1
0.1–0.19 2.7 3.7 2.6 3.8
0.2–0.29 27.9 16.9 8.7 7.5
0.3–0.39 54.9 42.4 24.1 14.7
0.4–0.49 13.8 30.0 37.5 21.7
0.5–0.59 0.8 5.5 20.4 23.3
N0.6 0.0 0.6 5.1 15.3

The break-down of the negative retrievals (in bold) is provided in Table 3.

Table 3
Distribution of negative forest background reflectances by the stand LAI over the area in
Fig. 4.

BG BRF b0 0.1 0.0 0.2 0.4
Coniferous Deciduous

LAI Number
of pixels

Red NIR Number
of pixels

Red NIR

0–1 24994 90 (0.4) 3 (0.0) 415 1 (0.2)
1–2 23972 3 (0.0) 6585 1 (0.0)
2–3 27302 2 (0.0) 2886 1 (0.0)
3–4 5567 3305
4–5 484 1117 6 (0.5)
5–6 246 1602 23 (1.4) 19 (1.2)
N6 7 277 3 (1.1) 39 (14.1)

Their percentage share on the total number of pixels in given LAI interval is in brackets.
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reference measurements over forest stands as observed by Garrigues
et al. (2008). The dynamic background reflectivity maps from MISR
thus definitely show the potential of filling the existing gap and might
help us to bring the canopy LAI estimates from RS data in closer
agreement with field observations.

4. Discussion

Given the rich content of multi-angular imagery, the analyses per-
formed on the data have just begun to capitalize on the information
provided by this measurement approach (Diner et al., 2005). Themain
reasons for the recent spark in the interest in forest understory are that
the signal from the understory can be used, for example, (1) to remove
the influence of understory in estimating canopy biophysical variables
(e.g. LAI, FAPAR) from remotely sensed images (Garrigues et al., 2008),
(2) to develop and test canopy radiative-transfer models (Widlowski
et al., 2007), and (3) in forestry applications to separate forest site
types (Rautiainen et al., 2009). In this study we demonstrate the
applicability of the produced background reflectivity dataset to the
first application.

It is encouraging to see themulti-angle view approach is capable of
differentiating between different understory optical properties. How-
ever, separating understory cover components is not yet feasible,
as the spectral properties of the individual species in the understory
vegetation are generally similar, and the understory reflectance de-
pends more on their abundance than on their spectral difference
(Korpela, 2008; Peltoniemi et al., 2005a). For this task, a method of
Rautiainen et al. (2007) with using visible bands of satellite images
in sparse canopies or of Sonnentag et al. (2007) to account for a

Fig. 6. The variations of background reflectivity with canopy LAI over the sample forested areas in Canada (grey boxes). (a) the red and (b) the NIR band, coniferous forest; (c) the red
and (d) the NIR band, deciduous forest.

Fig. 7. Distribution of differences between the deciduous and coniferous forest
background in the red and NIR bands if both types of forests were found within the
corresponding 1-degree pixel. Negative values signify lower values for coniferous forest.
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spectrally varying background using mixture signal decomposition
might be more appropriate.

The rendering of the spring understory development sequence as
shown in Fig. 8 would be useful for monitoring canopy phenology
from satellite data such as MODIS (Ahl et al., 2006; Wang et al., 2005).
As the canopy cover can be quite low in spring and the understory
has been observed to start developing earlier than the overstory to
take the advance of the light availability in the early growing season
(Komiyama et al., 2001), the influence of the understory on the total
signal and its variation can be quite significant especially during this
season (Pocewicz et al., 2007).

The compilation of the background reflectivity dataset using MISR
data also showed few drawbacks. First, in a marginal number of re-
trievals, the algorithm can predict negative reflectivity values. This is
due to the effect of incorrect biome/initial LAI input information, or due
to very low visibility of the understory through dense canopies which

preclude a successful retrieval. However, the negative retrievals
formed at maximum only 0.4% of all retrievals over the study area.
Additionally, background has only a very small influence on LAI re-
trieval at high LAI values. Another drawback to be considered is the
low resolution of the upscaled dataset tracking the seasonal develop-
ment of the background reflectivity. Cloud contamination, persistent
clouds, and other suboptimal atmospheric or illumination conditions
caused significant swaths of missing values in the input MISR Surface
Parameters data. However, the background in lowandmediumdensity
forest stands is often similar within a geographical area (Kellomaki &
Vaisanen, 1991; Muukkonen & Heiskanen, 2005; Reinikainen et al.,
2001), although small scale variability may exist between stands of
different densities in close proximity. As these coarse resolution back-
ground maps are mostly useful for low to medium density stands, this
shortcoming of low resolution may be overcome in their application
for regional and global LAI mapping. Furthermore, with respect to the

Fig. 8. Seasonal changes of the forest background reflectivity in the red band in 2007.
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mentioned application of the forest background information in canopy
radiative-transfer and GO models, Kuusk et al. (2004) looked at the
sensitivity of their hybrid type model to input understory parameters
and they recommended using typical (average) parameter values
while representing understory. Assembling multi-angle observations
from multi-year time series of MISR data to fill in the missing areas
could be an alternative strategy.

Unfortunately, we were unable to directly validate the derived
background reflectivity values with measurement data. To our knowl-
edge, there are currently no recorded, continuous measurements of
the seasonal changes of spectral properties of understory layers. The
general seasonal patterns and background spectral properties found
in our study agree with the measurements done by e.g. Goward
et al. (1994), Lang et al. (2002), Miller et al. (1997), Peltoniemi et al.

Fig. 9. Vegetation LAI fields over North America from the peak of boreal summer— July 2007. (a) constant forest background value for all pixels, (b) dynamic forest background from
MISR data, (c) difference between the two maps over forest stands from MISR data.
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(2005a,b) or Pisek et al. (2009). This leads us to believe the observed
temporal trends and spatial patterns are real.

5. Conclusions

In this study we demonstrate the capability of our refined ap-
proach and multi-angle RS data to retrieve meaningful background
reflectivity information over large areas. For the first time, the forest
background seasonal maps at a continental scale are presented here.

The retrieved background reflectivity shows the following
characteristics:

(a) There are differences between the reflectances from the forest
background and the total stand. This confirms that forest back-
ground cannot be ignored while retrieving canopy biophysical
parameters from remotely sensed data. This is particularly true
for stands with low canopy cover.

(b) Background reflectivity changes with the amount of canopy
cover. This is primarily caused by the overall variation in the
growth condition at different sites and the amount of light
penetrating through the overstory.

(c) Forest background slightly differs between coniferous and de-
ciduous stands, particularly in the NIR band. This may be linked
to differences in prevailing understory species in these forest
types.

(d) Significant seasonal development of the forest background veg-
etation can be observed across a wide longitudinal and lati-
tudinal span of the study area.

The future work will focus on the full incorporation of the back-
ground vegetation values into global LAI algorithms. It remains to be
seen if the information about the background helps us to reduce its
effect on canopy LAI retrievals and improve the quality of various LAI
products, a task much needed as suggested by Garrigues et al. (2008).
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