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Gross primary productivity (GPP) quantifies the photosynthetic uptake of carbon by ecosystems and is an im-
portant component of the terrestrial carbon cycle. Empirical light use efficiency (LUE) models and
process-based Farquhar, von Caemmerer, and Berry (FvCB) photosynthetic models are widely used for GPP
estimation. In this paper, the MODIS GPP algorithm using the LUE approach and the Boreal Ecosystem Pro-
ductivity Simulator (BEPS) based on the FvCB model in which a sunlit and shaded leaf separation scheme
is evaluated against GPP values derived from eddy-covariance (EC) measurements in a variety of ecosystems.
Although the total GPP values simulated using these two models agree within 89% when they are averaged
for the conterminous U.S., there are systematic differences between them in terms of their spatial and tem-
poral distribution patterns. The spatial distribution of MODIS GPP therefore differs substantially from that
produced by BEPS. These differences may be due to an inherent problem of the LUE modeling approach.
When a constant maximum LUE value is used for a biome type, this simplification cannot properly handle
the contribution of shaded leaves to the total canopy-level GPP. When GPP is modeled by BEPS as the sum
of sunlit and shaded leaf GPP, the problem is minimized, i.e., at the low end, the relative contribution of shad-
ed leaves to GPP is small and at the high end, the relative contribution of shaded leaves is large. Compared
with monthly and annual GPP derived from eddy covariance data at 40 tower sites in North America, BEPS
performed better than the MODIS GPP algorithm. The difference between MODIS and BEPS GPP widens as
with the fraction of shaded leaves increases. The simpler LUE modeling approach should therefore be further
improved to reduce this bias issue for effective estimation of regional and temporal GPP distributions.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The terrestrial gross primary productivity (GPP), defined as the total
photosynthetic uptake of carbon per unit of time and space, is a critical
variable in terrestrial biospheremodels (TBM), as it often represents the
control factor for many other processes in themodel (Jung et al., 2007).
However, estimates of GPP can vary greatly among TBM, even under
similar environmental conditions, because of different algorithms
used to describe the basic photosynthetic processes in response to envi-
ronmental conditions (Coops et al., 2009). Validation of these algo-
rithms against GPP observations is therefore critical to improve the
performances of TBM and our understanding of the interactions be-
tween terrestrial ecosystems and the atmosphere.
and Program in Planning, Uni-
1 416 946 3058.
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Different underlying assumptions on the mechanisms and controls of
the photosynthetic process, and the spatio-temporal resolution of the as-
sociated biotic and abiotic drivers originated a wide variety of TBM. For
example, some prognostic TBM estimate GPP based on surface observa-
tions, like soil and meteorological conditions (Foley et al., 1996;
Haxeltine & Prentice, 1996; Polcher et al., 1998). However, remote sens-
ing observations are particularly useful for assessing the regional distribu-
tion of GPP using diagnostic TBM (Ruimy et al., 1999). Despite the large
number of TBM available, it is possible to identify two main strategies
used to estimate GPP. In the first group of models an empirical relation-
ship is used to quantify GPP as a function of light use efficiency (LUE)
and environmental conditions (Houborg et al., 2009). In these models
(henceforth, LUE models), such as CASA (Potter et al., 1993), GLO-PEM
(Prince & Goward, 1995), and the MODIS algorithm (Zhao & Running,
2010), GPP is proportional to the photosynthetically active radiation
(PAR) absorbed by the canopy (APAR), and LUE is derived from empirical
observations of GPP and APAR (Montieth, 1972). One advantage of LUE

http://dx.doi.org/10.1016/j.rse.2012.06.023
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Table 1
Description of the processed BEPS GPP submodel and MODIS GPP algorithm used in
this study.

Model descriptions BEPS MODIS GPP algorithm

Time step Hourly 8-day
Satellite data LAI

Clumping index MODIS fPAR
Land cover Land cover

Inputs Climate data Temperature Temperature
Radiation Radiation
Relative humidity VPD
Precipitation
Wind

Atmospheric data CO2 \
Soil data Soil texture \

GPP calculation f(fPAR,
LUE,Tmin,PAR,VPD)

Processes Canopy structure Two leaves \
Distinguish sunlit/
shaded leaves?

Yes No

Scaling Yes No
Photosynthesis approach FvCB \
Stomatal conductance Ball–Berry \
Evaportansipiration Penman–Monteith Penman–Monteith
Explicit interception
losses of precipitation

Yes No

Soil water factor Yes \
Coupled photosynthesis
and transpiration

Yes \

Rate dynamics First order \
Moisture parameter SWC \
Soil layer 5 \

“FvCB” indicates that photosynthesis calculations are based on enzyme kinetics and
light absorption following Farquhar et al. (1980). Here, the FvCB model is applied to
sunlit and shaded leaves separately (Norman, 1982). “Ball–Berry” indicates a coupled
stomatal conductance-photosynthesis model following Ball (1988) using the relative
humidity as a scalar. We use an analytical solution of the Ball–Berry equation to deter-
mine stomatal conductance (Baldocchi, 1994) in order to improve the computation ef-
ficiency for regional and global simulations.
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models is the very limited number of parameters required to characterize
LUE under non-water limited conditions and for specific vegetation types.
However, the reliability of this approach in assessing GPP, in particular for
spatial and temporal scales beyond those used to derive the empirical re-
lationships, has been questioned, and modifications of the original ap-
proach have been proposed (Sims et al., 2008).

The second group of TBM is based on the mechanistic description of
the photosynthetic biochemical processes occurring at leaf level
(Farquhar et al., 1980). In these models (henceforth, process-based
models), such as SIB2 (Sellers et al., 1996), BIOME3, CLASS (Wang et
al., 2001), Boreal Ecosystem Productivity Simulator (BEPS) (Chen et
al., 1999), and InTEC (Chen et al., 2000), GPP is first computed at the
leaf level and then scaled-up to the whole canopy Big-leaf models,
which reduce the complexity of the canopy to a single leaf (Sellers et
al., 1996) have been extensively used mainly for their simplicity, but
have been shown to introduce significant errors into the calculations
of canopy photosynthesis (Dai et al., 2004; De Pury & Farquhar, 1997;
Norman, 1980; Wang & Leuning, 1998). Another scaled-up approach
is to separate a canopy into multiple layers and to integrate them for
the whole canopy to obtain the canopy-level flux (Leuning et al.,
1995). The multiple-layer approach overcomes the limitation of the
big-leaf approach, but is itself limited by the ability to reliably describe
the structural and functional complexity of the canopy. The two-leaf ap-
proach differentiates between sunlit and shaded leaves and largely
overcomes the deficiencies of the big-leaf approach, as it includes the
highly non-linear response of leaf photosynthesis under sunlit and
shaded conditions (Norman, 1982). In addition, this approach does
not require the same level of complexity in describing the canopy struc-
ture and it is computationally more efficient than the multi-layer
scheme (Dai et al., 2004; Wang & Leuning, 1998).

