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A new set of recently developed leaf area index (LAI) algorithms has been employed for producing a global LAI dataset at 1 km resolution and
in time-steps of 10 days, using data from the Satellite pour l'observation de la terre (SPOT) VEGETATION (VGT) sensor. In this paper, this new
LAI product is compared with the global MODIS Collection 4 LAI product over four validation sites in North America. The accuracy of both LAI
products is assessed against seven high resolution ETM+ LAI maps derived from field measurements in 2000, 2001, and 2003. Both products
were closely matched outside growing season. The MODIS product tended to be more variable than the VGT product during the summer period
when the LAI was maximum. VGT and ETM+ LAI maps agreed well at three out of the four sites. The median relative absolute error of the VGT
LAI product varied from 24% to 75% at 1 km scale and it ranged from 34% to 88% for the MODIS LAI product. The importance of correcting
field measurements for the clumping effect is illustrated at the deciduous broadleaf forest site (HARV). Inclusion of the sub-pixel land cover
information improved the quality of LAI estimates for the prairie grassland KONZ site. Further improvement of the global VGT LAI product is
suggested by production and inclusion of pixel-specific global foliage clumping index and forest background reflectance maps that would serve as
an input into the VGT LAI algorithms.
© 2007 Published by Elsevier Inc.
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R1. Introduction

Exchanges of energy (Bonan, 1995; Sellers et al., 1994),
water (Band et al., 1991; Nouvellon et al., 2000; Su, 2000) and
greenhouse gases (Coops et al., 2001; Frank, 2002; Liu et al.,
1997; Nouvellon et al., 2000) between the land surface and the
atmosphere depend greatly on the functioning of plant leaves.
Models that simulate these exchanges require quantitative
information on the area and density of vegetation (Dickinson,
1995). Leaf Area Index (LAI) is a key quantitative information
in this context (Buermann, 2002), where LAI is defined as one
half of the total green leaf area per unit ground surface area
(Chen & Black, 1992).

For effective use in ecosystem models for large area
applications, LAI data must be collected for a long period of
time and should represent every region of the terrestrial surface
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(Myneni et al., 2002). Also, due to different definitions of LAI,
different measurement protocols and instruments and different
considerations of canopy architecture, LAI products can vary
significantly, and it is desirable to have accurate and consistent
products for global and regional applications (Deng et al., 2006).
Satellite remote sensing is the most effective means of collecting
such global fields on a regular basis. Global LAI estimates have
been routinely produced using MOderate Resolution Imaging
Spectroradiometer (MODIS) data at 1 km resolution and time-
intervals of 8 days (Myneni et al., 2002). In the MODIS
algorithm, a three-dimensional canopy radiative transfer model
is used to derive relationships between the spectral signatures of
a vegetated canopy and its structural characteristics (Knyazikhin
et al., 1998b,a; Myneni et al., 1997). These relationships are used
to relate LAI to measured spectral reflectances at various
observation angles. Various levels of accuracy and success have
been reported in MODIS product evaluation studies (Abuelga-
sim et al., 2006; Cohen et al., 2006a, 2003; Fensholt et al., 2004;
Huemmrich et al., 2005; Tan et al., 2005; Wang et al., 2004).
MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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Table 1 t1:1

Dates of BigFoot maps used for validation t1:2

t1:3Site Date

t1:4AGRO 11-Aug-2000
t1:5HARV 4-Aug-2000
t1:626–28-Jul-2001
t1:7KONZ 6-Jun-2000
t1:818-Jun-2001
t1:9NOBS 14-Jul-2000
t1:1014-Jul-2001
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Based on previous works (Brown et al., 2000; Chen, 1996;
Chen & Cihlar, 1997; Chen & Leblanc, 1997, 2001; Chen et al.,
2002; Roujean et al., 1992), Deng et al. (2006) developed a new
set of LAI algorithms for the purpose of deriving an alternative
global LAI product, using SPOT-4 VEGETATION (VGT) data.
The initial validation of this new product included seven sites in
Canada (Pisek et al., 2007). A limited mutual comparison of
MODIS and VGT LAI products was also carried out. However,
there was an obvious need for further validation outside of
Canada to demonstrate the reliability of this global product. In
this study, we carry out comparisons of MODIS and VGT LAI
products over a set of LAI reference sites.

One set of LAI data that is optimal for this study is the
BigFoot (http://www.fsl.orst.edu/larse/bigfoot/) (Running et al.,
1999). The BigFoot project covers nine flux tower sites from
Alaska to Brazil represent different biomes. Field data
were collected over 25 km2, and Landsat-7 Enhanced Thematic
Mapper Plus (ETM+) image data and ecosystem process
models were used to characterize an area of 7 km×7 km
around each tower (Cohen et al., 2006a, 2003). Since the
BigFoot LAI ETM+ maps are estimated by independent
measurements from both MODIS and VGT products, direct
comparisons of BigFoot data with MODIS- and VGT-derived
products can help us to assess the quality of these products and
the sources of their errors. The validation procedures are in
agreement with the outlines presented in Morisette et al. (2006).
At most BigFoot sites, there is an existing program of long-term
measurements offering LAI data from various years within the
growing season. The use of this dataset can thus offer insights
into the inter-annual and seasonal variations of LAI.

The aim of this paper is to conduct MODIS and VGT LAI
product validation to assess their quality. Four sites with
multiple year data from the BigFoot project are selected for this
validation. The mutual comparisons of these two products are
also made over the seasonal cycles at the four sites in 2000,
2001, and 2003.

