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Various remote sensing sensors observe the Earth’s and the linear SR algorithm induces no error in scaling.
surface at different spatial resolutions. In deriving sur- Therefore, the scaling problem for pure pixels may be ig-
face parameters using remotely sensed data, the trans- nored for many applications using either linear or non-
portability of algorithms from one resolution to another linear algorithms. 3) Large negative biases occur when a
is often of great concern because of the surface heteroge- pixel contains interfaces between two or more contrasting
neity. This article addresses this scaling issue through im- surfaces. In the case of two contrasting surfaces between
age degradation experiments using a Landsat TM image. vegetation and open water, the biases can be up to 45%
It is shown theoretically that scaling problems in deriv- of the correct value depending of the water area fraction
ing surface parameters exist not only because of the non- in the pixel. The biases in this case depend on contexture
linearity in the relationships between remote sensing and little on texture. Simulations show that the most use-
measurements such as NDVI (normalized difference veg- ful contextural parameter for quantifying the scaling ef-
etation index) and SR (simple ratio) and the parameters fects in vegetation–water mixed pixels is the water area
of interest, but also because of the discontinuity between fraction within each degraded pixel. Algorithms for re-
contrasting cover types within a mixed pixel. To quantify mote sensing applications can be transported from one
the effects of the nonlinearity and discontinuity on scal- scale to another, if the information on the water body
ing, it is found that contextural parameters are more ef- size is available. This study shows the need for global wa-
fective than textural parameters. Contexture-based func- ter masks at high resolutions for the purpose of accurate
tions are derived for the estimation of the scaling effects derivation of surface parameters maps at various resolu-
on leaf area index (LAI) calculations using algorithms tions. In boreal regions, this is particularly important be-
based on NDVI and SR separately. Based on NDVI–LAI cause of the large number of small water bodies. Crown
and SR–LAI relationships that were derived at the Land- copyright  1999. Published by Elsevier Science Inc.
sat TM scale (30 m) as part of the Boreal Ecosystem–
Atmosphere Study (BOREAS), the effects of scaling on
the retrieval of LAI were investigated using nine selected INTRODUCTION
areas of the same size (990 m3990 m) but different wa-

With the advent of the forthcoming Earth Observationter area fractions. The following conclusions are drawn
System (EOS) and other satellite systems, planet Earthfrom the investigation: 1) Negative biases in the estima-
will soon be closely watched by multiple sensors withtion of LAI occur when either the NDVI or SR algorithm
various observing geometries, and spatial and temporalderived at a fine resolution (Landsat TM) is used for cal-
resolutions. In quantitative analysis of remote sensing,culations at a coarse resolution (for example, AVHRR).
the relationship between the measurements at different2) The amount of the biases depends on the surface het-
spatial resolutions often causes concerns. Intrinsic to theerogeneity. For a pure forest pixel, the bias caused by the
measurement techniques, remote sensing is a process ofnonlinearity of the NDVI algorithm was smaller than 2%
acquiring the average radiative signals from elemental
grid cells (pixels) of an object of interest (Townshend,
1980). This signal-averaging process masks subpixel vari-* Applications Division, Canada Centre for Remote Sensing, Ot-
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inger and Field, 1993). The meanings of spatial scaling
in remote sensing of the Earth’s surface are several, and
are related to how remote sensing data are used. They
may be summarized as follows: 1) As an estimate of the
average conditions for an area based on the knowledge
for the conditions of each scene component and the area
fractions of the components in a remote sensing scene.
Scaling in this case is an area-weighting operation. 2) For
use of remote sensing measurements at various resolu-
tions for deriving surface parameters (such as LAI). Scal-
ing in this case requires the knowledge of surface hetero-
geneity and depends on the derivation algorithms. 3) For
using remotely derived parameters as surrogates for esti-
mating processes, such as gas and energy exchanges be-
tween the surface and the atmosphere. Scaling in this
case not only depends on the surface heterogeneity, but
also the correlation between surface and atmospheric
variables involved in the processes (Hall et al., 1992).
These three scaling operations mentioned in sequence
have increasing complexity, and the methodologies are
still far from maturity, especially the second and third
scaling problems (Bonan et al., 1993). The last problem
is of particular concern to climate-related research
(Pielke et al., 1991; Wood and Lakshmi, 1993). In this
article, we will focus on the second problem because it
is a key step in remote sensing applications, and the
principles found in this step have implications to more
sophisticated scaling problems.

Figure 1. Relationships between NDVI and LAI (a) andIt has been demonstrated in various ways that linear
between SR and LAI (b) found by Chen and Cihlar (1996)algorithms cause no error in deriving surface parameters
for boreal conifer forests. When the relationships are usedover heterogeneous surfaces (Hall et al., 1992; Hu and
for an equally mixed water–land pixel, the intercept A repre-

Islam, 1997). In selecting optimum resolutions for re- sents the LAI value over the land portion (LAIland) and the
mote sensing applications and estimating the scaling ef- intercept C gives the correct average LAI value for the pixel.