LUE- and process-based models differ in their ways of simulating
photosynthesis processes and overall complexities. We therefore
expect differences in the simulatedGPP between these two approaches.
The objectives of this study are to (1) quantify the biases existing with
LUEmodels in generating the spatial and temporal distribution patterns
of GPP and (2) investigate the underlying reasons for these biases using
a process-based model. The BEPS model, which is a process-based
two-leaf model (Chen et al., 1999; Ju et al., 2006; Liu et al., 1997), is
used for this purpose. Monthly and annual GPP values, simulated by
the MODIS algorithm and BEPS, are evaluated against GPP derived
from eddy-covariance (EC)measurements from a variety of ecosystems
across the continental U.S. from 2000 to 2005.
2. The models

2.1. BEPS model

The BEPS model used in this study is an hourly process-based diag-
nostic model (Chen et al., 1999; Ju et al., 2006) that computes the
canopy-level GPP as the sum of sunlit and shaded leaf groups using
the FvCB photosynthesismodel (Farquhar et al., 1980). BEPSwas initial-
ly developed for boreal ecosystems as a daily model (Liu et al., 1997),
but it has been expanded for temperate and tropical ecosystems (Feng
et al., 2007; Matsushita & Tamura, 2002; Zhang et al., 2010) and
modified to run on hourly time-scale (Ju et al., 2006). BEPS is driven
by remote sensing, meteorological, and soil data with a set of
biome-dependent biophysical parameters. In the hourly version of
BEPS, stomatal conductance for sunlit and shaded leaves is iteratively
calculated using the Ball–Berry equation (Ball, 1988) and scaled using
a soil water stress index (Ju et al., 2006). Despite its intense computa-
tional requirements, the hourly version of BEPS, was preferred and
used in thiswork because the stomatal conductance calculation is stable
and reliable. On the other side, the parameterization scheme based on
Jarvis (1976) lacks sufficient empirical data for simulations at the conti-
nental scale (Van Wijk et al., 2000). The major characteristics of BEPS
are summarized in Table 1 and the major functions used in BEPS that
are directly relevant to this study are given in Appendix A.

2.2. MODIS GPP algorithm

The MODIS GPP algorithm is designed to provide a regular
eight-day measure of the growth of the terrestrial vegetation (Zhao
et al., 2005). It is calculated daily at 1 km resolution using an empir-
ical LUE model with the following equations:

GPP ¼ LUE� fPAR � PAR; ð1Þ

LUE ¼ LUEmax � f VPDð Þ � g T minð Þ; ð2Þ

fPAR ¼ 1−e−k�LAI
; ð3Þ

where LUEmax is the maximum light use efficiency, f(VPD) is the scalar
of daily vapor pressure deficit (VPD), g(Tmin) is the scalar of daily
minimum air temperature (Tmin) and fPAR is the fraction of the pho-
tosynthetically active radiation absorbed by the canopy. Biome phys-
iological parameters are specified based on the MODIS land cover
classification system using a biome property look-up table (BPLUT)
(Zhao & Running, 2010; Table 1).

3. Data and methods

All inputs and auxiliary data used in this study, including
reanalysis meteorological data from the National Center for Environ-
mental Prediction (NCEP), leaf area index (LAI), foliage clumping
index, land cover map, soil texture data, and other vegetation param-
eters, are described in Section 3.4.
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3.1. BEPS GPP

In this study, BEPS is driven by the NCEP reanalysis meteorological
data, LAI data produced with cloud-free 10-day SPOT-4 VEGETATION
data, the Global Land Cover Map 2000 (GLC2000), foliage clumping
index, and soil data at 1 km resolution. Monthly and yearly GPP
values are aggregated from hourly values from 2000 to 2005.

3.2. MODIS GPP

MODIS is one of the primary globalmonitoring sensors onNASA Earth
Observing System (EOS) satellites and began providing global GPP prod-
ucts (MOD17) in 2000 (Zhao et al., 2005). TheMOD17monthly andannu-
al products from 2000 to 2005 were used in this work (MOD17A, http://
ftp.ntsg.umt.edu/.autofs/MODIS/Mirror/MOD17_Science_2010/) and cal-
culated on daily basis using the MODIS GPP algorithm (Zhao & Running,
2010). The daily meteorological data used to drive the MODIS GPP algo-
rithm, including minimum temperature and VPD derived from the
reanalysis data from NCEP, were interpolated to 1 km resolution using
the distance-weighted method (Zhao et al., 2005). Remote sensing data,
including eight-day fPAR and LAI datasets at 1 km resolution, were from
Collection 5 (C5) products of theMODIS sensor. TheMODIS GPP products
have been tested in previous studies (Coops et al., 2009; Heinsch et al.,
2006; Nightingale et al., 2007; Sasai et al., 2005; Sims et al., 2006, 2008;
Turner et al., 2003, 2005, 2006; Wu et al., 2010; Xiao et al., 2010; Yang
et al., 2007; Zhao et al., 2005, 2006).

3.3. Eddy-covariance (EC) data

EC observations provide invaluable opportunities to evaluate LUE
and process-based models because the EC technique measures carbon,
water, and energy fluxes between ecosystem surface and atmosphere
at very high temporal frequency (i.e., hourly or half-hourly, Baldocchi
et al., 2001). The EC data used were downloaded directly from the
AmeriFlux website (http://ameriflux.ornl.gov). In the Level 4 product,
a continuous record of half-hourly GPP was calculated during daylight
hours as net ecosystem exchange minus ecosystem respiration. Data
gaps of the half-hourly GPP associated with equipment failures or un-
suitable micrometeorological conditions were filled using the Marginal
Distribution Sampling (MDS) method (Reichstein et al., 2005) and the
Artificial Neural Network (ANN) method (Papale & Valentini, 2003).
In particular, monthly GPP was first aggregated from half-hourly values
was first gap-filled using the ANN gap-filled approach, whereasmonth-
ly GPPwas aggregated fromhalf-hourly values using theMDS gap-filled
approach when gap-filled half-hourly values from the ANN approach
were not available. The uncertainties of monthly and annual EC-GPP
(shown in Figs. 1–3) are estimated by standard error (SE) according
to measurement and gap filling error reported by each site. Sites were
discarded from the dataset if less than three monthly GPP values were
available in each growing season. This resulted in a final dataset from
40 AmeriFlux sites across the U.S. (Table 2).

