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A Four-Scale Bidirectional Reflectance
Model Based on Canopy Architecture

Jing M. Chen and Sylvain G. Leblanc

Abstract—Open boreal forests present a challenge in un-
derstanding remote sensing signals acquired with various solar
and view geometries. Much research is needed to improve our
ability to model the bidirectional reflectance distribution (BRD)
for retrieving the surface information using measurements at a
few angles. The geometric-optical bidirectional reflectance model
presented in this paper considers four scales of canopy architec-
ture: tree groups, tree crowns, branches and shoots. It differs
from the Li-Strahler's model in the following respects: 1) the
assumption of random spatial distribution of trees is replaced by
the Neyman distribution which is able to model the patchiness or
clumpiness of a forest stand; 2) the multiple mutual shadowing
effect between tree crowns is considered using a negative binomial
and the Neyman distribution theory; 3) the effect of the sunlit
background is modeled using a canopy gap size distribution
function that affects the magnitude and width of the hotspot;
4) the branch architecture affecting the directional reflectance is
simulated using a simple angular radiation penetration function;
and 5) the tree crown surface is treated as a complex surface with
microscale structures which themselves generate mutual shadows
and a hotspot. All these scales of canopy architecture are shown
to have effects on the directional distribution of the reflected
radiance from conifer forests. The model results compare well
with a data set from a boreal spruce forest.

NOMENCLATURE

A Quadrat size.

A Averge shoot projected area.

B Domain size (pixel size).

C(6) G(6)/ sin(h).

D Number of trees in the domaiB.

Fos(N) Accumulated gap size distribution inside tree
crowns.

Far(N) Accumulated gap size distribution between
tree crowns.

G(6) Projection of unit leaf area.

H Effective height(H, + H, + $H.)/ cos(6,).

H, Height of the lower part of the tree (trunk
space).

H, Height of cylinders.

H. Height of cones.

H, Total height of the tree crow(H, + H).

L Leaf area index (LAl).

Ly LAl accumulated horizontally(L - 5(6 =
90°)).
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Mean LAI accumulated over the view or sun
path within one tree crown.
Clumping-adjusted projected tree crown ele-
ment area index.

Clumping-adjusted projected tree crown area
index.

Mean number of trees in a quadrat.

Mean number of cluster per quadrat.

Cluster mean size.

Number of quadrats in the domais.
Probability of seeing illuminated ground area.
Gap Probability within a tree at the angle
Probability of having sunlit ground area.
Total shadowing effect.

Probability of seeing the ground (including
clusters and overlap).

Probability of seeing the ground (random tree
distribution).

Probability of seeing the ground (clustered
tree, without overlap).

Probability of seeing tree crown arga —
Pg).

Probability of seeing sunlit trees.

Proportion of tree crown surface viewed that
is illuminated.

Total view overlapping effect.

Poisson distribution.

Neyman distribution.

Probability of having a gap of sizd in a
crown.

Probability of having a tree gap of size
between trees.

Probability of seeing sunlit shoots inside the
tree crowns (no hotspot consideration).
Radius of the tree crowns.

Mean path length within a crown.

Ground reflectivity.

Tree reflectivity.

Shaded ground surface reflectivity.

Shaded tree surface reflectivity.

Total reflectance.

Shadowed area on the ground produced by
one tree.

Shadowed area on the ground produced by
the cone part of the tree.

Shadowed area on the ground produced by
the cylinder (base) part of the tree.