2. Materials

2.1. Study sites

The four BigFoot sites included in this study are AGRO (an
agricultural system in Bondville, Illinois, USA), HARV
(Harvard Forest, Massachusetts, USA), KONZ (Konza Prairie,
Kansas, USA), and NOBS (Northern Old Black Spruce,
Manitoba, Canada). Campbell et al. (1999) provide detailed
descriptions of these sites. The AGRO site is centered at 40.01°
N and 88.29° W. The land cover consists of fields with annually
harvested crops (Cohen et al., 2003) and a rural community
occupying the southeastern corner of the site. The Harvard
forest site (HARV; 42.37° N, 72.25° W) represents a temperate
mixed forest (Magill et al., 2004). In addition to the closed
forest canopies there are a few areas of wetlands, grasslands and
water bodies. KONZ (39.08° N, 96.62° W) is predominantly a
tallgrass prairie. In the northern part of the site there are areas of
deciduous broadleaf forest (Hall et al., 1990). The NOBS site
(55.88° N, 98.48° W) has a cover of up to 70% of black spruce
Please cite this article as: Pisek, J., & Chen, J. M. Comparison and validation of
North America. Remote Sensing of Environment (2007), doi:10.1016/j.rse.2006.1
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forest, comprised of mature stands of trees from 60–120 years
in age with tree heights ranging from 7–18 m (Kimball et al.,
1997). This site was previously used in the Boreal Ecosystem
Atmosphere Study (BOREAS, Sellers et al., 1997). A fire
damaged the extreme southern part of the study site in 1981, but
the forest has largely recovered since then.

2.2. ETM+ imagery

Table 1 presents a list of seven ETM+ LAI scenes (UTM
projection, pixel resolution of 25 m) that were acquired from the
BigFoot database (Cohen et al., 2006b). Two scenes were
obtained for each site— one map in 2000 and the other in 2001.
There was only one scene available from the AGRO site in 2000.
Since the site is predominantly occupied by annually harvested
crops and no significant differences were expected between the
various years in the seasonal LAI cycle, the identical scene was
used for the approximate validation of the VGT product
performance during 2001 as well. For each scene, the IGBP
land cover information has also been acquired (Cohen et al.,
2006a). KONZ land cover classification included BigFoot labels
(for the IGBP cropland label, it is specified as soybean or corn).

ETM+ LAI estimates are directly linked to the field
measurements using methods described by Gower et al.
(1999). Cohen et al. (2003) discusses the conversion of the
ETM+ spectral data to Tasselled Cap indices. The indices were
subsequently related to the field LAI measurements by means of
Ordinary Least Squares (OLS) and Reduced Major Axis (RMA)
regressions. Cohen et al. (2003) also provide details on the LAI
prediction accuracy. It is important to note that during field
measurements not all land cover types were sampled (e.g.
deciduous broadleaf forest at the KONZ site), and Cohen et al.
(2003) used LAI values from literature for these cover types.

2.3. VGT LAI product

Based on a geometrical optical model (Four Scale; Chen &
Leblanc, 1997) with a multiple scattering scheme (Chen &
Leblanc, 2001) and LAI algorithms previously derived for
Canada-wide applications, Deng et al. (2006) produced a new
algorithm for the global retrieval of LAI. The algorithmmakes use
of red, near infra-red, and shortwave infrared bands from a
satellite sensor. Global scenes of VGT data are acquired over a
large ranges of solar zenith and satellite view angles, and a
bidirectional reflectance distribution function (BRDF) is needed
for correcting these angular effects and standardization of the
MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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Fig. 1. Comparison of original unsmoothed and temporally smoothed annual
LAI cycle at an agricultural system at AGRO site near Bondville, IL for year
2003.
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collected data (Schaaf et al., 2002).While the usual approach is to
conduct BRDF normalization prior to the input of reflectance
values into LAI algorithms (Chen, 1996; Chen et al., 2002),
BRDF is considered explicitly in the algorithm here. The issue is
solved by using the Four Scale model for simulating the
relationships between LAI and the spectral bands. Since the
vegetation structure is distinctly different among land cover types,
the simulations are made separately for different plant functional
types. The global land cover classification for the year 2000
(GLC2000) dataset (Bartholomé & Belward, 2005; Loveland
et al., 2000) has been used for retrieving the land cover
information. The cover types with similar structural character-
istics were combined to form six groups based on canopy
architecture. The six biomes are (i) needleleaf forest, (ii) tropical
forest, (iii) broadleaf forest, (iv) mixed forest, (v) shrub,
(vi) cropland and grassland. Snow/ice, water body classes, and
bare rock were assigned the value of zero in LAI retrieval.

Based on the model simulations, Deng et al. (2006) fit the
key coefficients in the BRDF kernels with Chebyshev
polynomials of the second kind. The spectral bands are
combined into Simple Ratio (SR) and the Reduced Simple
Ratio (RSR) for LAI retrieval. More detail of the theoretical
basis of the algorithms is given in Deng et al. (2006).

Since VGT is a single-view angle sensor at each ground
location per overpass, the reflectances are mostly affected by the
canopy gap fraction at the view angle (Chen, 1996; Harding
et al., 2001; Weiss et al., 2000). An assumption of the random
leaf spatial distribution is made to invert from gap fraction to
LAI. Under this assumption, the inverted LAI is termed the
“effective LAI” rather than the true LAI (Chen et al., 1997). It is
necessary to convert the effective LAI using the clumping index
to retrieve true LAI values. Chen et al. (2005) recently undertook
the first ever global mapping of the vegetation clumping index
using POLDER measurements. Using their results, mean values
for different land cover types were retrieved and used as inputs
into the LAI algorithms. It was not possible to include the
specific value for clumping index for every pixel on a given date
because only eight months of global POLDER-1 at 7 km
resolution were available (Lacaze et al., 2002).

