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The approach of using primarily satellite observations to estimate ecosystem gross primary production (GPP)
without resorting to interpolation of many surface observations has recently shown promising results. Previ-
ous work has shown that the remote sensing based greenness and radiation (GR) model can give accurate
GPP estimates in crops. However, the feasibility of its application and the model calibration to other ecosys-
tems remain unknown. With the enhanced vegetation index (EVI) derived from the Moderate Resolution Im-
aging Spectroradiometer (MODIS) images and the surface based estimates of photosynthetically active
radiation (PAR), we provide an analysis of the GR model for estimating monthly GPP using flux measure-
ments at fifteen sites, representing a wide range of ecosystems with various canopy structures and climate
characteristics. Results demonstrate that the GR model can provide better estimates of GPP than that of the
temperature and greenness (TG) model for the overall data classified as non-forest (NF), deciduous forest
(DF) and evergreen forest (EF) sites. Calibration of the GR model is also conducted and has shown reasonable
results for all sites with a root mean square error of 47.18 g C/m2/month. Different coefficients acquired for
the three plant functional types indicate that there are shifts of importance among various factors that deter-
mine the monthly vegetation GPP. The analysis firstly shows the potential use of the GR model in estimating
GPP across biomes while it also points to the needs of further considerations in future operational
applications.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Terrestrial ecosystems play important roles in the carbon seques-
tration and the global estimate of the carbon dioxide (CO2) fixed by
plants as organic compounds through photosynthesis of around 123±
8 Pg C per year (Beer et al., 2010). This flux is also known as the gross
primary production (GPP) and is an important component for the
carbon balance between the biosphere and the atmosphere (Zhao &
Running, 2010). However, substantial variations of GPP are observed
among different models and ecoregions both at plant and stand levels
and these discrepancies prevent the full understanding of global carbon
cycle. For example, the uncertainty within the most comprehensive
GPP estimates of Beer et al. (2010) at present is roughly four times the
annual CO2 emissions from fossil-fuel burning (Reich, 2010). Therefore,
improvements on the accuracy of GPP estimation are needed in the con-
text of future climate change.

Satellite remote sensing provides a real opportunity to robustly esti-
mate ecosystem GPP globally and therefore it helps both in developing
and testing of these new models. A number of remote sensing based
GPP models have been proposed, including the Moderate Resolution
Imaging Spectroradiometer (MODIS) product termed MOD17 (Zhao
et al., 2006), the Vegetation Photosynthesis Model (VPM, Xiao et al.,
2004), and the Physiological Principles for Predicting Growth (3-PG,
Coops et al., 2005).While models driven by a large number of input pa-
rameters can give good estimates of GPP, the demand of these variables
at required temporal and spatial resolutions is often a bottleneck for the
global applications of these models.

Therefore, a focus on the development of new GPP models is the
potential of independence on climate variables or ground observa-
tions. For example, Sims et al. (2008) introduce a new model using
the MODIS enhanced vegetation index (EVI, Huete et al., 2002) and
land surface temperature (LST, Wan, 2008) products, termed as the
greenness and temperature (TG) model. Similar attempts are also
shown with the chlorophyll content model (Gitelson et al., 2006), in
which the chlorophyll vegetation index and photosynthetically active
radiation (PAR) are utilized to estimate GPP in crops. However, eval-
uation of these models has been limited in scope which reduces their
potential for global applications (Wu et al., 2010). For example, the
chlorophyll content model, referred as greenness and radiation (GR)
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model hereafter, has only been tested in crops and the model calibra-
tion in other ecosystems is still unknown (Peng et al., 2011).

In this study, we report an evaluation of the GR model for inter-
preting GPP using multiple sites in different ecoregions with diverse
canopy structures and climate characteristics. The TGmodel is also in-
cluded for comparison analysis since a close relationship exists be-
tween these two models. The objectives of the present study are
1) to give a full evaluation of the GR model for estimating monthly
GPP across a wide range of ecosystems of different plant functional
types, 2) to show a comparison between the TG and the GR models
in GPP estimation, and 3) to calibrate the GR model for GPP estima-
tion for different plant functional types. These analyses will be useful
for the future application of these models to better quantify CO2 flux.