Tree illuminated surface visible to the viewer.
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tactap Tree crown surface visible to the viewer. plant canopy affects not only the transmission of the solar
V Volume of a tree. beam through the canopy, but also the multiple scattering
Vy Ground surface not seen by viewer becauggocesses contributing to the observed radiances. In forest
of one tree. stands, for example, the number of multiple scattering events
Ve Ground surface not seen by viewer becaudmetween tree crowns is undoubtedly much smaller than
of the cone part of one tree. between leaves, and the modeling methodology would be
W, Mean width of element shadows cast insidexceedingly complex and depends on the treatment of the
tree crowns. canopy architecture. In the modeling effort presented here, the
W, Characteristic mean width of tree crowns proattention is first given to a detailed mathematical descriptions
jected to the ground. of the canopy architecture at various levels.
o Half apex angle. In Li and Strahler's BRD models [22], a forest stand is
Ysy Vo Angle related to the self-shadowing of theassumed to consist of randomly distributed objects containing
cone. leaves as turbid media. These two-scale models mark a major
YE Needle-to-shoot area ratio. advancement in simulating radiation regimes in forest stands
INE3) First-order scattering (geometric shadowjs compared with the one-scale turbid-media models, but also
phase function of the foliage. dramatically increase the complexity of the models. However,
i Crown foliage density. two-scale models may be regarded as much simplified math-
Qg Clumping index for shoots. ematical descriptions of the physical reality. First, trees are
Q, Clumping index for trees. generally not randomly distributed in space but are usually
A Gap size. clustered at large scales due to variations in the soil and
Amin Minimum gap size for having an illuminatedtopographic conditions, creating patchiness of forest stands.
surface. They are also not randomly positioned when close to each
¢ Relative azimuth angle between the sun anather because of the natural repulsion effect in competition
the viewer. for resources (Frankliret al. [11]). Second, leaves are not
0 Solar zenith angle (SZA). randomly distributed within tree crowns. In conifer stands,
6. View zenith angle (VZA). for example, needles are grouped into shoots, branches and
¢ Angle difference between the sun and thahirls, and all these sub-canopy structures are important in
viewer (phase angle). determining the radiation regime, especially the directional

reflectance. In the present paper, these two additional scales
of plant canopy architecture are considered. Fig. 1 shows the
l. INTRODUCTION concept of the different radiation transfer models based on

LAR radiance reflected from the earth’s surface iganopy architecture at several scales. The objective of this
g[rongh/ anisotropic and depends on both the sun aRaper is to present the first four-scale BRD model for the
observation directions. Such bidirectional reflection behaviBkrpose of investigating the effect of the different architectural
has been extensive|y investigated over various Surfa(%@les on the directional reflection behavior of plant CanOpieS.
with remote sensing data (Cihlat al. [8] and Wu et al.

[37]), ground-based measurements (Deeratcal [10]) and II. MODEL DESCRIPTION
numerical models (see Myneni and Ross [26]). In bidirectional - -
reflectance distribLEtion (BYRD) models, ve[gegtted surfaces réA BRD model computes the percentage of incident radiation

often described as turbid media (Gao [12], Jupp and Strah e<|';1t is reflected by a forest in various directions. It is the

[17], Otterman and Brakke [30], Verhoef [34] Verstraetgroportions of the sunlit and shadowed areas of foliage and

[35]) that represent well agricultural crops and grassland. rround that are used to determine the BRD. Our model

forests, geometric-optical models (Li and Strahler [21], [zzﬁontams several “modules,” each with specific tasks. The

Strahler and Jupp [33]) and hybrid-models (& al. [23], rst module constructs the forest. It includes the spatial

Nilson and Peterson [29]) combining geometrical and turb%smbuuon of trees within a modeling dpma}m and the macro-
media have been used. One common challenge for can scale geometry of the trees. By considering the tree crown

0 : : .
models of all types is the difficulty in simulating the muItipIedJeyometry’ the shadowed and illuminated areas of an isolated

scattering processes within the canopy. Much attention htree are calculated, and by combining the geometry and tree

canopy are computed as functions of solar or view zenith
processes. This challenge has not yet been rigorously tacl{l%‘e(!tiJ
publications on this problem (Bordt al. [1], Goel et al and the ground. The mathematical treatments on the canopy
usual angle distribution of leaves. It also includes the spatfal 17e€ Distribution

c‘ﬁ%tribution, the gap fraction and gap size distribution of the
the effect of plant canopy architecture on radiative transfer le. The gap size distribution is then used to model the
0
[15], Myneni and Ross [26]) in addition to geometric—optica‘imh'tecture are presented below.
distribution patterns of leaves and higher level structures suclBRD models based on discrete canopy structures usually

been given to this problem. The other major challenge is
n
in the literature although there have also been quite a few spot effect. The hotspot occurs on both the tree crowns
models. The meaning of architecture here goes beyond the
as shoots, branches and trees. Architecture at all levels imssume that trees are randomly distributed within a spatial
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Fig. 1. Scales of plant canopy architecture considered in reflectance models: one-scale: turbid media; two-scale: randomly-distributedjeiissrete o

containing turbid media; three-scale: nonrandom discrete objects containing turbid media; and four-scale: nonrandom discrete objectamsthunitees
(such as branches and shoots).