3.4. Regional input data

3.4.1. Meteorological data
Meteorological data, including incoming shortwave radiation, air

temperature, specific humidity, precipitation, and wind speed, were
obtained from NCEP (http://www.esrl.noaa.gov/psd/data). For hourly
modeling, temporal interpolations weremade to produce hourly values
from the six-hour interval dataset. Different interpolation methodolo-
gies were used for the different variables. Specific humidity and wind
speed were assumed constant across the six-hour NCEP interval. Total
precipitationwas equally divided across the six-hour interval. Incoming
shortwave radiation was calculated for each hour as a function of the
solar zenith angle and daily total incoming shortwave radiation from
NCEP. Hourly air temperature was determined with six-hour values
and maximum/minimum values in NCEP data. Hourly NCEP data were
bi-linearly interpolated spatially into 1 km×1 km simulation grids.

3.4.2. Land cover
The Global Land CoverMap 2000 (GLC2000; http://www.eogeo.org/

GLC2000) used in this study was produced by SPOT-4 VEGETATION
data at 1 km resolution. GLC2000 was derived from daily values of sur-
face reflectance and NDVI based on individual methodologies from dif-
ferent countries. The land cover classifications were aggregated to nine
types: evergreen broadleaf forest (EBF), deciduous broadleaf forest
(DBF), evergreen needleleaf forest (ENF), deciduous needleleaf forest
(DNF), mixed forest (MF), crop, grass, shrub, and savanna.

3.4.3. Leaf area index (LAI)
The LAI dataset from 2000 to 2005 was produced with cloud-free,

ten-day synthesis VEGETATION images at 1 km resolution. Reflectance
in red, near-infrared (NIR), and mid-infrared (MIR) was used to estimate
LAI using the algorithm developed by Deng et al. (2006). This algorithm,
based on the 4-Scale geometrical optical model (Chen & Leblanc, 1997),
makes use not only of the surface reflectance of each pixel but also of
the angular information at the time of data acquisition, including solar ze-
nith angle, viewzenith angle, and the difference between sun and satellite
azimuth angles. In this regard, the variation of reflectance in the different
bands with the angles of sun and satellite (i.e., the bidirectional reflec-
tance distribution functions) is considered. For reliable terrestrial applica-
tions of the LAI images, the residual cloud and atmospheric effects in the
LAI images are detected and removed using a Locally Adjusted
Cubic-spline Capping (LACC) method based on the seasonal trajectory
of each grid (Chen et al., 2006). In this algorithm, the effective LAI is de-
rived from the canopy gap fraction retrieved using multispectral data.
The actual LAI is calculated from effective LAI using the foliage clumping
index (described in the next section) obtained from multi-angle remote
sensing. This unique approach is compatible with the need of accurate
separation of sunlit and shaded leaves, which requires not only the LAI
but also clumping index (Eqs. A7a and A7b), and has been evaluated
using data from Canada and the U.S. (Pisek & Chen, 2007).

3.4.4. Clumping index
Structured canopies usually cause large variations in reflectance from

the hotspot, where the sun and view angles coincide, to the dark spot,
where shadows of clumps are maximally observed. The more clumped
a canopy is, the more shadow it has, and hence the darker the dark spot
is. An improved angular index, named Normalized Difference between
Hotspot andDark spot (NDHD),was proposed for retrieving the clumping
index using multiple-angle remote sensing data (Chen et al., 2005;
Leblanc et al., 2005). Through geometrical-optical modeling using the
4-Scale model (Chen & Leblanc, 1997), relationships between NDHD
and clumping index were established for various plant functional types
(Chen et al., 2005; Pisek et al., 2010). Based on these relationships, a global
clumping map at 0.5 km resolution was produced using the MODIS Bidi-
rectional Reflectance Distribution Function product (He et al., 2012). This
product was used in the LAI algorithm to convert the effective LAI to the
actual LAI and for separation of sunlit and shaded leaves.

3.4.5. Soil texture
Soil texture for each 1°×1° grid obtained from NASA (Webb et al.,

1991) was used to estimate hydrological parameters including porosity,
field capacity (water potential at 33 kPa), wilting point (water potential
at 1500 kPa), saturatedhydraulic conductivity, and air entrywater poten-
tial (Campbell &Norman, 1998). These parameterswere used to calculate
the water-holding capacity and the soil water scaling parameter, fw.

3.5. Analytical methods

All statistical analysis was conducted in SPSS14.0 and Microsoft
Excel 2007. Coefficients of determination (R2), slope, root mean

http://ftp.ntsg.umt.edu/.autofs/MODIS/Mirror/MOD17_Science_2010/
http://ftp.ntsg.umt.edu/.autofs/MODIS/Mirror/MOD17_Science_2010/
http://ameriflux.ornl.gov
http://www.esrl.noaa.gov/psd/data
http://www.eogeo.org/GLC2000
http://www.eogeo.org/GLC2000
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Fig. 2. Comparisons of annual gross primary productivity (GPP) estimated by the MODIS algorithm (left) and the BEPS model (right) against measured GPP (mean±SE) at
eddy-covariance sites during 2000–2005. The dashed line is the 1:1 line and the solid and thin line is the regression line for all 120 site-years at 40 sites. Dots in Red circles (2a) are values
of SP1, SP2, and SP3 sites simulated by the MODIS algorithm in the subtropical climate zone. The grey, thicker solid line is the regression line for the rest of the 111 site-years without
consideration of values at the SP1, SP2, and SP3 sites. Model performances are assessed using root mean square error (RMSE) with units of g C m−2 yr−1, slope, and coefficient of deter-
mination (R2). All statistics are significant at the 0.01 level. ENF: evergreen needleleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest.
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square error (RMSE), and relative error (RE) were used to evaluate
the performance of models. RE was calculated as:

RE ¼ 1
n

Xn
i¼1

Calculated GPPi−Measured GPPi
Measured GPPi

� �
� 100%; ð4Þ

where n is the number of samples. Our approach in this analysis was to
comparemodeledMODIS and BEPS estimates of GPP against each other
and also with observed values from micrometeorological flux towers.