2. Materials and methods

2.1. Study sites

By knowing a single study site and vegetation type, we cannot
represent the general response of models in different ecosystems.
As shown in Fig. 1, 15 flux sites are selected in this study and these
sites can be classified into three different plant functional types, in-
cluding the non-forest sites (NF, 5 sites), the deciduous forest sites
(DF, 5 sites) and the evergreen forest sites (EF, 5 sites). Detailed de-
scriptions for each site are shown in Table 1.

2.2. Flux measurements

Flux data for CA-AB are downloaded from the Fluxnet Canada Data
Information System (http://www.fluxnet-canada.ca) while data from
the other AmeriFlux sites are acquired from http://public.ornl.gov/
ameriflux/dataproducts.shtml. For CA-AB site, a standard procedure is
used to estimate annual net ecosystem production (NEP) and to parti-
tion NEP into components of GPP and ecosystem respiration (Re) from
gap-filled half-hourly measurements (Barr et al., 2004). For AmeriFlux
sites, level-4 monthly products are used to acquire the monthly GPP,
air temperature (Ta) and radiation observations. These data are gap-
filled and GPP is estimated with the Artificial Neural Network (ANN)
method (Papale & Valentini, 2003) and/or the Marginal Distribution
Sampling (MDS) method (Reichstein et al., 2005). Site level PAR obser-
vations are acquired by using the in situ meteorological measurements.

For all sites, months with estimated GPP or the mean monthly Ta
below zero are not used. Months from May to October for US-VAR
and US-TON, sites that experience a Mediterranean climate with
wet, mild winters and dry, hot summers, are also excluded in this
analysis (Ma et al., 2007; Ryu et al., 2008).

2.3. MODIS product

The Terra MODIS atmospherically-corrected surface reflectance
products, MOD09A1 (Justice et al., 2002) are acquired for each site

Fig. 1. Spatial distribution of the 15 sites in this study, the NF, DF and EF represent non-forests, deciduous forests and evergreen forests, respectively.
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from the Oak Ridge National Laboratory's Distributed Active Archive
Center (DAAC) website (http://www.modis.ornl.gov/modis/index.cfm).
This eight-day reflectance is then used to calculate EVI. Cloud contami-
nated and high aerosol pixels are rejected by selecting the quality flag,
which ensures the good quality of calculated EVI. Due to uncertainty in
determinationwhich pixel the footprint falls in, reflectance are extracted
from 3×3 MODIS pixels (1.5 km×1.5 km) that centered on the flux
tower. Three band reflectances (blue band: 459–479 nm; red band:
620–670 nm and the near-infrared band: 841–876 nm) are used to
calculated the EVI using the equation below:

EVI ¼ 2:5×
RNIR � RRed

1þ RNIR þ 6×RRed−7:5×RBlue
ð1Þ

where Rx is the reflectance at the given wavelength (nm). Multiple
observations of EVI during the same month are averaged to represent
the mean monthly values.

2.4. GPP models

2.4.1. The TG model
The TGmodel is proposed by Sims et al. (2008) and estimates veg-

etation GPP using a combination of MODIS LST and EVI products. The
most important merit of this model is the independence of climate
variables. With close correlations between LST and environmental
variables, such as PAR and vapor pressure deficit (VPD), the GPP can
be estimated as a product of scaled canopy greenness (i.e., EVI) and
scaled LST,

GPP ¼ ScaledEVI×ScaledLST: ð2Þ

Because GPP drops to zero at an average EVI around 0.1, the ScaledEVI
is thus defined as,

ScaledEVI ¼ EVI� 0:1: ð3Þ

Meanwhile, ScaledLST is proposed based on the determination of
optimum temperature for GPP. As GPP generally increases to the
maximum values at the LST around 30 °C, two linear equations are
used to define the ScaledLST,

ScaledLST ¼ min
LST
30

� �
; 2:5� 0:05×LSTð Þ

� �
: ð4Þ

However, incorporation of MODIS LST can lead to error because
satellite sensors measure a signal that is a combination of the radiant
temperature of the land surface and the intervening atmosphere
(Goetz et al., 2000). Therefore, we use a revised simple form of the
original TG by using the air temperature (Ta, deg C) from the flux
measurements. In order to keep consistent with the original TG
model, an optimum temperature should be determined. As indicated
by Sims et al. (2008) that MODIS LST tends to be higher than Ta at the
upper end of the temperature range, this optimum temperature of Ta
should be lower than 30 °C and therefore is set to 25 °C in this study,
given the average difference of ~5 K in MODIS LST evaluations (Wan,
2008; Westermann et al., 2011). Therefore, the following equation is
used for this revised TG model,