10 : distributed narrowly around the mean number of trees per

~-- Poisson | quadrat while the measured distribution is much broader. The

g | RN — -+ Neyman (m,=3) Poisson tree distribution is in fact an averaging process: as
. —— Measurements | |

the quadrat size (or the mean number of trees per quadrat)
increases trees become more evenly distributed among the
various quadrats. The application of this process to represent
reality requires a forest stand to be uniform at both small and
large scales. However, variations in environmental conditions
such as topography, soil and sucessional processes often make
- trees irregularly distributed, forming patches at various scales.
The simple Poisson theory is incapable of describing such
. , ; . . patchiness. Nilson and Peterson [29] made a correction to the
0 10 20 30 40 Poisson theory to model nonrandomness of tree distribution.
Number of trees per quadrat Neyman [27] (with application to geography by Getis and
Boot [13]) developed a method for describing the contagious
Fig. 2. The tree distribution in a 108& 100 nf boreal jack pine forest gjstripution of larvae. This method called Neyman type A
divided in 100 quadrats compared with Poisson and Neyman distributions . . . .
has been used by Frankliet al. [11] for the investigation
of tree distributions. It assumes that trees are first combined
domain. This distribution is described using the Poisson thedrygroups and the spatial distribution of the centre of a group
2 follows the Poisson process. The mean size of the groups is
P(z) = e m (1) a required model input depending on the degree of clumping

al of trees. Centred around a given mean group size, there are
wherem is the average value of the number of objects (in o@lso probabilities for other group sizes determined again by

case, trees) in a sub-domain called quadrat, Bgd) is the the Poisson theory. Hence, the Neyman type A distribution
probability of findingz objects in the sub-domain. Howevercan also be called the double-Poisson distribution. For the
in reality, trees are generally not randomly distributed bebnvenience of mathematical description, a group must fall
rather grouped together in various ways. Measurements fraompletely into a quadrat with the centre of the group. The
a boreal jack pine stand (Fig. 2) show an obvious deviati@ize of the quadrat denoted by, used in the model, should

of the tree distribution from Poisson’s random case, i.agpresent the extent of radiation interaction between trees, i.e.,
the number of quadrats having a certain number of treestlige horizontally-projected path length of a solar beam through

Frequency
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Fig. 3. Comparison between the Poisson and the Neyman distributions of various groupsizesith an average of 75 trees per quadrat.

the canopy. The modeling domain is equivalent to the size ifal forest stand. In creating this distribution, the following
a pixel in remote sensing. In selecting the quadrat size theranglicit assumptions are used [13].

also a computational constraint: the larger the group, the largen)
should be the quadrat. For a 180100 n¥ domain with 3000
trees, for example, it is preferable to divide the domain into
at least ten quadrats to avoid overly populated quadrats thap)
could be difficult to handle numerically.

According to the conditional probability theory, the proba-
bility of having ¢ trees given;j groups in a quadrat?(é|j),
times the probability of having groups in the quadraf?(y),
gives the probability of having trees in the quadrat given
groups. The probability of havingtrees in the quadraf?(¢),
is the summation of all the conditional probabilities for

3)

4)

@

Within the modeling domain each quadrat is equally
likely to receive a cluster and the placement of a cluster
is independent of the placement of any other clusters.
The parametem; corresponds t@ priori value of the
density of a cluster anth, corresponds ta priori value

of the mean size of clusters (optional).

In conformity with a Poisson model the variance about
the mean size of cluster is equal to the mean size of
cluster.

The assignment of a cluster size to one location is
independent of the assignment of any other cluster size
or cluster location (optional).

The points in a cluster are propagated by a “progenitor”
who is located at the site of each cluster (pseudo-
contagious assumption).