The intercept B is obtained using the average NDVI valuefects on surface parameter derivation, surface heteroge-
for the pixel and the relationships. The difference betweenneity has been exclusively quantified using statistical
C and B is the scaling error (see also the Appendix).measures related to the image texture, such as variance

and covariance (Woodcock and Strahler, 1987; Hall et
al., 1992), and entropy (Townshend and Justice, 1988). tween the normalized difference vegetation index (NDVI)
The apparent conclusions for the absolute superiority of and LAI and between the simple ratio (SR) and LAI re-
linear algorithms and the effectiveness of texture-based ported by Chen and Cihlar (1996) for boreal conifer for-
methodologies are challenged in this article. For the pur- ests. The nonlinear relationship between NDVI and LAI
pose of developing a simple and effective methodology rather than their linear relationship is chosen for explora-
for estimating the scaling effects on the derivation of sur- tion in this study. Models and measurements show that
face parameters, this article is intended to show through the relationship is nonlinear (Huete and Liu, 1994). Over
theoretical developments and sample image analysis that: a pure land surface, the curve should start from a posi-
1) Discontinuity as part of the surface heterogeneity is tive NDVI value representing the background. The curve
the major problem in scaling and the linearity of algo- is forced through the origin in this case so that the equa-
rithms does not alleviate the problem; and 2) contextural tion becomes general for application across the land-
parameters are far more effective than textural parame- scape, including open water bodies. The linear SR–LAI
ters in quantifying scaling effects. relationship generally has larger correlation coefficients

than the nonlinear NDVI–LAI relationship (Chen, 1996).
In this article, the scaling effects of linear and nonlinearTHEORY
algorithms are studied based on these two relationships.

Problems Due to Nonlinearity and Discontinuity In Figure 1a, a simple case is presented where a pixel is
To aid the theoretical development, we first provide Fig- composed of half water (NDVI50 and LAI50) and half

vegetation (NDVI50.8 and LAI55). By definition, theures 1a and 1b as examples showing relationships be-
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LAI value for the pixel is 2.5. However, from the mean In general [Eq. (8)],
NDVI value of 0.54 obtained using pixel-averaged reflec-
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i . (8)tances (see the Appendix), an LAI value of 0.6 is found
using the nonlinear relationship for pure land surfaces.

This means that because of the nonlinearity of theIn Figure 1b, a similar problem exists for the linear rela-
algorithm, different results are obtained depending ontionship because of the discontinuity at LAI50: SR is of-
whether the individual bands or VIs are averaged firstten larger than 1 for the bare land surface but equal to
before the algorithm is applied (in the case where onlyor smaller than 1 for water bodies. For simplicity, we
large pixel measurements are available) or whether thetake SR51 for water, corresponding to NDVI50 for wa-
algorithm is applied to the small pixels first, and the re-ter. For clear and deep waters, NIR reflectance is
sults are then averaged (in the case where small pixelsmaller than red reflectance, and hence SR is smaller
measurements are available). In remote sensing applica-than 1. For shallow or turbid waters, SR can be larger
tions, very often we are confronted with the first situa-than 1. The linear relationship would incur no error be-
tion: large pixel measurements and small pixel algorithmstween different resolutions over pure land surfaces, but
are available, that is, we are forced to incorrectly averagecan still be a problem when interfaces between con-
the VIs first and then do the information retrieval. Thetrasting cover types exist in the same pixel.
real question is, therefore, how much are we in error inMathematically, the correct way to obtain LAI for a
doing so and how can we correct for the error?large pixel (for example, AVHRR 1 km pixel), denoted

In the case of a linear algorithm (Fig. 1b), a similarby (L), consisting of n small pixels (for example, Landsat
problem exists because of the discontinuity of the rela-TM 30 m pixels), is to calculate the LAI value of each
tionships for different cover types. The extreme casesmall pixel, denoted by Li, and then take the arithmetic
would be a pixel mixed with water and land covered bymean of all of the small pixels, that is,
vegetation, where VI5a0 and LAI50 for water and LAI5
a1bVI for land, where a0?a. Therefore, the discontinu-L5
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ity exists at LAI50. In mathematical expression, the LAI
for a mixed pixel with n cover types becomesThe LAI of the small pixels should be calculated at

the same spatial resolution at which the particular algo- L5c1(a11d1 VI1)1c2(a21d2 VI2)1· · ·
rithm for Li was developed. 1cn(an1dn VIn) (9)

If the algorithm is represented by Eq. (2),
where ci (i51, 2, . . . , n) is the fraction of cover type i

Li5fs(VIi), (2) in the pixel, ai and di are the coefficients of the algorithm
for cover type i, and VIi is the average VI value of thefor the small pixels, where VIi is a vegetation index for
cover type i. Equation (9) indicates that the correct cal-pixel i, Eq. (1) can be written as
culation of LAI for the mixed pixel requires the knowl-
edge of the fractions of the cover types in the pixel.L5
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When only large pixel measurements are given, such
knowledge is not available. Usually, the mixed pixel is la-If only measurements of the large pixels, that is,
beled by the dominant class and only one algorithm forVI are available and the algorithm fL(VI) for the large
the dominant cover type is used, that is,pixels is unknown, the approximate values of LAI of the

large pixels can be calculated using the algorithm devel- L.ai1di VI (10)
oped for the small pixels as follows:

An error is introduced in the calculation using Eq.
L.fs(VI). (4) (10) because other cover types are ignored in the calcula-

tion. For example, if a pixel mixed with water and coni-When the algorithm fs(VI) is not linear, such as in
fer forest is classified as conifer, where ai and di in Eq.Eq. (5),
(10) are taken as the coefficients for conifer and VI is

fs(VIi)5aVIb
i , (5) the average VI over the whole pixel (the only value avail-

able), is considerable different from the correct equationit is obvious that [Eq. (6)]
(9), which can be written for this case as

fs(VI)?
1
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n
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f(VIi). (6) L501ci(ai1di VIi) (11)

where VIi is the average VI over the conifer cover type.For example, in the case of one large pixel con-
The differences between these two equations are: 1) Thetaining two small pixels, it is true that [Eq. (7)]
fraction of conifer in the pixel is considered in Eq. (11)
but not in Eq. (10); and 2) VI in Eq. (11) is the averagea1VI11VI2
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for conifers only, while in Eq. (10) it is for the whole
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pixel. The resulting difference in LAI is illustrated in and, therefore, variances and covariances derived from
coarse-resolution images are the same as those from fine-Figure 1b for the case of a pixel with half water and half

conifer. This demonstrates that scaling errors can be sig- resolution images. It is obvious that scale invariance is
an assumption and not a reality. For such an assumptionnificant using linear algorithms for mixed pixels.

In spite of this, linear algorithms have the following to be valid for a forested area, for example, there needs
to be an equal probability of seeing the pure backgroundadvantages over nonlinear algorithms in scaling: 1) They

incur no errors for pure pixels even if the VI vary greatly (soil and moss cover) in high and low resolution images,
but, undoubtedly, the probability decreases with increas-within the pixels, while nonlinear algorithms cause errors

in proportion to the variance of VI within the pixels; 2) ing pixel size. Another problem with this texture-based
approach is that it does not address the issue of mixedfor mixed pixels over land surface, the scaling error using

linear algorithms are very small because of the similarity pixels discussed in the previous section. When a pixel is
mixed with water and vegetation, for example, the vari-of the algorithms for different cover types; and 3) for the

extreme case of mixed water and vegetation pixels, linear ance within the pixel may increase because of the con-
trast in tone between these two cover types, but the in-algorithms cause smaller errors than nonlinear algo-

rithms, as shown in Figures 1a and 1b. crease has a different meaning compared to the same
increase over a pure land surface.

To avoid the above-mentioned problems associatedQuantification of Scaling Effect Using Textural
and Contextural Parameters with the limitations using textural parameters, a different

scheme for quantifying the scaling effect is proposedTexture in an image refers to the variability in tone
here as follows:(brightness) of the pixels (Haralick, 1979). It is often

quantified using statistical measures such as range, stan- PD2PL5f(subcomponent fractions). (13)
dard deviation, variance, covariance, skewness, kurtosis,

In Eq. (13), the difference between PD and PL isetc. (Irons and Peterson, 1981; Haralick, 1986). Con-
quantified using the fractions of subcomponents (such astexture captures the structure and patterns of objects dis-
cover types) within a pixel. A subcomponent fraction isplayed in an image (Mather, 1987). It can be quantified
a contextural parameter. This scheme, when applied toas the number of distinct objects (cover types, for exam-
reality, captures the main difficulty that causes scalingple), the size and shape of the objects, the distance, dis-
problems: surface heterogeneity in terms of cover typetribution, and pattern of the objects, the areas and the
change rather than density change within the same coverarea ratios of the objects, etc. In studies to quantify the
type. The latter is no problem when a linear algorithmscaling effects to date, textural parameters are often
is used [discussed in the previous section and theory inused, and contexture remains unexplored. Similarly to
Hall et al. (1992)]. However, the application of thisHall et al. (1992), Hu and Islam (1997) developed a ge-
scheme also requires additional subpixel information andneric framework for formulating “scale-invariant” algo-
has the similar data limitation as the texture-basedrithms for any surrogate parameters using multiple-band
scheme. In practice, the largest contrast in remote sens-digital images based on the textural parameters of the
ing signal is between water and land, and high-resolutionimages. The framework, when simplified, can be ex-
water masks are frequently available or can be found bypressed as Eq. (12):
other means. In quantifying the scaling effects, con-

PD2PL5f(variances, covariances), (12) textural parameters have the following advantages over
textural parameters: 1) Contexture is the major cause ofwhere PD is the correct value of parameter P for a large
variation in remote sensing signals and can be used forpixel calculated from small pixels (“distributed”), PL is
scaling more effectively; 2) the contextural parameters,the approximate value of parameter P calculated using
such as the area fraction, is more easily obtained thanthe mean measurements from the large pixel (“lumped”),
textural information at high resolutions; and 3) the scal-and f(variances, covariances) is a function of variances
ing methodology using contextural parameters is gener-and covariances of the tones within and among the dif-
ally simple and can be operationally used in informationferent bands to quantify the difference between PD and
retrieval from a combination of sensors.PL. Theoretically, variances and covariances are impor-