GPP ¼ ðEVI� 0:1Þ×min Ta;50−Tað Þ: ð5Þ

2.4.2. The GR model
The GR model is first introduced by Gitelson et al. (2006) in both

irrigated and rainfed maize. With observation of a close relationship
between midday GPP and the total crop chlorophyll content, a new
technique is proposed to estimate GPP by the product of total chloro-
phyll content and the incoming solar radiation. The GR model has
shown high potential to predict GPP in crops (e.g., maize and soy-
bean) with root mean square errors around 0.27 mg CO2 m−2 s−1

(Gitelson et al., 2006; Peng et al., 2011). Recent validations of the
model also show promising results in wheat (Wu et al., 2009).

Table 1
Descriptions of flux sites in this study.

Sites Land cover Latitude and longitude GPP_ave
(g C/m2/month)

Data range References

Non-forest sites (NF) CA-AB Grassland 49.4300
−112.5600

137.88 2002–2005 Flanagan and Johnson (2005)

US-VAR Grassland 38.4133
−120.9507

108.39 2003–2006 Ryu et al. (2008)

US-TON Woody
savannas

38.4316
−120.9660

21.82 2003–2007 Ma et al. (2007)

US-NE3 Crop 41.1797
−96.4397

216.25 2002–2006 Suyker and Verma (2008)

US-ARM Crop 36.6058
−97.4888

68.25 2003–2006 Fischer et al. (2007)

Deciduous forest sites (DF) US-HA1 Deciduous
Board-leaf forest

42.5378
−72.1715

101.16 2002–2006 Urbanski et al. (2007)

US-WCR Deciduous
Board-leaf forest

45.8059
−90.0799

172.76 2002–2006 Cook et al. (2004)

US-UMB Deciduous
Board-leaf forest

45.5598
−84.7138

163.58 2002–2006 Curtis et al. (2002)

US-MMS Deciduous
Board-leaf forest

39.3231
−86.4131

193.06 2002–2006 Dragoni et al. (2007)

US-SYV Deciduous
Board-leaf forest

46.2420
−89.3477

161.47 2002–2006 Desai et al. (2008)

Evergreen forest sites (EF) US-HO1 Evergreen
Needle-leaf forest

45.2041
−68.7402

174.98 2002–2004 Hollinger et al. (2004)

US-KS2 Evergreen Broad-leaf forest 28.6086
−80.6715

139.45 2004–2006 Powell et al. (2008)

US-SP3 Evergreen Broad-leaf forest 29.7548
−82.1633

154.96 2002–2004 Dore et al. (2003)

US-ME2 Evergreen needle-leaf forest 44.4523
−121.5574

143.37 2004–2007 Thomas et al. (2009)

US-NR1 Evergreen needle-leaf forest 40.0329
−105.5460

103.37 2002–2007 Monson et al. (2005)
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Owing to the important role of total chlorophyll content, as well as
its relationship with vegetation index, this method can be scaled up
by using remotely sensed vegetation index as a proxy for the total
chlorophyll content. Therefore, the model can be expressed by the
following equation,

GPP ¼ VIChl×PAR ð6Þ

where the VIChl can be composed of the chlorophyll indices, such as
the EVI that used in this study. The required incoming PAR data
were acquired from the meteorological measurements at flux
towers.

3. Results and discussion

3.1. Results of the TG and GR models

Results of both the TG and GR model are compared with the flux
measured GPP for each site (Fig. 2a). For the five NF sites, the GR
model generally shows better correlations with flux GPP than the
TG model except for site NE3, at which the TG model gives the best
estimates of GPP with a coefficient of determination R2 of 0.91. For
the other four NF sites, the GR model all shows higher potentials in