When bOthP(J) and P(L|J) are determined by the Poisson If the real distribution is not knOWWmQ will be fixed at

process, we obtain

a low value(my = 1 implies a tree distribution close to the

random case). Comparison with field data will later determine

mh ~= [mie~ ™)

the values for those parameters.

Fig. 3 shows a random tree distribution (Poisson) in com-
parison with Neyman distributions with the mean grouping
mso Of one, five, and 20 trees per group. In the calculation, the

average density was 75 trees per quadrat (1500 trees/ha with

Py(imy;me) =c™™ — J! i
i=1
fori=0,1,2,--- 3
where
2
m
my = 4)
V—=m
is the mean number of groups per quadrat and
V—=1m
m

20 quadrats of 50@n? each). Groupings of 1 and 5 produce
distributions centred at 75 and increase the standard deviation
from the random casen, = 1 means that the grouping is
mostly random (group of one) but it contains probabilities of
having groups of two trees or more and therefore has a broader
distribution than the random case. If the group size is too large
compared to the overall megm:), the Neyman distribution
becomes variable with peaks at multiples of that size. As a

result, the curve forn, = 20 in Fig. 3 shows maxima at 20,
is the cluster mean sizen = mim. is the mean and 40, and 60 trees per quadrat. At 0, the number of quadrats
v = mima[l + mg] is the variance of the distribution of (having no trees) increases with group size, suggesting that for
the number of trees per quadrat and can be measured itarger group sizes, the probability of having empty quadrats
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Fig. 4. A photograph of an old black spruce forest, near Candle Lake,
Saskatchewan, investigated in this paper.

is greater. In Fig. 2, measurements from a jack pine forest
are compared with the Poisson and Neyman distributions. The
domain studied was one hectare with 1793 trees divided into
1_00 quadrats. A Neyman distribution with grouping of thr_eEig. 5. Tree crown geometry and the definition of variables used.
simulates the measurements more closely than the Poisson
theory. Processes other than Neyman could be used in this
kind of analysis. For its simplicity and for the first analysis of19]

tree clumping in forest canopies, only the Neyman, i.e., the 1 .
double-Poisson process is used in this paper. Sge = {m -3 +’Vs}7‘2 (6)
B. Tree Crown Projection where~, (see Fig. 5) is defined as
Conifer tree crowns have been modeled with a cone shape .1 ( tan(a)
by Li and Strahler [19]. Nilson and Peterson [29] added a Te TR <tan(95)> 0

cyllnde_r below the cone in their simulations. A photograp\r)vhere 0, is the solar zenith angle. The shadow cast by the

taken in a mature black spruce stand near Candle Lalée inder on the around has an area diven b

Saskatchewan, Canada (Fig. 4), shows that the trees essentlgllly 9 9 y

have a cylindrical shape with a conical top. In our model, a 2 tan(6,)Hyr. (8)

tree crown is then assumed to consist of a cone and a cylinder. ) )

In common with Li and Strahler’s [19] model, the conical parf© obtain the total area of a tree projected on the ground

is described with two factors: its radiiis) and its half apex surface, the base of the tree, a disc, should also be included:

angle(«). In this paper, all trees have the same half apex angle a2, 9)

(a = 13°). Fig. 5 shows how a tree crown is modeléd, is

the height of the cylinder. The height of the cone is defindd this model, the cylinders can either rest on the ground

by its apex angle and the radius of the trék: = r/tan(«r). surface or have their bases elevated to the same hgifihit

The total height of the tree crown H; = H, + H.. Since the lower part of a forest is generally a trunk space
A cone casts a shadow on the ground in addition to thdthout much foliage, it is more realistic to elevate the bases,

cylinder beneath it only if the solar zenith angle is larger thare., to have the crown “on a stick.” In our model, the height of

one-half of the apex angle. This shadow area is expressedrag crown base affects the contribution of the ground surface
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to the hotspot. The summation of (6), (8), and (9) gives the. Canopy Gap Fraction
total area within the outline of a tree crown projected on the 1o canopy gap fraction determines the contribution of

ground surface: the underlying surface to the reflectance measured above
the canopy. It is based on the method described above for