4. Results

4.1. Monthly GPP assessment

Comparisons of monthly GPP from MODIS and BEPS against
EC-measured GPP for different land cover types indicated that both
models can capture themonthly variabilitywell atmost of the sites. How-
ever, BEPS, with lower or similar SEs, but always higher R2 (pb0.01), per-
formed better than the MODIS algorithm that had an obvious tendency
for biases (Fig. 1).The R2 between MODIS and EC-measured GPP ranged
from 0.46 in croplands to 0.78 in shrubs and savannas, which were
lower than the corresponding values between BEPS and EC-measured
GPP,which ranged from0.62 in needleleaf forests to 0.83 inmixed forests.
MODIS underestimated EC-measuredmonthly GPP at high GPP but over-
estimated EC-measured monthly GPP at low GPP. This bias existed for all
cover types and was particularly pronounced for broadleaf forests and
croplands (Fig. 1a and d). MODIS performed in needleleaf forests better
than other biome types, but it still underestimated about 26% of monthly
GPP values during higher productive months. Conversely, it over-
estimated all months at three needleleaf forest sites (SP1, SP2, and SP3)
in the subtropical climate zone. BEPS GPP showed little bias and was on
average within of the EC-measured GPP, except in croplands (slope=
0.63, pb0.01). In this cover type, BEPS underestimated about 40% of the
monthly GPP in summer. This bias was evident in particular in irrigated
crops (e.g., Ne1, Ne2, and Ne3 sites, Fig. 1d). BEPS performed best in for-
ests but had larger variances in broadleaf forests, with a RMSE value of
69 g Cm−2 month−1 (Fig. 1b2) and an overestimation of 10% in mixed
forests during few months(Fig. 1c2).
Fig. 1. Comparisons of monthly gross primary productivity (GPP) estimated by the MODIS
AmeriFlux sites during 2000–2005. Both MODIS and BEPS outputs at ~1 km resolution we
and year. Blue square dots in Fig. 1 are values for SP1, SP2, and SP3 sites and the thick solid
formances are assessed using root mean square error (RMSE) with units of g C m−2 mont
Table 1. The dashed line is the 1:1 line and the solid line is the regression line. All stati
mixed forest; Others: shrub and savanna.
4.2. Annual GPP assessment

The overall comparisons of annual GPP across 40 sites also showed
that BEPS yielded higher R2 and lower REs than MODIS (i.e., MODIS:
R2=0.47, RMSE=384 g Cm−2 yr−1 versus BEPS: R2=0.68, RMSE=
347 g Cm−2 yr−1, pb0.01). Because the underestimation of MODIS
GPP in highly productive months was offset by overestimation in
low-productive months, the variance of annual MODIS GPP values
was smaller. When the data at three evergreen needleleaf forest sites
(i.e., SP1, SP2, and SP3) were excluded from the analysis, MODIS GPP
underestimated at high productivity and overestimated at low produc-
tivity (MODIS GPP=0.33×EC-measuredGPP+806, R2=0.64, pb0.01)
(Fig. 3a). On average, BEPS simulated GPP within 5% of EC-measured
GPP (slope=0.95, pb0.01). However, BEPS slightly underestimated
about 21% of the annual estimated GPP at the lower productivity sites,
such as over croplands, shrublands, and savannas, where MODIS over-
estimated GPP.

Similar patterns in the differences between MODIS GPP and
EC-measured GPP are found across different ecosystem types
(Figs. 2 and 3). MODIS explained 39%, 68%, and 78% of the variance
of annual GPP in needleleaf forests, grasslands, and shrub–savanna
lands, respectively, but failed to explain the variance in broadleaf for-
ests and croplands (R2≤0.10). BEPS generally produced higher R2

values and lower SEs than MODIS algorithm for the corresponding
cover types (Fig. 3b). MODIS GPP overestimated GPP in evergreen
needleleaf forest sites (SP1, SP2, and SP3) by 47% (these values are
shown in circles in Fig. 3a). When these sites were excluded, MODIS
algorithm still captured little of the variability of observed values at
the needleleaf forest sites and underestimated/overestimated 25% of
GPP at a high/low end (Fig. 3a1). BEPS GPP for needleleaf forests
was distributed randomly around a 1:1 line against EC-measured
GPP. In broadleaf forests, MODIS GPP underestimated measured GPP
in some years (Fig. 3b) while BEPS overestimate GPP in some years.
MODIS and BEPS GPP were underestimated by about 40-50%
(Fig. 3c) at crop sites. This was because both models largely under-
estimated monthly GPP and failed to capture the monthly patterns
at no-till, irrigated maize–soybean rotation Ne1, Ne2, and Ne3 sites
(Fig. 1d). In particular, MODIS GPP did not show any annual variabil-
ity and was practically constant at around ~800±264 g Cm−2 yr−1.
algorithm (left) and the BEPS model (right) against measured GPP (mean±SE) at 40
re averaged within a 0.05° cell centered over each flux tower location for each month
line is the regression line without consideration of SP1, SP2, and SP3 sites. Model per-
h−1, slope and coefficient of determination (R2). The AmeriFlux sites are described in
stics are significant at the 0.01 level. NF: needleleaf forest; BF: broadleaf forest; MF:
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In general, the comparisons betweenmodeled and observed annual
GPP showed biases similar to those found with monthly MODIS GPP
(i.e., overestimate at the low GPP end and underestimate at high end).
The differences between MODIS GPP and EC-derived GPP were much
larger than the uncertainties of EC-derived GPP. Although the underes-
timation in summer could be offset by overestimation in other seasons,
the annualMODIS GPP tended to be clustered towards certain values re-
gardless of the variance of observations.

The failure of MODIS to represent monthly and annual variability in
GPPmay be associated with the inadequacy of the LUEmodels in captur-
ing changes in canopy physiology over time. Biases inMODIS GPP relative
to observations arise from a lack of sensitivity to canopy density, which is
spatially and temporally variable. Consequently,MODIS GPP is lower than
observed values during the growing season because the contribution of
shaded leaves to canopy photosynthesis is under-represented. Converse-
ly, unrealistically high GPP during the dormant season is associated with
overestimation of the shaded leaf contribution (Sprintsin et al., 2012).
These factors might be responsible for large variability in the
spatio-temporal distribution of GPP, but they are not accounted for in
the LUE modeling approach.

4.3. Continental GPP comparison

The spatial patterns of the average annual GPP estimated by both
models across the continental U.S. from 2000 to 2005 were generally
consistent (Fig. 4). The highest GPP were found in the north, south,
and Pacific Coast regions with values of ~2000–3000 g Cm−2 yr−1.
The lowest GPP (b500 g Cm−2 yr−1) were found in the Rocky
Mountain and Great Plain regions. BEPS GPP was slightly higher
than the MODIS GPP in most areas of the north and south regions,
while it was lower in the Rocky Mountain and Great Plain regions
(Fig. 4). The total GPP from MODIS was larger than BEPS GPP by
~0.42 Pg C yr−1 in the Rocky Mountain and Great Plain regions.