The VGT data used in this study were acquired in the form of
10-day composite (S10) scenes from the SPOTIMAGE/VITO
distribution site (http://free.vgt.vito.be/). The spatial resolution
is 1 km, and the data use the Platee–Carree projection with the
WGS84 coordinate system. The annual global VGT LAI
product consists of 36 scenes that cover the whole year. We used
the data from 2000 and 2001 to match with the maximum
number of available ETM+ scenes from the BigFoot project.
Since the global VGT LAI product was originally produced for
the year 2003, we included these data for the comparison with
MODIS LAI as well.

The downloaded VGT data were already atmospherically
corrected by the application of the Simplified Method for
Atmospheric Correction (SMAC) (Rahman & Dedieu, 1994).
However, the residual atmospheric effects were still consider-
able as abnormally low values within the LAI product were
observed, e.g., erratic reductions of LAI up to a value of 6 over
10 days. To minimize these residual atmospheric effects, Chen
Please cite this article as: Pisek, J., & Chen, J. M. Comparison and validation of
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et al. (2006) developed a procedure named Locally Adjusted
Cubic-spline Capping (LACC) to reconstruct the seasonal
trajectory of LAI. A series of cubic spline curves are applied to
the annual cycle of LAI, and optimum local smoothing
coefficients are assigned to every LAI value based on the
curvature of the initially fitted curve with an average global
smoothing coefficient. In this way, the resulting capping curve
is automatically adjusted to both rapid and slow variations in
LAI in various seasons. This procedure avoids the problem of
rigid seasonal trajectory shapes by simple overlapping of a few
harmonics in the existing FASIR (Sellers et al., 1994) and
ABC3 (Cihlar et al., 1997) methods. The performance of the
LACC method is illustrated in Fig. 1 for one pixel within the
AGRO site. The LACC method has been applied to every pixel
of the global VGT LAI product.

2.4. MODIS LAI product

The MODIS Collection 4 LAI product and land cover
classification schemes were acquired in a form of ASCII subsets
from the Distributed Active Archive Center (DAAC) database
of Oak Ridge National Laboratory (http://www.modis.ornl.gov/
modis/index.cfm). The subset profiles are presented in 1 km
resolution with a time-interval of 8 days. The prepared ASCII
subsets have already been re-projected and they match the
BigFoot sites' layout. The available ASCII subsets were
downloaded for the years 2000, 2001 and 2003 to cover the
same periods as the VGT LAI product. All mentions of the
MODIS product in this paper refer to MODIS Collection 4
unless noted otherwise.

Along with the LAI fields, the Quality Flags for the MODIS
product were obtained. Under optimal circumstances, a look-
up-table (LUT) method is used to achieve inversion of a three-
dimensional radiative transfer model (Myneni et al., 2002).
When this method fails to localize a solution, a back-up method
based on a relationship between the normalized difference index
(NDVI) and LAI (Knyazikhin et al., 1998a; Myneni et al., 1995)
is utilized. The Quality Flags serve to determine the origin of the
MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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Table 2t2:1

List of IGBP land cover classes, present at BigFoot sites, and their codes as used
in Fig. 1t2:2

t2:3 IGBP class code Land cover type

t2:4 1 Needleleaf evergreen forest
t2:5 4 Deciduous forest
t2:6 5 Mixed forest
t2:7 6 Closed shrubland
t2:8 7 Open shrubland
t2:9 8 Woody savanna
t2:10 9 Savanna
t2:11 10 Grasslands
t2:12 11 Permanent wetlands
t2:13 12 Cropland
t2:14 13 Urban/built-up area
t2:15 14 Cropland/natural vegetation
t2:16 16 Barren
t2:17 0 Water
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calculated value or mark pixels where no retrievals were made.
Cohen et al. (2003) originally noted the actual descriptions of
the Quality Flags in Collection 4 are not easy to understand. The
Quality Flags scheme was simplified here to display only
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Fig. 2. Relative proportions of land cover types at each site in 2000, as mapp
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whether the value was calculated by the main algorithm, back-
up algorithm, or if the value was not retrieved.

3. Methods

The overall quality of LAI products depends on a few key
factors that influence the accuracy of the retrievals. The first
factor is the uncertainty in the input land cover data. The effect
of land cover misclassification for MODIS and VGT products
varies depending on the similarity among biomes. MODIS LAI
algorithm also employs a six class biome suite defined in
Myneni et al. (2002). Myneni et al. (2002) calculated this LAI
difference to be up to 50% when distinct biomes are
interchanged. We assessed relative proportions of land cover
types within every BigFoot site first. This assessment offered an
insight into the role of uncertainties in land cover information in
actual LAI retrievals that were compared in the next step. Both
MODIS and the BigFoot project use IGBP classification, but the
share of the land cover classes present might vary due to the
different image resolutions (25 m vs. 1 km). GLC2000 land
cover types used with the VGT images were transferred into
IGBP equivalents.
TE
D

ed by BigFoot, MODIS, and GLCC 2000. See Table 1 for class names.
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Uncertainties and errors in input surface reflectances are
another source of possible error in the LAI retrievals (Chen et al.,
2002; Fernandes et al., 2003; Yang et al., 2006a). These
uncertainties are mainly due to different atmospheric corrections
and the length of the composite period. These uncertainties might
be larger in the case of the VGT sensor as the composite period is
longer than that used for the MODIS sensor. The selected VGT
reflectances might come from dates further away from the
BigFoot ETM+ maps by a few days. The original reflectance
values were available only for the VGT product. Pisek et al.
(2007) calculated themean difference betweenVGTand Landsat-
5 TM vegetation indices to be 14.5% for their set of validation
scenes in Canada. We believe the magnitude of the uncertainties
introduced by discrepancies in input reflectances between the
high resolution and coarse resolution scenes is similar here.