.2 .
7+ 2tan(f,) Hyr for 6, < «, calculating the shadow area. If the trees are distributed ran-

1

S, = S T + vy, |2 (10) domly within the domain and the tree crowns are opaque, the
tan(ys) 2 robability of seeing the ground is
+2tan(b,)Hyr for 05 > «. P y 9 9
1% D/n
This projected area can be used to find the ground area not Pog—r= [1 - Zg} (16)

seen by a viewer, if the viewer is far enough so that the

parallax won’t change the view. For this reason, we only neethereD is the number of trees in the domathand A = B/n
to replaced; in (10) with 6,,. This quantity is denoted by, is a quadrat. By definition there arequadrats in the domain.
which is the area on the ground covered by opaque crownslfinhe trees are clustered, the probabilfy (), found in (3),

the viewer’s direction: is used to compute this effect. We have
2 P NHir f < r @
T —11—2tfxn(frb) % or 6, < a, Poye = ZPJ\(L) [1 B &} (17)
Vo=3 | —— 4+ S 4y, [ (11) = A
g tan(y,) 2
+2tan(6, ) Hyr for 6, > a. where 4 is the number of trees ind, and Py (i) is the

) _ probability of having: trees inA. In this equation, gaps within
After calculating the_ shadow area that a single tree casts @e crown are not considered,, . represents the ground
the ground, the sunlit crown proportion seen by the viewer ifat can be seen between tree crowns. If we allow gaps in

Computed from the total surface area of the tree visible to tbﬁjwns and over|apping of crowns to occur, (17) becomes
viewer projected to a plane perpendicular to the view line. For

the cylinder we have - ;
y PUQ = Z Ptj(‘/g)ngap(e’U) + PtO (18)
j=1
tap = 2rsin(6,)Hy. (12) ’
where
The total tree surface area projected on a plane perpendicular ' J
to the view line is Pl(8,) = HPgap(e,U) (19)
1
2 for 6, =0, ) . . .
b= Zg cos(6,) for 6. < (13) is the gap probability (depending @h) inside the trees, and
“ a2 COS(H,L.) +t,, for erb. > a’ F,;(Vy), the probability of having trees intercepting the view

line is calculated with a negative binomial:

tqer Of (13) is described in the Appendix. * (i 45— 1) NRARTRE
For cylinders, the self-shadowing and illumination geometry Fi;(Vy) = Z Pr(3d) [W} {1 - Zg} {Zg}

are very simple: half the surface is illuminated and half in i=j ' J

shadow. The illumination part seen by the viewer is then (20)

_ ¢ where Py (i) is the Neyman distribution (3) andis an integer
tipy = 2rsin(6,) H,, - {1 - ;} (14)  which should be large enough to consider all overlapping of
the trees in a quadrat. It must correspondAg(x) = 0

where is the azimuth angle difference between the sun aQfi Lxi=x)(Vs) = 0. In this papers = 350. In the case

the viewer. The sunlit part of a cone seen by a viewer, denof®d/ = 0L 1S equal to (17). Likewise the probability of

ti, cannot be easily expressed in a simple equation, but{i¢ 9round surface being illuminated,,, can be found by
described in the Appendix. This quantity depends on the ap@PlacingV, by S, andé, by 6;. In real forests, trees found
angle of the trees and the positions of the sun and the view& Clusters are usually smaller than the average tree size. In
If 6, is smaller thanw, no self-shadow occurs on the conePN€ guadrat, we have: = mym, = D/n trees on average.
but asé, gets larger tham, a portion of the cone is shade _The model assumes that for th(_a probability of hgvmg more
The proportion of the tree that is illuminated and seen by tfigan rees in a quadrat, the size of the trees will decrease
viewer ( P,;) can be found by adding the areas illuminated arlgversely with the number of trees per quadrat:
dividing by the total surface area of the tree presented to the Vi =V, m/i. (21)
viewer. However, the contributions from both the cone and J 7
the cylinder part of a tree must be included. Thus With the setting used in the first sectiom; = 75, the
probability of having 100 trees in a quadrat, the individual
P, = tic +tipy (15) tree shadow area is reduced by 75%. Féess than or equal

 tae +tan to 75 all trees have the same size.
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The gap probability,Py.,(#), is well known for a con- the cylindrical part are calculated as the difference between
tinuous medium [28]. For a discontinuous canopy, we usee total overlapping and the cone overlapping. The total
an equation similar to Li and Strahler [21] but modified t@mverlapping effects, denoted h¥, and P,, are calculated
consider the foliage clumping effect [4]: by replacingS,. and V. with S, andV; in (26) and (27),
where S, and V,, are the ground shadow areas of a single