As examples to illustrate the principles discussedtant textural parameters capturing the spatial variability
above, the function in Eq. (13) is derived in the Appen-in the surface conditions and, therefore, can be used to
dix for LAI algorithms based on NDVI and SR, sepa-estimate the scaling effect. The third- and higher-order
rately. In some studies, the effect of scaling from individ-terms, such as skewness and kurtosis, can generally be
ual bands to NDVI was found to be small and could beignored. However, in practice, when only the measure-
ignored, that is, lumped and distributed NDVI could bements for the large pixels are made, no subpixel textural
taken as the same (Hall et al., 1992; Aman et al., 1992),statistics are available. Because of this problem, Hu and
but in others it was shown to be significant (Hu and Is-Islam (1997) developed this “scale invariant scheme” as-

suming that textural characteristics are scale-independent lam, 1997). We found that this effect on NDVI is partic-
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ularly pronounced when subpixel water bodies exist and
developed a simple way to consider it (see the Appen-
dix). The nonlinear NDVI–LAI relationship representing
the distributed case for a mixed water–vegetation pixel
presented in Figure 1a is derived after considering this
effect. After defining the relative difference in LAI (DL/
L) between the distributed and lumped calculations as
DL/L5(PD2PL)/Pland, where Pland is the parameter over
the land portion of the pixel, we can write from the Ap-
pendix that

DL
L

5(12w)2(12w)b0/b (14)

for the NDVI algorithm, where w is the water area frac-
tion in a mixed pixel, b is the exponent in the NDVI–
LAI relationship over land, and b0 is the exponent for a
mixed vegetation–water pixel. For the SR algorithm, the
function is derived as (see the Appendix)

DL
L

55a12a0

b1Lland

w, w,
b1Lland

a12a01b1Lland

,

12w, w>
b1Lland

a12a01b1Lland

,
(15)

where Lland is the average LAI over land within the pixel,
and a0 is the SR value over water.

Using Eqs. (14) and (15), Figures 2a and 2b are plot-
ted to illustrate how the water area fraction w affects the
calculation of LAI of a large (lumped) pixel. In Figure 2a,
the relative difference in LAI between the distributed
and limped calculations based on the NDVI algorithm
varies in different magnitudes with w, depending on the
constant b. The distribution patterns can be understood

Figure 2. Theoretical relationships between the scaling er-by imagining the extreme cases (not plotted): 1) When
rors, expressed as the difference in LAI between distributedb5b0, the difference becomes zero at all w values be-
and lumped calculations relative to the LAI value over land,cause the NDVI–LAI relationship becomes the same as
and the water area fraction within the pixel: a) The relation-the distributed function; and 2) when b50, which means ship depends on the exponent b in the NDVI-LAI algorithm;

NDVI is invariant with LAI, the difference is determined and b) the relationship is affected by LAI over land within
simply by the value of (12w) (i.e., the diagonal line) and the pixel when the SR algorithm is used.
has a maximum at w50. The maximum difference occurs
at different w values depending on the value of b. In the
Appendix, it is shown to be when w512(b/b0)b/(b02b). IMAGES AND ALGORITHMS

Figure 2b shows linear variations of the relative dif-
A Landsat image is used here to investigate the scalingference in LAI with w when the linear SR algorithm is
effect (Fig. 3). The size of the image is 61.44 km361.44used. The family of lines result from the additional de-
km, which is part of the original scene (row number 37/pendence of the difference on the LAI value over the
22–23) acquired on 6 June 1991 at a solar zenith angleland portion of the pixel. With the fixed constants in the
of 35.98. It is one of the images used by Chen and CihlarSR–LAI relationship, the w value at which the maximum
(1996). Candle Lake, Saskatchewan, Canada, is thedifference occurs depends on the LAI value over the
largest lake located near the southwest corner. A largeland surface. There are similarities between Figures 2a
number of open water bodies are shown in the imageand 2b: 1) The diagonal line sets the upper limit for the
and they are the main cause of surface heterogeneity.difference, and 2) the maximum difference does not oc-
The image shown in Figure 3 is an NDVI image calcu-cur at a fixed w value, but follows predictable patterns.
lated from the original TM Bands 3 and 4 after atmo-The major difference between these two algorithms is
spheric corrections using the 5S code (Tanré et al.,that in estimating the scaling effect using the NDVI algo-
1986). In Figure 3, nine areas of 990 m3990 m (33333rithm, the knowledge of LAI over the land surface is not

required, but it is needed for the SR algorithm. pixels) each were selected for their different area frac-
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Figure 4. Variations of the NDVI-based scaling error,
expressed as the relative difference in LAI for the nine
selected areas in Figure 3, as the lumped pixel size in-
creases. The area number is shown in the brackets
in the legends.

on contexture. The enlarged nine areas and their w val-
ues are also provided in Figure 3. Figure 4 shows the
difference in LAI between the distributed [Eq. (3)] and
lumped [Eq. (4)] calculations for various lumped pixel
sizes using the NDVI algorithm, where NDVI at a given
pixel size is obtained from the mean band reflectances.
By definition, a positive difference in LAI means the
lumped calculation is negatively biased, and this will al-
ways be the case. The difference in the LAI values at
different scales of image degradation is obtained as the
average of many subareas of the same size by shifting
the pixel and line one pixel at a time within the original