GPP estimation with the highest R2 equal to 0.94 at site TON. The
most evident difference between the two model outputs is shown
at site ARM, where low correlation has been found for the TG model
(R2=0.27) while the GR model can give moderate estimates of GPP
with R2 of 0.53. One shortcoming of the TG model is the limited abil-
ity in drought sites (Sims et al., 2008), and this is probably the reason
for the poor performance at ARM site, which suffers from serious
drought in this study. The underlying mechanism of this observation
is that the drought will reduce the correlation between the tempera-
ture and PAR, which is the basis of the TG model (Sims et al., 2008).
By using ground measured PAR directly, the GR model can still
show moderate estimates of GPP. Both the TG and GR models show
good estimates of GPP for the DF sites with all coefficients of determi-
nation of R2 above 0.80 (Fig. 2b). These results indicate that both of
the two models can have potentials in the estimation of GPP for eco-
systems with relatively wide ranges of greenness. Substantial varia-
tions are observed for both models in the five EF sites (Fig. 2c). The
TG model has shown the best result for HO1 with R2 of 0.91 while
only R2 of 0.28 is observed for site SP3. A similar problem also appears
with the GR model with R2

fluctuates between the highest of 0.85 for
HO1 and the lowest of 0.25 for NR1.

To give a further comparison between the two models, we group
the 15 sites by their plant functional types (Fig. 3). Consistent results

Fig. 2. Relationship between the flux measured GPP and results of TG, GR models for all sites divided into (a) non-forest sites, (b) deciduous forest sites and (c) evergreen forest
sites. Rectangular and triangular points represent TG and GR model, respectively.
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are observed for both models when considering different plant func-
tional types. Best results are obtained for the DF sites, followed by the
NF and EF sites. As both models partly capture the greenness of veg-
etation, a better response will be acquired for ecosystems with
much wider dynamical ranges of EVI. Therefore, the DF sites which
have the largest mean standard deviation in EVI (EVI_sd=0.15) illus-
trate the best performances for both models. Similar explanations
also make sense for the NF and EF sites with EVI_sd of 0.12 and
0.04, respectively. This probably is the reason for the best responses
of both models at the HO1 site, which is sometimes classified as a
mixed forest with the largest EVI_sd of 0.06 among the EF sites.
When comparing between models, the GR model can give better re-
sults than the TG model with higher R2 for all the three types and
the overall dataset. In initial development of the TG model, the LST
is incorporated because of two reasons. First, using LST will ensure
no ground measurements for running the model. The second aspect
is the correlation between LST and environmental variables, such as
VPD and most importantly the PAR (Sims et al., 2008). It has been
demonstrated that using Ta measured at the flux towers instead of
MODIS LST can give better GPP estimates with the TG model as uncer-
tainties in the satellite LST are excluded (Wu et al., 2010). However,

here we find that for the EF sites, very low correlation is observed be-
tween Ta and PAR (R2=0.11, Fig. 4), which probably is the main rea-
son for the low R2 (R2=0.31) of the TG model for these EF sites
(Fig. 4c). With PAR from ground measurements, the GR model can
still show a potential in characterizing the GPP for EF sites with an
overall R2 of 0.47.

3.2. Calibration of the GR model

Model calibration is an important step for their operational ap-
plications and it is a challenge because the responses of biomes
may differ under various vegetation structural and environmental
conditions. Here we provide an analysis of GR model calibration in
view of both greenness and environmental stresses and their rela-
tive importance.

With the correlation between GPP and the term EVI×PAR, the slope
(S) of the regression for each plant functional types is obtained. For the
NF sites, a perfect fit with R2 of 0.99 (pb0.001) has been found between
S and the difference between themaximum and theminimummonthly
EVI (dEVI=EVI_max-EVI_min) during the experimental time range
(Fig. 5a). Similar results for the DF and EF sites are shown in Fig. 5b

Fig. 2 (continued).
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and c, respectively. We find that S for the DF sites is a function of the
product of dEVI and the standard deviation of mean monthly tempera-
ture (T_sd) while S for the EF sites is directly correlated with the T_sd.
Although there are only five sites for each type, all correlations are sig-
nificant and the GR model can then be calibrated as:

GPP ¼ S× EVI×PARð Þ

and S ¼
1:17×dEVI−0:20; for the NF sites
0:24× dEVI×T sdð Þ−0:31; for the DF sites
0:10×T sd−0:17; for the EF sites

:

8<
: ð5Þ

The modeled monthly GPP (GPP_M) using these coefficients is
then compared with flux measurements (GPP_F) for all sites
(Fig. 6). For the NF sites, the GR model gives the best GPP esti-
mates at site TON with a root mean square error (RMSE) of
5.07 g C/m2/month. The largest RMSE is acquired for NE3 with a
value of around 75 g C/m2/month and the average RMSE for these
NF sites is around 40 g C/m2/month. Most of the DF sites show good
estimates of GPP and the RMSE values generally fall between 40 and
60 g C/m2/month. Due to much lower GPP values for the EF sites,
lower RMSE values are also observed, which typically fluctuate

between 30 and 45 g C/m2/month. The RMSE for the overall data of
all sites is 47.18 g C/m2/month, which indicates that the accuracy of
calibration is reasonable and these coefficients are of potential use
in future applications (Fig. 7).