— o—G(0:)Lo QU /VE
Paap(8s) = ¢ ! (22) tree crown in the sun’s and viewer’s directions, respectively.
where Aftgr weighting the o_verlapping probabilities of the crown anq
cylinder parts by their respective areas, the mutual shadowing
Lo=p-s (23) effects for the cylindrical (base) part are then
and Py =T Ba - T B (28)
b
pw=L/[V-D/B] (24) !
and

is the foliage density, and

PU' _Pl;c' ¢
y py P Vo= PV,

= _ V.

$(0:) = 5 (02 con(8) (25) o _
_ where S,, andV,, are the projected areas on the ground in
is the mean path length of the solar beam through a #ee.the sun and view directions, respectively. For the calculation
is the volume contained within the tree crown outlid®/B  of the probability of viewing the sunlit portion of tree crowns,
is the number of trees pen?, Qr is a clumping index of the the quantities needed are the proportions of the tree crowns

shoots within tree crowns [4], is the leaf area index (LAI) that are not overlapped under the various scenarios, i.e.,
defined as half the total needle area per unit ground surface

(29)

area [4] Qsc =1- Psc (30)
Equation (22) gives the probability of the solar beam passing Que =1— Py, (31)

through a single tree. Using, instead of 8, gives the Qu =1-P,, (32)

probability of seeing the background through a single tree. For

a canopy with a random foliage angle distributiéi{f) = 0.5. Quy =1 = Pup. (33)

For canopies with branch architecture [&(6) = a — b0, it e jllumination and viewing directions are far apafl,.
wherea andb are positive constants. Adding a gap probabllltgmd Ous, as well asQ,, and Q.,, are considered to be

to tree crowns gives less _shadow on the ground and m%ﬁependent. The products of the pairs, i@y. Q.. andQ; -
ground area seen by the viewer. Q.. are the probabilities of actually seeing the illuminated part
of the cones and cylinders, respectively. We must multply
lIl. MUTUAL SHADOWING EFFECT the illuminated area of one tree, By, - Q5 in (15), andt;. by
At large 6, values, a viewer sees mostly the upper paffvc - Qsc, andtq. andt,, in the same equation are multiplied
of the trees. Without considering the height-dependent mutd@ Q.. andQ.;, respectively, to obtain the actual areas of the
shadowing effect, the model will underestimate the proportigi®nical and cylindrical parts of one tree seen by a viewer.
of sunlit canopyP;; in view because the illuminated top part Near the principal plane on the backscatter side, the illumi-
is less likely in shadow. In this module of our model, we onlfiation and observation of a sunlit area can occur in the same
separate a tree crown into two parts: cone and cylinder, a@@p in the canopy. In such a case, the processes of illumination
calculate the mutual shadow effects for these two parts in t@pd viewing are correlated. The angle range over which the
steps. In step one, the mutual shadowing effects among fiférelation occurs depends on the tree size and the average
cones can be found by allowing the projected conical areasttge spacing. A functiorf(¢), depending on the difference in
overlap. The probability of cone overlapping is obtained bijie azimuth angle between the sun and the viewer, is used
summing (20) fromj = 2 to «, based on the shadow area ot0 consider this correlation effect. Using the mean distance
a cone cast on the ground in the sun’s directiSp.) and in between tree centres [13] calculated by

the viewer’s direction(V,.). 1
E(d) = —— (34)
k , 2y/D/B
Psc = Z Ptj(Sgc)[]- - Pgap(es)]] (26) . . L. .
— we can determine the azimuthal angle range within which
) ) - overlapping of one tree with the other occurs in both the
is the overlapping probability fof,. and illumination and view directions
k 2r
Poc =Y Pi(Vao)lL = Prap(0,)] 27) wn(8r) = By =2 (39)
=2