Figure 3. A Landsat NDVI image of size 61.44 km361.44 km, 33333 pixel frame. At the 30 m scale, both types of cal-where nine areas of 990 m3990 m each are selected for
culations were done at the original TM pixels, and there-scaling analysis.
fore no difference in LAI results are found. At the
990-m scale (representing 1 km AVHRR pixels), these

tions of water ranging from 0% to 93%. The following re- two types of calculations result in large differences in cal-
lationships [Eqs. (16) and (17)] between LAI and NDVI culated LAI values. The magnitude of the difference de-
and between LAI and SR for conifers (Chen and Cihlar, pends on the water area fraction within the lumped pix-
1996) are used in this study: els. For area 1 without water, the differences at the

various sizes are less than 1.7% of the value calculatedNDVI50.552L0.1844 (16)
using the distributed method, indicating that, over a pureand
land surface, the error in scaling is very small even when

SR52.7810.824L. (17) a nonlinear algorithm is used. The curves in Figure 4
vary, in different patterns with image degradation. TheseThese are the equations derived for late spring. The
patterns will be investigated in the next section. We willR-squared values for these relationships are 0.52 and
first focus on the results at the largest pixel size of 9900.53, respectively. These linear and nonlinear relation-
m at which the water area fraction is calculated. Figureships are chosen to demonstrate the major scaling prob-
5 shows how well the theory [Eq. (14)] predicts the scal-lems associated with nonlinearity and discontinuity.
ing effect found in Figure 4 at the lumped pixel size of
990 m. Although completely different calculations are in-RESULTS AND DISCUSSION
volved—the data points are obtained from pixel-to-pixel

Scaling Effects from Landsat TM to calculations while the curve is calculated using only three
AVHRR Scale parameters (w, b50.1844, and b050.68)—the agreement

is very encouraging, showing the effectiveness of this con-The nine areas marked on the Landsat image (Fig. 3)
were selected to investigate scaling methodologies based texture-based method for estimating the scaling effect.
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Figure 5. Comparison of the theoretical estimation of the
scaling effect with those from image analysis for the nine
selected areas at the lumped pixel size of 990 m shown in Figure 7. Comparison of the theoretical estimation of the
Figure 4. scaling effect with those from image analysis for the nine

selected areas at the lumped pixel size of 990 m shown in
Figure 6. In the theoretical estimation, both water area frac-

For the same nine areas, the scaling effects estimated tion and the mean LAI value over land within the areas are
used [Eq. (15)].based on the SR algorithm are shown in Figure 6. The

curve variation patterns are similar to those shown in
Figure 4, but the magnitude of the scaling effect is often

measurements are derived for large pixels. In practice,smaller, indicating one advantage of using the linear SR
this may not be a problem because it can be taken asalgorithm. Another advantage of the SR over the NDVI
the value of an adjacent pure land pixel as the first ap-algorithm is that the scaling effect is zero over a pure
proximation. Figure 7 compares the relative difference inland surface as indicated by the bottom line. This is in
LAI found in Figure 6 at the lumped pixel size of 990agreement with the aforementioned theoretical analysis.
m through image analysis to theoretical predictions usingThe major disadvantage of the SR algorithm for estimat-
Eq. (15). The LAI value over the land portion was firsting the scaling effects is the requirement of the addi-
found for each area. The value is, in order from area 1tional parameter of LAI over the land surface within the
to 9 (marked in the legends of Fig. 6), 3.47, 6.36, 1.96,pixel. This information is generally not available when
4.19, 2.45, 2.99, 2.37, 3.63, and 4.05. The theoretical pre-
dictions for the scaling effect agree very well with the

Figure 6. Variations of the SR-based scaling error, ex-
values obtained from the image analysis, except for onepressed as the relative difference in LAI for the nine
point, which is area 8. As shown in Figure 3, this areaselected areas in Figure 3, as the lumped pixel size in-

creases. The area number is shown in the brackets in contains some shallow water pixels which are considered
the legends. as land using a common threshold of NDVI50.2. If

these pixels are considered as water, the discrepancy be-
tween the theory and image analysis would disappear.
This, however, raises a question of how to separate water
and land for this type of applications. In areas with shal-
low waters, more attention should be given to the choice
of water-land threshold.