The main step in the validation procedure consisted of placing
theBigFoot +ETMLAI data on the graphs containing theMODIS
and VGT LAI trajectories for the years 2000, 2001, and 2003.
Each data point on the graph has been produced by averaging the
LAI values over a 7 km×7 km BigFoot site. The products are
UN
CO

RR
EC

Fig. 3. VGT and MODIS Collection 4 2000 LAI trajectories for each site. Means a

Please cite this article as: Pisek, J., & Chen, J. M. Comparison and validation of
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compared over the multi-pixel (patch) rather than on the pixel-by-
pixel basis in this step. This strategy reduces errors due to co-
registration and overlapping uncertainties between various
products (Yang et al., 2006a). Since the LAI values from
MODIS can come from the main RT or the back-up algorithm,
averages over the BigFoot sites were computed first withmain RT
retrievals only and then with included back-up values. Tan et al.
(2005) advise using back-up algorithm retrievals with caution as
they are generated from surface reflectances with high uncertain-
ties. The relative proportion of main and-back up algorithm
retrievals has been also assessed to obtain an insight into the
seasonal course of plotted MODIS LAI trajectories.

The relatively small size (7 km×7 km) of the study sites
poses limits for testing and comparison of these products via
scatter-plots. This is mainly linked to the difficulties of securing
the needed close spatial match between the high resolution and
low resolution scenes. Also, because of the point spread
function behavior of the incoming signal in low resolution
sensors, the retrieved value usually comes from a greater area
than the actual spatial resolution of the sensor (Cihlar et al.,
TE
D
P

nd one standard deviation values are shown. BigFoot data are shown in black.

MODIS and VEGETATION global LAI products over four BigFoot sites in
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Table 3t3:1

Summary of LAI statistics of the four ETM+ maps and those of VEGETATION
and MODIS over the same scenes in 2000t3:2

t3:3 AGRO HARV KONZ NOBS

t3:4 ETM+ Average LAI 3.12 4.10 2.18 2.99
t3:5 S.D. 2.00 1.65 1.17 1.92
t3:6 VGT Average LAI 2.78 4.81 1.64 3.42
t3:7 S.D. 0.67 0.54 0.29 0.32
t3:8 RMSE 0.50 1.05 0.79 0.65
t3:9 MODIS Average LAI 1.52 6.01 1.78 4.32
t3:10 S.D. 0.81 0.79 0.34 0.32
t3:11 RMSE 1.61 2.00 0.88 1.90
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2003; Cracknell, 1998). Puyou-Lascassies et al. (1994) and
Oleson et al. (1995) further demonstrate that the weight of the
signal is also not constant over the field of view and decreases
with increasing distance from the center. Bearing these
limitations in mind, we produced a set of scatter-plots for
each BigFoot site. Acquired ASCII subsets of the MODIS
product were already pre-processed to fit the 7 km×7 km sites.
Aggregating the values to 1 km resolution produced the
UN
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Fig. 4. Same as in Fig. 3, but for year 2001. BigFoot data for A
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equivalent ETM+ LAI estimates. High resolution ETM+ land
cover classifications were also used as input into the VGT LAI
algorithm. Alternative LAI values for 1-km pixels were then
retrieved by weighting the various land cover types by their area
fractions within the pixel. The goal of this exercise was to see
how the LAI retrievals would change with the inclusion of
information about the contexture of low resolution pixels
(Chen, 1999) within the validation sites.

4. Results and discussion

4.1. Land cover comparison

Table 2 includes a list of all IGBP classes present at the four
sites. The greatest agreement among these classification
schemes was observed at the AGRO site (Fig. 2). This was
expected, as the AGRO site was quite homogenous in the
BigFoot high resolution image with 88% of pixels classified as
cropland. The built-up area in the southeastern corner occupied
10% of the total image area. In the MODIS classification all
TE
D
P

GRO site come from year 2000; for other sites from 2001.

MODIS and VEGETATION global LAI products over four BigFoot sites in
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pixels were classified as cropland, and 94% of pixels were
identified as cropland in the GLC2000 classification with 6%
classified as a deciduous forest. The KONZ site results were
also satisfying. Grasslands occupied 78% and 80% in GLC2000
and MODIS classifications, respectively. The share of grassland
in the BigFoot image was lower, at 63% with 17% and 9%
classified as open shrubland and woody savanna, respectively,
and 7% marked as deciduous forest. The differences among the
classifications are due to the distributed pattern of deciduous
broadleaf forest patches and open shrublands in the BigFoot
image, as both low resolution classifications are unable to
produce a similar level of detail. The relative share of forest area
agrees well in MODIS and BigFoot classifications for the
HARV site. MODIS consists of deciduous broadleaf and mixed
forest, while BigFoot classifies 12% of pixels as needleleaf
evergreen forest. There is a small share of grasslands and
permanent wetlands in BigFoot as well. The whole HARVarea
is classified as broadleaf deciduous forest in GLC2000. Since
the RSR-based algorithm is applied for forest pixels in the case
of VGT LAI, the land cover discrepancy should not
significantly affect the range of retrieved LAI values, as
Brown et al. (2000) demonstrated that use of Reduced Simple
UN
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Fig. 5. Same as in Fig. 3, but for year 2003. BigFoot d
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Ratio (RSR) index reduces the dependence of algorithms on
land cover types. The most striking difference in land cover
classifications among the low resolution images and BigFoot
was observed on the NOBS site. MODIS considers most of the
area to be needleleaf evergreen forest whereas BigFoot mapped
the site as open shrubland, savanna and woody savanna, and
permanent wetland. GLC2000 considered the whole area as a
needleleaf evergreen forest. The coniferous forest has been
classified as shrubland or woody savanna in the BigFoot project
mainly due to the relatively lower density of the forest stands.
Random VGT pixels from NOBS site were first marked as a
coniferous forest and then as a woody savanna for the LAI
algorithm. A difference of LAIN2 (38%) had been observed for
July 21, 2000— the peak of boreal summer. An additional map
source has been consulted for verification of the land cover. It
was decided to keep the VGT pixels classified as conifer forest
for the next step of constructing the seasonal trajectories of LAI.