Our pixel-by-pixel comparisons between annual modeled GPP,
showed that the spatial patterns in MODIS GPP were consistent with
those observed at the site-level (Fig. 5). However, annual MODIS GPP
was higher in low productivity pixels and lower in high productivity
pixels than BEPS GPP. The larger systematic differences between
MODIS and BEPS occurred in more clumped canopies (e.g., forests)
and in canopies with large monthly variability (e.g., croplands). The av-
erage annual MODIS GPP was lower than BEPS GPP in needleleaf and
broadleaf forests (34% and 39% less, respectively) and in croplands
with high productivity (56% less). In contrast, annual MODIS GPP was
50% higher than BEPS GPP in croplands with low annual productivity.

The comparison of the six-year average between MODIS and BEPS
GPP for the continental U.S. showed that the differences between
monthly MODIS GPP and BEPS GPP exhibited a double-peak curve
(Fig. 6). MODIS GPP was larger than BEPS GPP from September to late
spring (e.g., April–May), with two peaks around April and October.
MODIS-GPP was lower than BEPS GPP during the summer months. On



Table 2
Site descriptions including site ID, latitude, longitude, vegetation types, available data
periods, and references.

ID Latitude Longitude Vegetation
types

Period References

Blo 38.8953 −120.633 ENF 2000–2005 Goldstein et al. (2000)
Ho1 45.2041 −68.7402 ENF 2000–2004 Hollinger et al. (2004)
Ho2 45.2091 −68.747 ENF 2000–2004 Hollinger et al. (2004)
Me2 44.4523 −121.557 ENF 2002–2005 Irvine et al. (2007)
Me3 44.3154 −121.608 ENF 2004–2005 Irvine et al. (2007)
Me5 44.4372 −121.567 ENF 2000–2002 Irvine et al. (2007)
NC1 35.8115 −76.7115 ENF 2005 Noormets et al. (2010)
NC2 35.8031 −76.6679 ENF 2005 Noormets et al. (2010)
NR1 40.0329 −105.546 ENF 2000–2005 Monson et al. (2005)
SP1 29.7381 −82.2188 ENF 2001–2005 Powell et al. (2008)
SP2 29.7648 −82.2448 ENF 2000–2004 Powell et al. (2008)
SP3 29.7548 −82.1633 ENF 2001–2004 Powell et al. (2008)
Wrc 45.8205 −121.952 ENF 2000–2004 Paw et al. (2004)
KS2 28.6086 −80.6715 EBF 2000–2005 Dore et al. (2003)
Bar 44.0646 −71.2881 DBF 2004–2005 Jenkins et al. (2007)
Ha1 42.5378 −72.1715 DBF 2002–2005 Urbanski et al. (2007)
MMS 39.3232 −86.4131 DBF 2000–2005 Dragoni et al. (2007)
MOz 38.7441 −92.2 DBF 2004–2005 Gu et al. (2007)
Oho 41.5545 −83.8438 DBF 2004–2005 Noormets et al. (2008)
UMB 45.5598 −84.7138 DBF 2001–2004 Curtis et al. (2002)
WCr 45.8059 −90.0799 DBF 2000–2005 Cook et al. (2008)
LPH 42.5419 −72.185 MF 2002–2005 Hadley et al. (2008)
Syv 46.242 −89.3477 MF 2002–2005 Desai et al. (2005)
SO4 33.3844 −116.64 Shrub 2004–2005 Luo et al. (2007)
FR2 29.9495 −97.9962 Savanna 2004–2005
SRM 31.8214 −110.866 Savanna 2004–2005 Scott et al. (2009)
Ton 38.4316 −120.966 Savanna 2001–2005 Ma et al. (2007)
Bkg 44.3453 −96.8362 Grass 2004–2005
FPe 48.3077 −105.102 Grass 2000–2005
Goo 34.2547 −89.8735 Grass 2002–2005
Var 38.4067 −120.951 Grass 2001–2005 Ma et al. (2007)
Wkg 31.7365 −109.942 Grass 2004–2005 Scott et al. (2010)
Wlr 37.5208 −96.855 Grass 2002–2004 Coulter et al. (2006)
ARM 36.6058 −97.4888 Crop 2003–2005
Bo1 40.0062 −88.2904 Crop 2002–2005 Hollinger et al. (2005)
Ne1 41.1651 −96.4766 Crop 2001–2005 Verma et al. (2005)
Ne2 41.1649 −96.4701 Crop 2001–2005 Verma et al. (2005)
Ne3 41.1797 −96.4396 Crop 2001–2005 Verma et al. (2005)
Ro1 44.7143 −93.0898 Crop 2004–2005
Ro3 44.7217 −93.0893 Crop 2004–2005

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous
broadleaf forest; MF: mixed forest.
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average, the total MODIS GPP from May to September was
0.42 Pg C yr−1 lower than the corresponding BEPS GPP. The average
total MODIS GPP from October to April was 0.88 Pg C yr−1 larger than
the corresponding BEPS GPP. Consequently, both the annual average
and total MODIS GPP for the conterminous U.S. during the period
from 2000 to 2005 were 6.6% larger than BEPS GPP (726 g C m−2 yr−1

and 6.04 Pg C yr−1 vs. 779 g Cm−2 yr−1 and 6.46 Pg C yr−1).

5. Discussion

The basis of LUE models is the initial linear relationship between
canopy GPP and APAR at low levels of light and for well-watered crop
species (Montieth, 1972). In the LUE-based MODIS algorithm, a simple
lookup table (LUT) approach is used to assign a constant LUEmax for a
given biome type and adjusted downward based on VPD and Tmin stress
scalars (Heinsch et al., 2006; Turner et al., 2003). However, the relation-
ship between GPP and APAR is not linear at individual leaf level and is
characterized by spatial–temporal heterogeneity associated with vari-
ous illumination levels. There are, therefore, issues associated with the
use of the biome-dependent constant LUEmax and the LUE-based
model's ability to capture the spatial and temporal variability of GPP
by usingmeteorological scalars (Zhao & Running, 2010). Several studies
suggested different schemes to downscale pre-assigned LUEmax values
using meteorological observations (Heinsch et al., 2006; Turner et al.,
2006; Yang et al., 2007) or surface remote sensing observations
(Drolet et al., 2008; Hilker et al., 2008; Wu et al., 2012). However, all
these models do not account for the difference in LUE between sunlit
and shaded leaves (Hilker et al., 2008). Because GPP can vary greatly
in space and time as result of the variability in sunlit and shaded leaf
fraction, we argue that scaling LUEmax without considering this factor
greatly limits the LUE-based model performances.