From the above analysis, it is shown that SR algo-
rithms have the following advantages over NDVI algo-
rithms: 1) They incur no scaling errors when applied to
a pure pixel with only one cover type regardless of the
change in density within the pixel; and 2) they induce
smaller scaling errors than NDVI algorithms if no correc-
tions for the errors are made. The estimation of the scal-
ing errors based on SR algorithms, however, are more
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Figure 8. Comparison of the NDVI-based scaling error with
the total subpixel variance in NDVI for the nine selected
areas of difference water area fractions.

complicated than that based on the NDVI algorithms.
Although the requirement of the LAI value over land
surface within a mixed pixel can be obtained from the
adjacent pure land pixels, the subpixel variation in LAI
still have significant secondary effects on the estimation
of scaling errors. Figure 9. Three one-dimensional (horizontal) cases of a pixel

equally mixed with forest and water but having different waterFigure 8 compares the scaling effects using the
body sizes (270 m, 540 m, and 1080 m) within the pixel forNDVI algorithm shown in Figure 5 and the values of the
numerical simulation of the effect of subpixel water body sizetotal variance as a textural parameter within the selected on scaling. Variations in the second dimension (vertical in the

nine areas. The variance has the largest value at w550% plates) are not considered.
and falls off on both sides as w increases or decreases
from the center value, while exhibiting considerable scat-
ter for the same w values depending on the variation of Landsat TM pixels. The red and NIR reflectances are
NDVI over land. This comparison suggests that the tex- assigned the values of 0.17 and 0.03, respectively, for for-
tural parameter can provide the first-order approximation est, and the same at 0.02 for water. Figure 10 shows the
for the scaling effect, but the estimate is much less pre- effects on LAI of scaling from 30 m to various spatial
cise than those based on the contextural parameter w as scales for the three cases. The scaling effects at the vari-
demonstrated in Figure 5. ous lumped pixel sizes are simulated by performing dis-

tributed and lumped calculations using the same NDVI
Effects of Subpixel Component Size algorithm as used previously on a horizontal line con-

sisting of 720 pixels. A lumped LAI value for a givenThe image analysis results displayed in Figures 4 and 6
pixel size is calculated from the mean NDVI value overhave only been partially studied in the above section.
a section of the line equal to the size, while the pairedThe different curve patterns and the crossings of the
distributed LAI value is calculated as the mean of LAIcurves impose questions on the uniqueness and effec-
values of individual pixels over the same section. Thetiveness of the contextural parameter. To address this is-
scaling effect is obtained as the average of the relativesue, numerical simulations were conducted to illustrate
differences between distributed and lumped LAI valuesthe effects of subpixel water body size on scaling from
of many sections moving one pixel at a time along thethe elemental (30 m) to various lumped pixel sizes. Fig-
line. Figure 10 demonstrates that, for the same waterure 9 shows imaginary pixels equally mixed with forest
area fraction in an area or region, the scaling effects forand water bodies having different spatial dimensions,
a given spatial resolution are different for different waterthat is, different patterns as exhibited in plates (a), (b),
body sizes within the area (represented by the horizontaland (c). The examples are all one-dimensional for sim-
width in this case). Larger water bodies generally incurplicity; only horizontal variations of the forest and water
smaller scaling effects for a given pixel size. This subpixelland covers are considered. In numerical simulations, the
size dependence explains the irregular curve patternstotal horizontal width is taken to be 2160 m for all three

cases, and the smallest pixel size is 30 m to represent shown in Figure 4 where water bodies included in the
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Figure 11. Normalization of the scaling effects shown inFigure 10. Scaling effects on the relative difference in
Figure 10 using the ratio of lumped pixel to waterLAI at the various lumped pixel sizes for the three cases
body size.of different water body sizes shown in Figure 9.

in Figure 10 are normalized to this ratio. It demonstratescalculations have different sizes. Areas 5 and 7, for exam-
that once the NDVI–LAI algorithm is given, the scalingples, have similar water area fractions, 46.6% and 47.5%,
effect for various lumped pixel sizes can be uniquely de-respectively, but area 5 shows slower increases in the
termined by the ratio. The effectiveness of this normal-scaling effects with the increasing pixel size because it
ization implies that when water body size information iscontains a larger water body than those in area 7. The
available, a complete analysis of scaling effects for imagessame reason can be given for difference between the
of various resolutions can be easily made.curves for the areas 3 and 4 with similar water area frac-

tions of 29.3% and 30.6%. The water bodies in area 3 is
smaller than those in area 4. The curve distribution pat- DISCUSSION
terns in Figure 6 are less variable than those in Figure

Examples shown in this article are limited to two algo-4 but are also affected by the water body size in a simi-
rithms and one biophysical parameter. However, thelar way.
principles of scaling effect estimation using contexturalA key to understanding Figures 4 and 6 is that the
parameters should apply to other parameters (such as thewater area fraction specified for each curve is the value
fraction of photosynthetically active radiation observedfor the whole area 990 m3990 m and this value does
by vegetation, temperature, etc.) using algorithms basednot necessarily remain the same for the mean value for
on other vegetation indices. The effectiveness of thesemany smaller lumped pixels within the area. Equations
contexture-based scaling algorithms has the following im-(14) and (15) can be applied to a pixel of any size and
plications:only require the water area fraction for the pixel (not an