While the GR model shows reasonably good estimates of monthly
GPP for most sites, there is a tendency of overestimation during the
early part of the growing seasons. For example, for site TON, modeled
monthly GPP was systematically higher than the flux measurements
at GPP values larger than 30 g C/m2/month. This tendency exists
for all the other four NF sites when monthly GPP falls below
100 g C/m2/month. All DF sites show similar situations, only differing
in the peak values of this overestimation. The EF sites seem not affect-
ed as much by this overestimation compared to the NF and DF sites,
although this limitation is shown for site NR1. We suggest that
there are three reasons that can be referred to explain these overesti-
mations. First is the uncertainty associated with the MODIS reflec-
tance data that is used for the calculation of EVI. For both the NF
and DF sites, the EVI shows relatively large dynamical ranges (e.g.,
mean EVI_max=0.65 and mean EVI_min=0.18 for sites in this
study) and this could lead to large errors or uncertainty for the low
EVI values during the early growth stages. This is because of the

Fig. 2 (continued).
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relatively large effects from the background information (e.g., soil) for
the sparse canopies. This overestimation could be even larger when
considering the cloud contaminations. A second explanation is the
biochemical functions of leaves for photosynthesis. During the early
growing season, there is a possibility that parts of the green leaves

may contribute little to photosynthesis because of the relatively low
temperature (Chen et al., 2000). Furthermore, the chlorophyll con-
tent may increase faster than the biochemical capacity for carbon fix-
ation during leaf development, which also leads to overestimation of
GPP based on greenness. However, these leaves still increase the can-
opy greenness while flux measured GPP is not increasing. For EF sites,
due to the low variations in greenness, this overestimation can be re-
duced to some extent. This is the reason for the disappearance of this
overestimation for higher GPP values for all sites. The last reason is
the improper characterizing of shaded leaves in the canopy for this
type of models. This overestimation at low GPP may be associated
with underestimation at high GPP because the slope from regression
model only gives the mean conditions of the variables. To balance the
underestimation at high GPP where shaded leaves contribute most,
GPP is overestimated at low ranges. Similar results are observed in
previous studies of Sims et al. (2008) and Peng et al. (2011), but rea-
sons are not given. For example, the TG model which utilized the

Fig. 4. Correlation between the air temperature (Ta) and the PAR for three plant func-
tional types (NF, DF and EF represent non-forests, deciduous forests and evergreen for-
ests, respectively).

Fig. 5. Calibration of the GR model for sites of different plant functional types: a) NF
sites, b) DF sites and c) EF sites, dEVI represents the difference between the maximum
and minimum EVI and T_sd is the standard deviation of Ta.

Fig. 3. Comparison between (a) TG and (b) GR results for different plant functional
types (NF, DF and EF represent non-forests, deciduous forests and evergreen forests,
respectively).
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MODIS EVI shows overestimation of daily GPP at a value lower than
0.5 mol C/m2/day (~180 g C/m2/month) in DF sites while such dis-
crepancy is not observed for low GPP values in EF sites. This typical
limitation indicates that more emphasis should be focused on
the ecophysiological considerations between vegetation and the envi-
ronment as well as the incorporation of upscaling approaches from
leaf to canopy level photosynthesis (Hilker et al., 2008, 2010; Mu
et al., 2011; Zhao et al., 2006).

3.3. Discussion

The dependence of S on different variables for these three plant
functional types shows the relative importance of aspects that affect
the monthly GPP. Generally, monthly GPP is controlled by two sets
of factors. First may be represented by the chlorophyll content within
the canopy which is directly responsible for photosynthesis. This fac-
tor can be viewed as an “internal” impetus and can be quantified from
remote sensing observations via a vegetation index. The second is the
“external” factors such as water, temperature and radiation. These
factors are often seen as stresses and show certain constraints on pro-
duction. Here we suggest that the relative importance of these two
drivers may vary in different plant functional types, which can be

used to explain the different coefficients found in our model
calibration.