The performances of one-leaf and two-leaf schemes were recently
evaluated against 8 tower flux sites in North America using the BEPS
model (Sprintsin et al., 2012). It was found that the one-leaf scheme
produces negatively biased GPP results by about 40–60% compared
with EC observations when realistic leaf-level parameters (Vcmax and
Jmax) are used. The biases are mostly caused by excluding the contribu-
tion of shaded leaves. By testing the response of both schemes to
changes in shaded leaf fraction, the results showed that the contribution
of the shaded leaves to the total simulated productivity can be as high as
70% for highly clumped stands and seldom decreases below ~40% for
less-clumped canopies. When the leaf-level parameters are inflated
more than two times to force the big-leaf model to agree with observed
GPP, the model results have the tendency to be biased in the same way
as LUE models at the high and low ends of GPP.

Two-leaf models represent an improvement over LUE models be-
cause they express the canopy-level photosynthesis rate as the sum of
the contributions from sunlit and shaded leaves, acknowledging that
the internal physiological processes of these two leaf groups are sub-
stantially different (Fig. 7). Photosynthesis in sunlit leaves is often
light-saturated, resulting in a lower LUE. Photosynthesis in shaded
leaves is often non light-saturated and essentially has a linear response
to APAR, resulting in a higher LUE (Chen et al., 1999; Dai et al., 2004; De
Pury & Farquhar, 1997; Norman, 1980; Wang & Leuning, 1998). At leaf
level, sunlit leaves are mostly limited by the level of Rubisco activities
related to leaf nutrient conditions and the ambient temperature
(Farquhar et al., 1980; also see Appendix A). Shaded leaves are mostly
limited by the electron transport related to the level of incident radia-
tion. Consequently, two-leafmodels have the ability to simulate the dif-
ference in the biochemical processes between sunlit and shaded leaves
and thereby capture spatio-temporal variations in these processes.

The separated contributions to total GPP of sunlit and shaded leaves
simulated by BEPS (Fig. 7) indicate that sunlit leaves contribute to a
large proportion of the total GPP at low productivity or low LAI. Howev-
er, the contributions of shaded leaves become significant at high pro-
ductivity or high LAI (Fig. 7). Our results show that BEPS simulates
GPP with considerable error (Fig. 1). Nevertheless, the estimation of
the shaded leaf area as a function of LAI is based on well-established
physics (Eqs. A7a and A7b): the maximum sunlit LAI is 2 for a spherical
leaf angle distribution (G(θ)=0.5) and the shaded LAI increases with
total canopy LAI. At low LAI values, where the shaded leaf fraction is
small, LUE models would overestimate GPP because they calculate the
fraction of shaded leaf based on the mean LAI for the biome. This may
explain the higher annual MODIS GPP in low LAI areas such as western
Nebraska, Kansas, and North and South Dakota (Fig. 4). By the same ar-
gument, GPP estimated by LUEmodelswould be lower at high LAI areas
because the estimated fraction of shaded leaves, based on biome mean
conditions, would be lower than the actual fraction. For example, annu-
al MODIS GPP is 20% lower than BEPS GPP in 2003 (Fig. 7). This may ex-
plain the systematic errors at the two ends of the modeled GPP range
relative to observations (Fig. 1), and the dampenedmonthly and annual
variations simulated by the LUE-based MODIS algorithm (Figs. 1–2).

The clumping of leaves, in both natural canopy structures and
human-made crop rows, causes more overlapping of leaves than in the
random leaf distribution. Hence, the fraction of the shaded leaves for
the sameLAI ismuch larger in clumped canopies than in randomcanopies
(Baldocchi & Harley, 1995; Chen et al., 2005). BEPS has also been applied
to the global terrestrial biosphere with consideration of the clumping ef-
fect (Chen et al., 2012). They found that shaded leaves contribute 50%,
38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen



Fig. 4. The spatial distributions of annual gross primary productivity (GPP) over the conterminous U.S. by (a) the MODIS algorithm and (b) the BEPS model.
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forest, broadleaf deciduous forest, evergreen conifer forest, deciduous co-
nifer forest, shrub, C4 vegetation, and other vegetation, respectively. Since
leaves in forests are often highly clumped, resulting in larger contribu-
tions of shaded leaves to the total GPP than canopies with random leaf
spatial distributions, the biases in GPP estimation for forests are thus
expected to be particularly large in clumped canopies. This is supported
by the results for needleleaf and broadleaf forests (Fig. 5). LUEmodels es-
sentially treat the entire canopy as a single unshaded leaf characterized by
a single LUE and still represent the canopy with a non-realistic
random-distribution of leaves. Because of this, LUE models may not ade-
quately simulate the spatial and temporal variations caused by the
clumping of leaves. Similarly, canopies with large monthly variations of
LAI, such as crops, are expected to have large variation in the contribution
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Fig. 5. Pixel-by-pixel comparisons of annual gross primary productivity (GPP) estimated by
terminous U.S. in 2003. The dashed line is the 1:1 line and the solid line is the regression lin
both MODIS and BEPS are aggregated from ~1 km pixels to 0.05° grids. Due to the differenc
with the same land cover in both classifications. Model performances are assessed using roo
tion (R2). All statistics are significant at the 0.01 level. NF: needleleaf forest; BF: broadleaf f
of shaded leaves to GPP, resulting in potential large biases at the low and
high ends ofGPP (Figs. 1 and3). BothMODISGPP algorithmandBEPSper-
formed poorly at crop sites, especially at irrigated sites (Fig. 1). This sug-
gests that irrigation and fertilization practices, and in general differences
among crop types, may be more critical than canopy structure in deter-
mining model performances.

An example of model comparison for GPP in 2003 (Figs. 8 and 9)
shows that the MODIS annual GPP is larger than BEPS annual GPP
when GPP of all shaded leaves is lower than the average. Conversely,
MODIS annual GPP is smaller than the corresponding BEPS results
when GPP of shaded leaves is larger than the average. Since the under-
lying assumption of LUEmodels is constant shaded leaf contributions to
the total GPP, thesemodels are liable to cause the opposite biases at the
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low and high ends of GPP values (either the total or shaded leaf GPP).
Compared with BEPS, MODIS GPP is lower by ~200 g Cm−2 yr−1

when the contribution of shaded leaves is larger than 400 g Cm−

2 yr−1. Conversely, MODIS GPP is overestimated by ~150 g Cm−

2 yr−1, on average, when the contribution of shaded leaves is more
than 400 g Cm−2 yr−1 (Fig. 8).