) ) . A linear equation is used between= 0 and¢ = 6
is the overlapping probability fo,.. In (26) and (27),

1 — Pyp(6,)7 is multiplied to discount the gaps within ) =1- K (36)
the crowns. In step two, the mutual shadowing effects on br’
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where f(¢) is a kernel with non zero values only wherfor gaps>\, where W, is the characteristic width of a tree
0< ¢ < fg. The overall mutual shadowing effect§). and crown projected on the ground, anb; is the clumping-
(2, for the conical and cylindrical parts, respectively, are theadjusted projected tree crown area index. This formulation is
given by made according to the finding of Chen and Cihlar [7] that a
large part of the gap size distribution curve measured in boreal
Qc = Que * Qsc + f(#) - [Qsve — Que - Q] (37)  forests is determined by tree crowns as discrete objéks.
and L, are computed as

and
Wy = /5, (41)
Qb = Q'vb ' st + f(¢) . [stb - Q'vb ' st] (38) d
an
where(,,. is the minimum ofQ,. andQ,,., andQ,,; is the L =, $,D/B, (42)

minimum of @,;, andQ,;,. With considerations of these mutual
shadowing effects, the probability of seeing illuminated tr%heresg is the area of a tree crown projected on the ground in

crowns becomes the sun’s direction anf?, is a tree clumping index, determined
Qe tic +Qp -ty by the Neyman distribution as
Py = . (39)
Que * tac + Qub * tap Q = log(P;4(Neyman))/ log(P;4(Poisson))  (43)

Much of the complexity of the mutual shadow calculatlonF‘ is 0.95 obtained from simulation with a Neyman grouping

arises from t_he fact that the conical and the cyllndrlc% 4 for a forest with 4000 stems per hectare divided into 25
parts have different geometry and have to be separat(ah adrats

modeled. Since conifer trees are better represented usi Similar to (40), a distribution for gaps inside crowns can be

the comblnatlc_)n of these two par_ts than the single con mputed where the shoots are taken as the foliage elements
shape, we believe that the formulation presented above is an

improvement over previous models based on cone geometry Fos(N) = |14 L A - LI/ W)] (a4)
when used for conifer forests. as W,
where
IV. CANOPY GAP SIZE AND HOTSPOT

The hotspot is a phenomenon that occurs when the observa-
tion and the illumination directions coincide within the same ] ) ) )
canopy gap [16]. At the hotspot, the viewer sees either sudﬁt_the (_:Iumpmg-adju_sted foliage area index and the character-
foliage or the sunlit background, resulting in large observéfiCc Width of the foliage elements is
reflectance factors. In this case, the probability of seeing the W, = \/Z (46)
ground, P, is equal to the probability of having the ground
illuminated, P;,, and the probability of seeing tree crowns§lg is a clumping index for the effect of confining shoots
P, =1- P, is equal tol — F;,. As the viewer moves within tree crowns;yg is the needle-to-shoot area ratio quan-
away from the hotspot, the view line and the solar beatifying the effect of needle grouping in shoots on the radiation
are less likely to fall in the same canopy gap aRg and interception; andA, is the average shoot projected area.
P,, gradually become independent of each other. The prodéatcording to Chen [2], for the black spruce stand investigated
of the pair (P, and P,,) then determines the probabilityin this paper,L = 4.5,G(f) = 0.5,Qg = 0.70,vp = 1.41
of seeing the sunlit ground. However, around the hotspetnd W, = 35 mm. Only very small gaps are computed inside
such simple calculations are invalid because of the correlatizaes, but they contribute significantly to the total canopy gap
of these two processes. The importance of the correlatifraction because of their large numbers. In the calculation of
in determining the hotspot has been investigated by mathe hotspot, these small gaps are of critical importance in
modellers including Kuusk [18], who devised a correlatiodetermining the shape of the hotspot.
function based on the leaf size. We found that leaf size isFig. 6 shows the accumulated gap size distribution measured
irrelevant for the correlation in conifer canopies. Nilson andlong a 300 m transect in the black spruce forest [2]. The
Peterson [29] used a correlation based on a characteristic gagasured gap size distribution can be separated into two
size. In the present paper, we introduce a canopy gap spgets: between and within the tree crowns. Equations (40) and
distribution function for the calculation of the correlation. Thé44) are used to simulate these two parts respectively. The
function closely relates the hotspot to the canopy attributesparameters used in (40) and (44) are those found in Table |