In order to substantiate this suggestion, both Ta and EVI are select-
ed to explore their usefulness in explaining the variances in monthly
GPP for the three plant functional types (Fig. 8). For the NF sites, the
constraint on vegetation production is largely dependent on the can-
opy greenness. This is validated with our data that an R2 of 0.61 is
obtained for GPP-EVI, which is much higher than that of GPP-Ta
(R2=0.10). This does not mean that the environmental variables
(e.g., water, temperature) are not important because these factors
can also affect the canopy greenness. Here we only argue that the dy-
namical range of greenness, for example, in terms of EVI, is the main
control of the monthly GPP for the NF sites. This finding coincides
with recent research which reports that slopes in the GPP model are
related to the peak leaf area index (LAI) in the African ecosystems
characterized by NF biomes (Sjöström et al., 2011).

However, for the EF sites with a relatively stable greenness indi-
cated by low EVI_sd, variations in temperature may become a more
important factor that determines the monthly production. This is be-
cause when canopy greenness is stable, other factors (e.g., tempera-
ture, soil) will play the limiting roles for vegetation production. For
example, low correlation (R2=0.16) between GPP and EVI is

Fig. 6. Relationship between the flux measured GPP (GPP_F) and the calibrated GR model outputs (GPP_M) for each single site (the dash line indicates 1:1).
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observed which means that the explained variance of GPP is very low
while Ta can be a better indicator of GPP (R2=0.39). The DF sites will
fall between NF and EF species and therefore S is found to be a func-
tion of both canopy greenness and temperature variation. This analy-
sis is consistent with the results shown in Fig. 8b, that R2 values of
0.73 and 0.78 are found for GPP-Ta and GPP-EVI, respectively. The
above analysis can be further supported by the correlation between
S and EVI_sd for NF sites as well as the correlation between S and
the difference in extreme values of temperature for EF sites (Fig. 9).
Due to higher correlations shown in Fig. 4, these coefficients shown
in Fig. 9 are not used for model calibration. However, similar implica-
tions are included in Figs. 4 and 9 which indicate that the different
factors are in main control of monthly GPP for various plant function
types. These results firstly demonstrate that model calibration across
different biomes is a challenge since the relative importance of these
various factors may change for different ecoregions. However, they
may also lead to approaches to incorporate these potential variables
in the GR model.

Another important potential of the GR model lies in its reduced
dependence on input variables. For example, all the parameters

could be directly acquired from remote sensing observations since
MODIS already produces an EVI product. Remote estimation of PAR
from MODIS aerosol type and atmospheric conditions will further
make the GR model attractive for operational applications based on
entirely remote sensing data (Liang et al., 2006). However, in these
cases, the improved algorithms for cloud detection and removal are
necessary for the use at global scale (Zhao et al., 2006). Nevertheless,
evaluation of the GR model across biomes still gives the opportunity
for its potential use in carbon cycle research and will be an important
tool for the assessment of terrestrial ecosystem functions.

4. Conclusions

Terrestrial GPP is the largest carbon flux, and it drives several eco-
system functions, such as respiration and growth. Accurate estima-
tion of this flux will be extremely useful for quantifying ecosystem
carbon exchanges. Here we provide a multiple site evaluation of the
GR model for estimating GPP in a range of ecosystems, representing
diverse canopy structures and ecoregional characteristics. These re-
sults show that the GR model can provide good estimates of monthly

Fig. 6 (continued).
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GPP for both NF and DF sites with moderate results for EF sites. Differ-
ent dynamical ranges in the EVI and the relatively importance of var-
ious environmental factors may probably be the reasons for such
differences. Nevertheless, the GR model can give a reasonably low
RMSE of 47.18 g C/m2/month for the overall dataset after model cali-
bration, which indicates the potential of the model in future opera-
tional applications. A typical limitation of the GR model is the
overestimation of GPP at the early growth seasons. This first indicates
that the background signals for sparse vegetated areas may lead un-
certainties to model application. However, this also gives the urgent
needs of incorporation of such signals to improve the accuracy of
model outputs. Future analysis may have a focus on the ecophysiolog-
ical interactions between the ecosystem and the environmental
variables.
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