The spatial distribution of the differences between MODIS GPP and
BEPS GPP corresponds with variation in the contribution of shaded
leaves to total GPP (Fig. 9). In Washington, north Idaho, Wisconsin,
New York, and Maine, where LAI is large (>5, Fig. 7d), shaded leaves
contribute 65% of the total annual GPP (Fig. 9a). In such conditions,
MODIS GPP is significantly (~35%) lower than BEPS GPP, owing to the
Fig. 7. Pixel-by-pixel comparisons of (a–b) annual gross primary productivity (GPP) of sunlit
ed leaves against the total annual GPP and leaf area index (LAI) in needleleaf forests estimat
shaded leaves to the total annual GPP and LAI in other vegetation types are similar to the p
assumption of the constant contribution from shaded leaves (Fig. 9b).
On the other hand, for areas with small LAI values (LAIb1) such as the
Rocky Mountain region, the contribution of shaded leaves is on
averageb20% of the total annual GPP. Therefore, MODIS GPP in these
areas calculated based on LUEmax values representing the mean condi-
tions of the biomes is found to be 50%–200% larger than BEPS GPP
(the relative differences are large because the absolute GPP values are
small). Although shaded leaves contribute half of the total annual GPP
in the southeast region, such as Alabama, the MODIS algorithm still un-
derestimates by about 15% of the total annual GPP relative to the BEPS
model. In contrast, in the Mid-Atlantic region, such as West Virginia,
shaded leaves contribute ~65% of the total annual GPP but the differ-
ences in GPP between MODIS and BEPS are relatively small (b10%).
The underlying mechanism for such differences in agreement among
simulated values is still not well-understood and we suggest that the
contribution of shaded leaves could probably be offset by Tmin and
VPD adjustments in the MODIS algorithm. Therefore, further analysis
is especially needed on the combined impacts of various factors (e.g.
canopy structure, temperature, water content, etc.) that can influence
GPP, which help in both explaining the differences among model simu-
lations and in developing future GPP algorithms.

Factors other than within-canopy radiation transfer also probably
cause measured LUE and GPP to depart from modeled estimates. Martin
and Jokela (2004) showed that loblolly and slash pine LUE varied by a fac-
tor of two over space and time in a long term replicated experiment, with
variation caused by both soil nutrient availability (fertilized vs.
non-fertilized treatments) aswell as changes associatedwith standdevel-
opment and aging. Other studies have also shown thatmisrepresentation
of the seasonal cycle resulted in over-prediction of GPP during the spring
and autumn transition period by 160±154, 75±130 g Cm−2 yr−1, re-
spectively (Richardson et al., 2012).
and shaded leaves against the total annual GPP and (c–d) relative contribution of shad-
ed by the BEPS model across the conterminous U.S. in 2003. Contributions of sunlit and
atterns of the needleleaf forests.
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The purpose of this study was not to demonstrate that process-based
models with separation of shaded and sunlit leaves perform necessarily
better than LUEmodels in all contexts and application.We fully recognize
that LUE models have the advantage of simplicity and are suitable
for many purposes, as well as that uncertainty and prediction errors
can be also associated with the parameterization of more ‘complex’
process-based models. However, we believe that the critical contribution
of this work largely resides in recognizing one of themajor shortcomings
of LUEmodels, and providing directions for further improvements. For in-
stance, reduction in GPP estimates errors could be achieved by either de-
veloping a two-leaf LUE model or allowing LUEmax to vary spatially and
temporally as a function of LAI or other canopy structural attributes.
6. Conclusion

In this study, GPP simulated by the LUE-basedMODIS algorithm and
the two-leaf process-based BEPSmodelwere examined against ECmea-
surements at 40 AmeriFlux sites from 2000 to 2005. Both models pro-
duced comparable mean GPP values for the conterminous U.S.
landmass. However, the spatial and temporal patterns of the estimated
GPP differ considerably. Compared with monthly or annual EC-derived
GPP values, BEPS performed better than theMODIS algorithm, although
both methods underestimated GPP at crop sites. The MODIS algorithm
underestimated GPP at high productivity and overestimated GPP at
low productivity. The largest biases occurred in clumped canopies,
such as forests, and in canopies with large monthly variability, such as
crops. These biases were generally not found or were less pronounced
with the two-leaf BEPSmodel. Our results suggest that themajor reason
for the absence of strong biases in the BEPS results resides in the explicit
treatment of the contribution of shaded/sunlit leaves to the calculation
of total GPP and recognition in themodel of different physiological attri-
butes of sun and shaded leaves. In BEPS, the relative contribution from
shaded leaves to total GPP is small for vegetation characterized by low
LAI and low productivity, and large in vegetationwith high LAI and pro-
ductivity. In the MODIS algorithm, one single value for LUE, rep-
resenting the mean condition for a particular type of vegetation, is
used. This causes the overestimation of the effect of shaded leaves at
low LAI, and the underestimation at high LAI.
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These biases in the LUE-based MODIS algorithm at the low and
high ends of GPP, found through comparison with observations and
estimates by a process-based model, are shown to produce consider-
able distortions in the spatial and temporal distribution patterns of
GPP over the conterminous U.S. landmass. The amount of the dis-
agreement is found to be highly correlated with the contribution of
shaded leaves to GPP. As LUE models found many more applications
due to their relatively low requirement in parameterization, it is
equally important to recognize their potential limitations as a ways,
among others, to improve their reliability.
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Appendix A. BEPS principles

A.1. Leaf photosynthesis

The leaf photosynthetic rate (A) is assumed to be limited by the
Rubisco-limited rate of CO2 assimilation (Wc) and the electron
transport-limited rate of CO2 assimilation (Wj).

Wc ¼ Vm
Ci−Γ
Ci þ kco

for C3

Vm for C4

;

8<
: ðA1Þ

Wj ¼ J
Ci−Γ

4:5Ci þ 10:5Γ
for C3

J for C4

;

8<
: ðA2Þ

θ1J
2− Ile þ Jmð ÞJ þ Ile Jm ¼ 0; ðA3Þ

A ¼ minðWc;Wj Þ�Rd; ðA4Þ

Acanopy ¼ AsunLsun þ AshadeLshade; ðA5Þ

whereWc is photosynthetic rate limited by Rubisco activities;Wj is pho-
tosynthetic rate limited by electron transport; Ci is the atmospheric CO2

concentration; Γis CO2 compensation point; kco is coefficient associated
with enzyme kinetics; Vm is photosynthetic Rubiso capacity per unit leaf
area; J is the rate of electron transport rate per unit leaf area; θ1 is irra-
diance; Ile is PAR effectively absorbed by PSII per unit leaf area; Jm is po-
tential rate of electron transport rate per unit leaf area; A is the net
photosynthetic rate; Rd is daytime leaf dark respiration; L is the leaf
area index; the subscripts ‘sunlit’, ‘shaded’ and ‘canopy’ denote the pho-
tosynthesis and LAI of sunlit leaves, shaded leaves and canopy (Chen et
al., 1999; De Pury & Farquhar, 1997).