4.2. BigFoot–MODIS–VGT comparison: Seasonal trajectories

MODIS LAI estimates were available from February 26,
2000 (day 57) at all sites. Only the MODIS LAI values with the
TE
D

ata, shown for comparison, come from year 2000.

MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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highest quality flags were used for the construction of the
seasonal trajectories. At the AGRO site, both VGT and MODIS
products follow the beginning and the end of the growing
season reasonably well, and the differences between the
products are minimal (Fig. 3). However, during the peak of
the growing season MODIS delivers unstable results. The
LACC smoothing method is not used in the MODIS product,
although Chen et al. (2006) demonstrated the improvement of
the MODIS LAI product if this method is applied. Tan et al.
(2005) reported similar unstable behavior for broadleaf and crop
pixels for the MODIS Collection 3 product due to mismatch
between the modeled and observed MODIS surface reflec-
tances. Yang et al. (2006b) reported that the problem was caused
by increased aerosol contamination of surface reflectances. As
aerosol contamination increased, the scatter of surface reflec-
tances increased and more data were found to be out of retrieval
domain of main RT algorithm. This resulted in the failure of the
main algorithm. The BRDF effects are not taken into account
within the back-up LAI–NDVI relationships (Shabanov et al.,
2005) and the algorithm generates rather unreliable estimates of
UN
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Fig. 6. Relative proportions of pixels with shown origin of calculated LA
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LAI especially for complicated view geometries. Results from
Fig. 3 indicated that the problem persisted in Collection 4 for
this agricultural site. The median relative absolute error (RAE)
was 88% for the MODIS LAI product, while the RAE of the
VGT LAI product was half as low. VGT retrievals after
smoothing match the expected seasonal trajectory very well.
The maximum LAI value occurs around July 20 (day 202) and it
is in good agreement with the seasonal maximum LAI around 4
observed around nearby flux tower sites according to
FLUXNET ground measurements (http://www-eosdis.ornl.
gov/FLUXNET/). The BigFoot LAI for August 11 also closely
agrees with the seasonal trajectory of VGT.

The MODIS and VGT LAI trajectories are in very good
agreement up to August 4 at KONZ. MODIS LAI does not
decrease below 1 until the beginning of October, while VGT
does so two months earlier. At this site, the MODIS LAI
estimate is closer to BigFoot than VGT. The difference is still
only around LAI of 0.5 between VGT and BigFoot (Table 3).

MODIS estimates for the deciduous HARV site do not
decrease below LAI of 2 during the entire year. However, Yang
TE
D
P

I value at each site in 2001, as represented in MODIS LAI product.

MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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Table 4 t4:1
Comparison of calculated average LAI values over BigFoot sites from MODIS
data, using available Quality 0 level estimates only, and averages calculated by
using back-up algorithms values as well t4:2