area of multiple pixels) to be given. In other words, the 1. Nonlinearity in remote sensing algorithms is not
scaling effect shown in Figures 4 and 6 at each lumped the only problem to be considered in scaling be-
pixel size can be predicted with these equations when tween different resolutions. Differences in the re-
accurate water area fraction values for all the pixels are lationship between remote sensing signals and the
available. This means that, in assessing the scaling effect surface parameter of interest create discontinu-
on remote sensing measurements of a given resolution, ities in the mathematical description of the sig-
we only need the water area fraction information for nals from mixed pixels. These discontinuities also
each pixel and do not need the water body size informa- induce errors in scaling, and generally errors due
tion. The size information is needed only if we want to to discontinuities are much larger than those due
infer the scaling effect from one resolution to the other. to nonlinearity.
This basic requirement greatly simplified the procedure 2. From the scaling perspective, the surface hetero-
for estimating the scaling effect when a contextural pa- geneity should not be viewed to be equivalent to
rameter is used. From a dimensional analysis, the effect texture variation. When linear algorithms are
of water body size on scaling between various pixel sizes used, textural variations cause no error in scaling
is more effectively quantified using the dimensionless if no interfaces between cover types are encoun-

tered in the area. Interfaces within mixed pixelsvariable: the ratio between the pixel size to the water
body size. Figure 11 shows how the scaling effects shown are the major problem in scaling using either lin-
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ear or nonlinear algorithms. Therefore, the sur- based on textural parameters but also more effec-
tive and simpler. The required subpixel con-face heterogeneity can be more effectively quanti-

fied using contextural parameters. The best textural information is also easier to obtain than
textural parameters.strategy for minimizing and quantifying the scal-

ing effect is to use linear algorithms and con- 2. Linear algorithms such as those based on SR
have an advantage of error-free scaling over sur-textural parameters.

3. Contexture-based scaling methodologies may also faces with density changes without interfaces be-
tween cover types. However, linear algorithmsbe useful for estimating the effects of surface het-

erogeneity on surface–atmosphere mass and en- also induce scaling errors for mixed pixels be-
cause of the interfaces. Mathematically, the inter-ergy exchange calculations using remote sensing

data. The correlation between variables involved faces cause discontinuities in the algorithm and
these discrete changes in the surface propertiesin the exchange processes, which is the main

cause of the scaling problem, may also be quanti- are better quantified using contextural rather than
textural parameters.fied using contextural rather than textural parame-

ters because the existence of water bodies or 3. Nonlinear algorithms, such as those based on
mixed cover types in a pixel may be the main rea- NDVI, have both problems of nonlinearity and
son for the correlation between the variables. For discontinuity. The nonlinearity causes scaling er-
example, partial water coverage in a pixel can rors even for surfaces with only density changes,
cause strong spatial correlation between surface but the errors are generally very small (a few per-
temperature and evapotranspiration. After compre- cent). The discontinuity problems are similar to
hensive numerical simulations. Bonan et al. those of SR-based algorithms and not investi-
(1993) turned to “statistical representation of mul- gated here.
tiple land surfaces within a grid cell” for meso- 4. For the most common scaling problem across
scale and climate models. This implies a con- land-water interfaces, the nonlinear algorithm
textural representations. based on NDVI when forced through the origin

(i.e., NDVI50 at LAI50) induces no discontinu-
ity problem, and the methodology for estimatingCONCLUSIONS
the scaling effect is simpler than that based on

Through theoretical derivation and image analysis, it is SR with a discontinuity problem. In using such
demonstrated that a contextural parameter based on the an NDVI algorithm, only the information of the
fractions of subcomponent areas is effective for quantify- water area fraction within a pixel is needed for ac-
ing the scaling effect on deriving surface parameters. In curate estimation of the scaling effect. When a
scaling remote sensing measurements over terrestrial SR algorithm is used, an additional input for the
surfaces, mixed landcover types in a pixel are the major parameter value over land within the mixed pixel
problem causing scaling errors. The principles of the is required. This would induce a small uncer-
contexture-based methodology are shown using examples tainty, although the value can be readily esti-
of land–water mixed areas because the interface between mated from the neighboring pure land pixels.
land and water has the largest contrast and is of key con-
cerns in scaling. The most important conclusion of this The author is indebted to Dr. Josef Cihlar for helpful discus-
study is that for accurate derivation of surface parame- sions. The assistance of Micheal Sarich and Eddy Yu is greatly
ters for images at a given spatial resolution, a water mask appreciated. Gunar Fedoseyevs provided useful comments on

an early version of this manuscript.at a higher resolution is required. In using AVHRR im-
ages, for example, a water mask giving the percentage of
open water bodies in each pixel is very useful for improv- APPENDIX: SCALING BASED
ing surface parameter maps. Since a water mask is fairly ON CONTEXTURE
stable with time (if floods and transient water bodies are

Scaling from Bands to Vegetation Indicesexcluded), it would be a worthwhile long-term invest-
ment to produce such a mask for a given region of inter- A specific case of a mixed vegetation–water pixel is dem-
est and for the globe using mosaics of high resolution onstrated here. With the water area fraction of w in the
images such as from Landsat or SPOT. pixel, the mean pixel reflectances in the red and NIR

In addition, the following technical conclusions are channels are given in Eqs. (A1) and (A2):
drawn:

qr5wqrw1(12w)qrl (A1)
1. Contexture-based methods for quantifying scaling

andeffects on the derivation of biophysical parame-
ters are not only alternatives to the methods qn5wqnw1(12w)qnl , (A2)
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where qrw and qrl are the red reflectance of water and
land surfaces, respectively, and qnw and qnl are the near-
infrared reflectance of water and land surfaces, respec-
tively. The mean NDVI and SR for the pixel from these
mean pixel reflectances are