A.2. Sunlit and shaded LAI stratification

For daily estimation, leaves are often grouped into various sub-canopy
structures making the leaf spatial distribution non-random, therefore the
assumption of random leaf spatial distribution is generally seriously vio-
lated (Chen, 1996).The effect of this non-randomness on radiation trans-
mission through an azimuthally symmetric canopy has been described
using a leaf dispersion parameter Ω (Nilson, 1971)

P θð Þ ¼ e−G θð ÞΩL= cosθ
; ðA6Þ



Fig. 9. Spatial distributions of (a) the contribution (%) of shaded leaves to the total annual gross primary productivity (the ratio of annual GPP of shaded leaves to total annual GPP)
estimated by the BEPS model and (b) differences (%) of annual GPP estimated by the MODIS algorithm against the BEPS model (=(GPPBEPS−GPPMODIS)/GPPBEPS) over the conter-
minous U.S. in 2003.
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where P(θ) is the probability of radiation transmission through the cano-
py at zenith angle θ, G(θ) is the projection coefficient and often taken as
0.5 for the random (spherical) leaf angle distribution, and L is the LAI.
Clumping effectively reduces the influence of LAI on radiation intercep-
tion, and therefore theΩ value is usually smaller than unity.Ω is therefore
often called as clumping index (Chen, 1996).

For a given canopy structure as described by L andΩ, the total LAI (L)
can be separated into sunlit LAI (Lsun) and shaded LAI (Lshade) for the pur-
pose of canopy-level photosynthesis modeling using a two-leaf model.
The method of Norman (1982) has been modified to consider the effect
of foliage clumping on the sunlit and shaded LAI separation (Chen et al.,
1999):

Lsun ¼ cosθð1� expð�GðθÞLΩ= cosθ ÞÞ
G θð Þ ; ðA7aÞ

Lshade ¼ L� Lsun: ðA7bÞ

A.3. Sunlit and shaded leaf irradiance

Two-leaf models are shown to be effective in modeling
canopy-level photosynthetic rate (De Pury & Farquhar, 1997; Wang
& Leuning, 1998) than “big-leaf” photosynthesis models. The method-
ology developed by Chen et al. (1999) for computationally efficient
estimation of sunlit and shaded leaf irradiances is used in this study.
In this methodology, a simple model developed by Norman (1982)
for estimating the multiply scattered irradiance in the canopy is ad-
justed for clumping for diffuse irradiance estimation.

A.4. Stomatal conductance

Using Leuning's method, the photosynthesis rate of a leaf can be es-
timated using Farqhuar's model once the stomatal conductance of the
leaf is known. Ball (1988) found that leaf stomatal conductance is
found to be linearly related to its photosynthetic rate (A, presenting ei-
ther Asun or Ashade):

g ¼ m
Ahs

Cs
pþ b; ðA8Þ

where g is stomatal conductance,m is a plant species dependent coeffi-
cient (Table A1), hs is the relative humidity at the leaf surface, p is the
atmospheric pressure, Cs is the CO2 concentration at the leaf surface,
and b is a small value due to leaf dark respiration (Table A1). Eq. (A8)
is often called Ball–Berry equation. However, the important influences
of soil water on g and A are not mechanistically included in the original
Ball–Berry formulation (Eq. A8). Following Ju et al. (2006), wemodify it
as follows:

g ¼ f w m
Ahs
Cs

pþ b
� �

; ðA9Þ

where fw is a soil moisture scaling factor. As g is needed in A calculations
and A is needed in g calculations, an iteration procedure is usually
followed for simultaneous estimations of A and g. We use an analytical
solution of g (Baldocchi, 1994) in order to improve the computation ef-
ficiency for regional simulations.

A.5. Soil moisture scalar

The root water uptake modeling scheme developed by Ju et al.
(2006) is used to calculate fw in this study. In this scheme, the rate of
root water uptake is directly proportional to the soil water availability
to roots. The soil water availability factor fw,i in layer i is calculated as:

f w;i ¼
1:0

f i ψið Þf i Ts;i

� � ; ðA10Þ

where fi(ψi)is a function ofmatrix suctionψi(m) (Zierl, 2001). The effect
of soil temperature on soil water uptake fi(Ts,i)is described as follows
(Bonan, 1991):

f i Ts;i

� �
¼

1:0

1− exp t1T
t2
s;i

� � Ts;i > 0BC

∞ else

;

8><
>: ðA11Þ

where t1 and t2 are two parameters determining the sensitivity of
water uptake by roots to soil temperature. In this study, t1=0.02 and
t2=2.0.

To consider the variable soil water potential at different depths,
we follow the scheme of Ju et al. (2006) to calculate the weight of
each layer to fw:

wi ¼
Rif w;i

∑n
i¼1Rif w;i

; ðA12Þ

where Ri is the root fraction in layer i. The overall soil water availabil-
ity fw of the whole soil profile is then:

f w ¼
Xn
i¼1

f w;iwi: ðA13Þ



Table A1
Biochemical and biophysical parameters used for various land cover types in this study.

Parameters Broadleaf
evergreen

Broadleaf
deciduous

Evergreen
conifers

Deciduous
conifers

Shrub C4 plants Others References

Vcmax mol m−2 s−1

(at 25 °C)
29.0±7.7 57.7±21.2 62.5±24.7 39.1±11.7 57.9±19.6 100.7±36.6 90.0±89.5 Wullschleger (1993); Medlyn et al. (1999);

Niu et al. (2005); Kattge et al. (2009)
Jmax

μmol m−2 s−1
55.1 123.7 135.2 79.2 124.1 193.1 200.0 Wullschleger (1993); Medlyn et al. (1999)

N0

g m−2
2.17+0.8 1.74+0.71 3.10+1.35 1.81+0.64 1.86+0.84 1.62+0.61 1.69+0.69 Kattge et al. (2009)

χn
m2 g−1

0.48 0.59 0.33 0.56 0.57 0.62 0.60 Kattge et al. (2009)

Slope (m) 8 8 8 8 8 4 8 Ball (1988); Leuning et al. (1995); Medlyn et al. (1999)
Intercept (b),
mol m−2 s−1

0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 Ball (1988); Leuning et al. (1995); Medlyn et al. (1999)

Note: The values of Vcmax for the various plant functional types (PFTs), except C4 plants, were adopted from Kattge et al. (2009), who conducted a metadata analysis with 723
leaf-level Vcmax data points. The Jmax values are estimated using the equation established by Medlyn et al. (1999) through a metadata analysis. The values of m for the various
PFTs vary in a large range from 5 to 16, but we have chosen the most frequently used values. The intercept values (b) are generally very small and treated as a constant for all PFTs.
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