t4:3Day AGRO HARV KONZ NOBS

t4:4Q1 Back-up Q1 Back-up Q1 Back-up Q1 Back-up

t4:51 0.00 0.10 3.13 2.82 0.32 0.32 0.00 0.00
t4:69 0.00 0.10 3.26 1.44 0.32 0.32 0.00 0.00
t4:717 0.23 0.22 2.73 0.81 0.32 0.32 0.00 0.00
t4:825 0.94 0.94 2.60 2.09 0.34 0.34 0.00 0.00
t4:933 0.69 0.69 2.38 2.00 0.30 0.30 0.00 0.00
t4:1041 0.84 0.84 1.99 1.05 0.11 0.11 0.00 0.22
t4:1149 0.30 0.30 3.29 1.91 0.57 0.57 0.00 0.67
t4:1257 0.76 0.76 0.19 0.26 0.79 0.79 0.00 0.29
t4:1365 0.35 0.35 0.00 0.69 0.31 0.31 0.00 0.23
t4:1473 0.37 0.37 0.00 0.63 0.29 0.29 0.10 0.14
t4:1581 0.38 0.38 0.18 0.49 0.33 0.33 0.00 0.21
t4:1689 0.45 0.45 0.12 0.51 0.35 0.35 0.12 0.16
t4:1797 0.50 0.50 0.75 0.97 0.47 0.47 0.10 0.20
t4:18105 0.47 0.47 1.78 1.78 0.55 0.55 0.00 0.20
t4:19113 0.52 0.52 2.26 2.26 0.76 0.76 2.49 2.70
t4:20121 0.53 0.53 4.79 4.79 1.23 1.23 2.06 2.06
t4:21129 0.55 0.55 5.07 5.07 1.54 1.54 2.59 2.62
t4:22137 0.52 0.52 6.08 6.04 0.84 1.23 2.12 2.29
t4:23145 0.70 0.70 6.49 6.15 2.15 2.18 2.62 2.62
t4:24153 1.19 1.19 5.45 5.91 2.30 3.04 3.90 3.90
t4:25161 1.16 1.16 0.00 6.10 1.62 2.06 4.44 3.81
t4:26185 3.32 3.32 4.79 5.81 1.10 2.62 4.99 4.99
t4:27193 2.59 3.09 5.98 6.01 1.85 2.23 5.03 5.04
t4:28201 4.33 2.57 4.93 6.01 1.23 1.58 4.34 4.37
t4:29209 1.85 2.07 6.60 6.16 1.84 1.84 4.03 4.24
t4:30217 2.66 2.91 6.18 6.13 1.80 1.90 3.25 3.87
t4:31225 2.65 2.85 5.62 6.00 1.61 1.61 3.67 3.73
t4:32233 2.33 2.20 6.53 6.26 1.84 1.84 2.76 3.02
t4:33241 2.50 2.57 6.49 6.31 1.74 1.74 3.49 3.70
t4:34249 1.33 1.33 6.38 6.30 1.63 1.63 2.64 3.71
t4:35257 1.03 1.03 6.00 6.02 1.67 1.67 2.35 3.50
t4:36265 0.69 0.69 5.95 5.98 1.44 1.44 1.50 2.31
t4:37273 0.61 0.61 5.40 5.45 1.49 1.49 1.78 2.87
t4:38281 0.22 0.22 5.13 5.14 1.17 1.17 0.92 1.95
t4:39289 0.47 0.47 3.49 3.69 1.01 1.01 0.56 0.53
t4:40297 0.42 0.42 2.72 2.72 0.65 0.65 2.01 1.57
t4:41305 0.40 0.40 2.66 2.69 0.51 0.51 0.00 0.00
t4:42313 0.39 0.39 1.96 2.23 0.48 0.48 0.00 0.00
t4:43321 0.63 0.63 2.27 2.31 0.43 0.43 0.00 0.00
t4:44329 0.36 0.36 2.08 2.57 0.35 0.35 0.00 0.00
t4:45337 0.71 0.71 1.96 2.05 0.37 0.37 0.00 0.00
t4:46345 0.49 0.49 1.96 2.74 0.41 0.41 0.00 0.00
t4:47353 0.64 0.64 2.26 2.74 0.37 0.37 0.00 0.00
t4:48361 0.31 0.31 2.45 2.45 0.35 0.35 0.00 0.00
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et al. (2006a) recently reported that in the new prototype
Collection 5 product winter LAI already decreases to b0.5 at
this location. This is in better agreement with the VGT product.
MODIS produces fairly stable values around LAI of 6 during
the summer, while the VGT trajectory is more variable due to a
series of poorer quality data from the mid-summer. The BigFoot
LAI of 4.1 is smaller than the VGT and MODIS values. In the
case of MODIS the difference reaches a magnitude of 2. The
field measurements were acquired using LICOR-2000 instru-
ment according to the methodology outlined by Gower et al.
(1999). However, clumping index values were not obtained for
the site and the BigFoot HARV data were not corrected for
foliage clumping, i.e. the effect of non-random leaf spatial
distribution. The BigFoot data are thus arguably under-
estimated in comparison with the true LAI values.

The NOBS site is marked by a very simple seasonal cycle
with a linear increase in LAI with the peak around July 20 and a
subsequent linear decrease (Fig. 3). BigFoot matches relatively
closely VGT in terms of LAI with a difference of less than 0.5.
The clumping correction was not an issue with BigFoot in this
case as the field estimates were established via allometric
methods (Cohen et al., 2006a, 2003). MODIS tended to greatly
over-estimate LAI especially during the late summer but there
was a close agreement between VGT and MODIS during the
early summer. It must be acknowledged the modeled seasonal
trajectory by the VGT LAI product outside the growing season
is spurious for high latitudes. Yang et al. (2006c) and Cohen
et al. (2006a) identified poor illumination conditions, extreme
solar zenith angles, snow and cloud contamination, and the
signal from the understory as the main factors for the similarly
poor performance of the MODIS LAI product at high latitudes.
The same factors also affect the quality of the VGT LAI product
for high latitude estimates during the winter season, but we
believe that leaf chlorophyll content may also be an important
factor.

BigFoot LAI validation data were also available for 2001
except for the AGRO site. Seasonal trajectories were further
produced from MODIS and VGT for 2003. Figs. 4 and 5 show
the results. The greatest difference among the various years was
observed at AGRO. This was caused by the variation of crops
present at the site during different years. NOBS was
characterized by the smallest inter-annual differences in the
trajectory. In 2001 VGT estimates were also closely matched
with BigFoot. MODIS LAI retrievals for NOBS were rather
unstable and over-estimated. On the other hand, VGT tended to
underestimate LAI for the KONZ site in 2001; both MODIS and
VGT estimates were again very similar during 2003. Seasonal
trajectories during the main growing season were also
reasonably similar for the HARV site in 2001 and 2003. Similar
discrepancies were observed between BigFoot and the low
resolution products in 2000 and 2001. This further confirms the
systematic nature of these underestimated BigFoot data due to
an unaccounted clumping effect and its importance in producing
reliable validation data (Chen & Cihlar, 1996; Leblanc et al.,
2005). MODIS was characterized by a greater standard
deviation of the LAI predictions than VGT for every site and
year in which the comparisons were made.
Please cite this article as: Pisek, J., & Chen, J. M. Comparison and validation of
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The relative instability of MODIS estimates was further
examined by comparing the changing proportions of values
produced by the main RT and back-up algorithm through the
year. The results offer very similar patterns for all three years
and only results for 2001 are presented here (Fig. 6). With the
exception of NOBS, a significant amount of MODIS retrievals
comes from a back-up algorithm during the peak of the growing
season (KONZ, HARV) or is not produced at all (AGRO). This
is not an optimal situation since most of the validation effort is
usually carried out during the summer period. The comparison
of site averages, calculated from the main RT values only and
then with back-up results included for year 2001, is shown in
MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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Table 4. The biggest differences are observed at the HARV site,
where the inclusion of back-up values actually resulted in lower
LAI averages. The differences were negligible in most of the
cases for AGRO and KONZ sites. Differences around LAI of 1
were observed for the NOBS site from day 249 to day 281.
However, BigFoot LAI was available for day 195 when both
alternatives of MODIS product closely matched.