NDVI5
w(qnw2qrw)1(12w)(qnl2qrl)
w(qnw1qrw)1(12w)(qnl1qrl)

(A3)

and

SR5
wqnw1(12w)qnl

wqrw1(12w)qrl

. (A4)

Equations (A3) and (A4) can be considered as the
first step in scaling: from bands to vegetation indices
(VIs). This step is important because remote sensing
measurements are obtained as the means of individual
bands at a given resolution, and VIs calculated from the
mean reflectances of the individual bands are different
from those calculated as the means of VIs of small pixels.

Figure 12a shows how NDVI and SR change with
subpixel w theoretically, where qrl50.03, qnl50.17, and
qrw5qnw50.02. These values are representative values for
the boreal landscape. For clear and deep waters, qrw.qnw,
but they are taken as the same here for simplicity since
the absolute difference (after atmospheric correction) is
small. The NDVI–w relationship is strongly nonlinear,
indicating that the scaling from individual channels to
NDVI is a necessary step. The SR–w relationship is ap-
proximately linear, suggesting that SR has an advantage
over NDVI in this initial scaling step. Figure 12b shows
the similar relationships found from the nine selected ar-
eas (Fig. 3). It is shown that the linear SR–w relationship
is appropriate, and that NDVI is indeed nonlinearly re-

Figure 12. Variation of NDVI and SR with subpixellated to w. For the mathematical convenience of deriving water area fraction: a) theory [Eqs. (20) and (21)]; (b)
the NDVI–LAI scaling algorithm below, this NDVI–w data from the nine selected areas (Fig. 3).
relationship is approximated using the power function.
As shown in Figure 12b, the power function captures the
nonlinearity reasonably well, but may cause some error mote sensing measurements. The solid thin curve from
at low w values. These linear and power relationships are the origin represents the distributed NDVI–LAI relation-
then used in SR and NDVI scaling algorithms in this ship when the LAI of the land surface has a fixed value
study. of Lland and the water area fraction varies from zero (at

the intercept A) to 100% (at the origin) assuming NDVI
NDVI Algorithm of the water surface is zero. Since LAI in this mixed

pixel is proportional to (12w), this relationship can beThe schematic diagram shown in Figure 1a is referred
to here for the calculation of the scaling effect using wa- described by (Fig. 12b)
ter area fractions (w) as a contextural parameter. For a NDVI5c0Lb0 . (A6)
pixel consisting of land and water surfaces, the diagram

This relationship represents the distributed case be-illustrates how the difference in LAI occurs between the
cause it allows the retrieval of the correct LAI values us-distributed and lumped calculations. The relationship be-
ing the knowledge of w which is to be obtained fromtween LAI and NDVI for the lumped case (solid thick
small pixels (distributed).curve) is

At the intercept A, c0Lb0
land5cLb

land ; therefore,
NDVI5cLb , (A5)

c0

c
5Lb2b0

land (A7)where a and b are constants. This relationship is ob-
tained at a fine resolution, but used for a coarse resolu-
tion image as a common case encountered in scaling re- The difference between the distributed and lumped LAI
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estimations is the difference between the intercept where SRB5SRc and
points B and C on these two curves by a horizontal line SRC5a01d0(12w)Lland (A16)
defined by the mean NDVI of the mixed pixel. At C, the

From Eqs. (A8) and (A14)–(A16), it can be shown thatLAI value is

LC5(12w)Lland , (A8)

and, from Eq. (A6), the NDVI value is LC2LB

Lland

55w
a12a0

d1Lland

, w,
d1Lland

a12a01d1Lland

12w, w>
d1Lland

a12a01d1Lland

(A17)

NDVIC5c0[(12w)Lland]b0 . (A9)

Since NDVIC5NDVIB, from Eq. (A5) we have Equation (A17) shows that the relative difference in LAI
between the lumped and distributed calculations using

LB51c0

c 2
b

[(12w)Lland]b0/b (A10) an SR algorithm is a function of both water area fraction
and LAI over land, and that the method is slightly more

From Eqs. (A7)–(A10), the difference in LAI between C complicated than that using an NDVI algorithm.
and B relative to Lland can then be determined as
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tique atmosphérique, Université des Sciences et Techniques 9:187–236.
Wood, E. F., and Lakshmi, V. (1993), Scaling water and energyde Lille, 59655 Villeneuve d’Ascq Cedex, France, 343 pp.

Townshend, J. R. C. (1980), The spatial resolving power of fluxes in climate systems: three land–atmospheric modeling
experiments. J. Clim. 6:439–857.earth resources satellites: a review, NASA Goddard Space

Flight Center TM 82020, Greenbelt, MD. Woodcock, C. E., and Strahler, A. H. (1987), The factor of
scale in remote sensing. Remote Sens. Environ. 21:311–332.Townshend, J. R. G., and Justice, C. O. (1988), Selecting the