The findings presented above document that the VGT product
seems to deliver reliable information within the snow free
growing season about the seasonal cycle of LAI at the four
BigFoot sites. The seasonal trajectoriesmatched very closely with
MODIS during the start and end of the growing season in most
cases except for evergreen conifers. VGT tended to produce good
and stable results during the maximum growing period. Both
MODIS and VGTLAI values seemed to underestimate LAI at the
KONZ site. The standard deviation of VGT LAI during the
growing season is smaller than that ofMODISLAI. The use of the
LACC smoothing method in the VGT LAI production procedure
is considered to be effective in securing a good quality of the
UN
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EC

Fig. 7. Comparisons of MODIS (grey) and VGT (black) LAI values for year 2000 wi
were calculated at 1-km resolution, and the ETM+ LAI was calculated at 25-m resolu
cover fractions within coarse resolution VGT pixels is shown for KONZ site. See te
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product. VGT estimates were also shown to match closely with
BigFoot data at three out of four sites.

It is interesting to observe that results from both VGT and
MODIS main algorithm approaches tend to deliver mutually
corresponding retrievals for grassland and cropland biomes
(AGRO, KONZ). The one-dimensional RT model is invoked
for these biomes in MODIS approach (Knyazikhin et al.,
1998a). Minimal leaf clumping and leaf distribution are very
close from that the current MODIS RT methodology originally
evolved from (Myneni et al., 1991, 1997), i.e. the canopy is
assumed to be a homogeneous medium of infinitesimal scatters
(Goel, 1989; Myneni et al., 1989; Pinty & Verstraete, 1998).
However, these assumptions do not hold for forest canopies and
the full 3-D method is applied for the biomes in both algorithms,
although the VGT algorithm is based on a GO model (Four
Scale) with a multiple scattering scheme. The largest differences
between these two products are observed in forested sites with
VGT LAI retrievals being mostly closer to the field LAI
estimates than the MODIS retrievals.
TE
D
P

th those retrieved from ETM+ map of BigFoot sites. The VGT and MODIS LAI
tion. The effect of improving LAI relationship by weighting LAI retrievals land
xt for further details.

MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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We believe the core of the problem lies in the way the
radiation interaction with forest canopies with complex
structures is modeled. MODIS LUTs of the main algorithm
store only a single-scattering albedo at a reference wavelength
and at the red and NIR wavelengths (Shabanov et al., 2005), and
this single scattering albedo is used to estimate multiple
scattering in successive orders in turbid media (Knyazikhin
et al., 1998a). The multiple scattering scheme, used for
producing the LUTs in the VGT LAI algorithm, addresses the
geometrical effects on higher order scattering that can not be
accounted for within turbid media-based RT models because the
mutual shadowing effects among large geometrical structures
(e.g. tree crowns) can not be effectively modeled without
explicit mathematical description of these structures. The Four-
Scale multiple scattering scheme is based on view factors
among sunlit and shaded parts of tree crowns in the canopy, the
background and the sky (Chen & Leblanc, 2001). This scheme
can thus capture the strong multiple scattering among tree
crowns which is the major scattering component in forest
canopies, although multiple scattering within tree crowns is still
a weakness in this GO model. This scheme is also effective in
stimulating the angular dependence of the first, second, and
higher order scattering as affected by sun and view angles and
the canopy structure and in particular the strong enhancement of
UN
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Fig. 8. Color-coded global map of VEGETATION and MODIS

Please cite this article as: Pisek, J., & Chen, J. M. Comparison and validation of
North America. Remote Sensing of Environment (2007), doi:10.1016/j.rse.2006.1
D
PR

OO
F

reflectance due to multiple scattering around the hotspot — the
feature that turbid media RT approaches can not easily simulate
with reasonable radiance magnitude and angular width. For the
coming MODIS Collection 5 product, a new stochastic RT
model has been applied to achieve a better consistency of
simulated and MODIS surface reflectances (Shabanov et al.,
2005). It remains to be seen if the modification will improve the
quality of MODIS retrievals in comparison with ground data.

The quality of the retrievals is also influenced by the length
of the compositing period. Shabanov et al. (2005) documented,
using a prototype Collection 5 product, that extending the
MODIS compositing period from 8 to 10 days reduces the
number of back-up LAI values by 15%. This also includes a
decrease in the retrieval uncertainties, assuming the phenolog-
ical changes during the compositing period are not significant.

4.3. BigFoot–MODIS–VGT comparison: pixel-by-pixel

Although pixel-by-pixel comparisons were not attempted in
previous MODIS LAI validations (Cohen et al., 2006a, 2003;
Tan et al., 2005; Yang et al., 2006a), we believe that a validation
is not complete without doing this comparison. Fig. 7 shows four
selected scatter-plots for the pixel-by-pixel comparisons of the
LAI products. BigFoot estimates were aggregated from 25 m to
TE

LAI fields from the peak of boreal summer — July 2003.

MODIS and VEGETATION global LAI products over four BigFoot sites in
2.004
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Fig. 9. VGT-MODIS July 2003 global map differences by land surface area.
Negative values signify LAI over-estimation by MODIS, positive values mark
higher LAI values in VGT LAI product.
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1 km resolution and matched with corresponding low resolution
pixels of MODIS and VGT. VGT and MODIS scenes were
selected according to their acquisition period to overlap with the
dates of BigFoot ETM+ scenes. The scatter-plot for the AGRO
site confirms the effectiveness of applying the LACC smoothing
method. Both VGT and MODIS original retrievals were poor in
quality due to unfavorable atmospheric conditions. The VGT
LAI values were generally under-estimated. The main MODIS
RT algorithm failed and the back-up filtered values were
produced instead. Fig. 7 shows that the LACC method
succeeded in reviving the relationship between the final VGT
product and BigFoot LAI values as the values are equally
occupying the sides of the 1:1 regression line. In contrast,
MODIS retrievals bear virtually no relationship with BigFoot
data. The median relative absolute error (RAE) for the AGRO
site was 88% for the MODIS LAI product, while the RAE of the
VGT LAI product was half of this value. The RAE value was
25% for the VGT LAI estimate and 35% for the MODIS LAI
estimate at the HARV site. The over-estimation of LAI values by
VGT and MODIS in the HARV scatter-plot can be explained by
the omission of the clumping effect in the BigFoot retrievals.
RAE values for the NOBS site were 37% for the VGT LAI
product and 65% for the MODIS LAI product. MODIS LAI
estimates had smaller RAE value (47%) than VGT LAI product
(76%) at the KONZ site. Fig. 7 further demonstrates the effect of
including the contextual information in the input land cover map
for the VGT LAI algorithm at the KONZ site. Weighting LAI
according to the land cover fractions within each 1 km×1 km
pixel improved the slope of the BigFoot–VGT relationship as it
follows a similar vector direction as the 1:1 regression line. The
treatments were carried out for other sites as well, but the results
did not differ from the original plots due to the homogeneity and
limited variation of the land cover within these sites.

The scatter-plots are produced for very small areas
(7 km×7 km). Geolocation uncertainties and pixel-shift errors
due to point spread function may not change the general trends
in the plotted values of the coarse resolution products and
BigFoot data, but they can contribute to the observed scattering
of the values in the plots.

4.4. MODIS and VGT global LAI maps

Both global LAI products are displayed in Fig. 8 from the
peak period of the boreal summer. Fig. 5 offers an explanation
for the difference in LAI values for boreal forests.

At NOBS, MODIS tended to significantly overestimate the
LAI values measured by BigFoot or VGT. The similar behavior
over boreal forest areas can be observed in Fig. 8. This concurs
with the findings of Shabanov et al. (2005) about the anomalies
of retrievals over woody vegetation in the Collection 4 data.
Shabanov et al. (2005) concluded this behavior at high LAI
values in Collection 4 was due to the errors in BRDF modeling
for black soil sub-problem of the algorithm.

Smaller LAI differences (LAI diff.b0.5; Fig. 9) are present
over certain areas with herbaceous vegetation. This is linked to
the poorer data quality of the MODIS retrievals during winter
and summer months. A large number of values are then pro-
Please cite this article as: Pisek, J., & Chen, J. M. Comparison and validation of
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Oduced by the back-up algorithm. Tan et al. (2005) showed the
back-up algorithm overestimates can amount up to a world-wide
difference of LAI=1.5 against RT-algorithm retrievals during
the peak boreal summer. With respect to the VGT performance
over the KONZ site in 2003 (Fig. 5), an under-estimation of LAI
(LAI diff.b0.5) by the VGT algorithm within certain types of
herbaceous vegetation cannot be excluded as well.

5. Conclusions

This research is focused on the validation of a new global
LAI product from SPOT4-VGT data. This validation was
carried out by means of comparing seasonal LAI trajectories
with the MODIS Collection 4 product over four BigFoot sites in
2000, 2001, and 2003. BigFoot ETM+ LAI maps in 2000 and
2001, directly based on field measurements, were used for
verification of the retrievals. A reasonable agreement was found
between MODIS and VGT seasonal trajectories at the BigFoot
sites. This was the case especially at the start and end of the
growing season except for the NOBS site. However, they
differed during the summer periods. A good agreement between
VGT and BigFoot was observed at three out of four sites.
MODIS values tended to be unstable with large standard
deviations and generally overestimated LAI during the peak of
the growing seasons. The median relative absolute errors of the
products ranged from 25% (VGT LAI estimate for the HARV
site) to 88% (MODIS LAI product for the AGRO site). It was
demonstrated that the relatively poor performance of MODIS
Collection 4 is caused by the failure of the main radiative-
transfer (RT) based algorithm to produce LAI values. Following
Tan et al. (2005), we assume this is due to the persisting
problems of MODIS Collection 4 to match modeled and
measured reflectances from the MODIS sensor. Yang et al.
(2006a) reported improved LAI retrievals in the prototype
Collection 5 version of the MODIS product, where the amount
of over-estimation of the LAI retrievals should be further
limited, especially outside the growing season.

At the HARV site, the importance of correcting the field
measurements for clumping effects was demonstrated. Since
this correction was not done in this BigFoot site, its LAI values
were significantly lower than both MODIS and VGT estimates
for this site. The use of the sub-pixel land cover information in
MODIS and VEGETATION global LAI products over four BigFoot sites in
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retrieving LAI with VGT data considerably improved the
quality of LAI estimates for the KONZ site in comparison with
a BigFoot ETM+ LAI map. This is in agreement with our
validation results for seven selected scenes in Canada (Pisek
et al., 2007). Similar improvements for the other three BigFoot
sites were very small due to their land cover homogeneity.

The results of this study suggest that the new global VGT
product could be a sound alternative to the MODIS product,
although further validations of both products are still needed in
other regions. The validation is needed particularly during the
key phenological periods and the in-situ measurement activities
in this direction are encouraged. The synergy between the
ground measurements at Fluxnet sites (Baldocchi et al., 2001)
and the remote sensing validation could also improve the
representativeness of sites. As this study recognized the
importance of the correct assessment of the foliage clumping
effect, future work will be dedicated to the production of global
pixel-specific clumping index and forest background reflec-
tance maps that would serve as an input for the VGT LAI
algorithms.
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