The theory of gap size distribution in plant canopies was firekcepti¥; that was fixed at 1.4 m to reflect the typical width
derived by Miller and Norman [25] and further investigated bpf tree crowns encountered on the transect at abdutatthe
Chen and Black [5] and Chen and Cihlar [6]. The accumulatetdn. The characteristic widtV, for black spruce shoots was

e cos(fs)

g1

gap size distribution can be calculated from measured to be 3.5 cm. Samig andW, values were used for
both gap size distributions, i.e., Fig. 6(a) and (b). In both cases,
Fou(\) = [1 + Lti} e~ Ll /W) (40) the contributions of gaps between and within tree crowns to
Wi the measured gap size distributions are distinct, but there is
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Fig. 6. Two gap size accumulation curves measured in the old black spruce stand using an optical instrument at two solar zenith angles. In both cases (a)
and (b), the accumulation of the gap fraction resulting from gaps of various sizes can be separated into two components: gagghetwadnwithin
(Fus) tree crowns. The portion of the curve in therange of 10-50 cm is due to branch architecture.

a portion of the distribution curve in the range of 10-50 crthe following gap size distribution can be derived:
which can not be fitted using the crown and shoot attributes. LW
This out-lying portion is a result of the branch architecture P(A)=e : (47)

because the gaps between branches are larger than tf}gjg) is defined as the probability of a horizontal probe of
between shoots but smaller than those between tree crowr]s. : o

ength A falling completely within a gap between tree crowns.
This gap size distribution between tree crowns is important

A. Hotspot Between Crowns in determining the contribution of the ground surface to the

F,.()\) and F,;(\) are quantities that can be measurebotspot. Fig. 7(a) shows how,(\) varies with A at different
directly in a forest canopy. From the measurementB,@f\), solar zenith angles. For the calculation of the hotspot kernel
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Fig. 7. Calculated gap size distributions in the black spruce stand at three solar zenith angles: (a) between tree crowns and (b) inside tree towns. Fo
distributions between tree crowns, (47) is used withand 1W; from (41) and (42), respectively. For the distributions inside tree crolipsand W; are
replaced byL, and W, respectively, where_, is calculated from (45) andV, is taken to 35 mm.

for the ground, a gap number density function is used, whiethere /,(¢) is a hotspot kernel, which is unity at the hotspot

is defines as and zero when the illumination and view angles are far apart,
dP(\) L and¢ is the angle between the sun and the viewer determined
Ne(A) = - C;)\ = WtG_Lt[H(}‘/Wt)}. (48) by cos(§) = cos(8,)cos(6,) + sin(f;)sin(6,) cos(¢). The
t

first term on the right hand side of (49) is the probability

The probability P of observing the sunlit ground under thedf observing the sunlit ground wheft;, and F,, are not
tree crowns can then be written in the general form: correlated, i.e., the viewer sees the sunlit ground through a
gap different from that of illumination. The second term gives

Pg = PP,y + [Pig — PigPog)Fi(8), (49) the additional probability resulting from the correlation. Fig. 8
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TABLE |
MoDEL INPUTS FOR ABLACK SPRUCE CANOPY
i, 0.5 m
Hy 6.5 m
Radius of crown 0.45 m
G(6) 0.5
LAl 4.5
Domain 1 ha
Density 4000 tress/ha
Quadrat size 400 m?
Neyman grouping 4
@ 13°
~E 1.41 A
Qg 0.70
W, 0.035
R(; (er) 0.06
Ry (red) 0.13
ch(red) 0.006 H
Ryp(red) 0.01
R (nir) 0.20
Ry {nir) 0.53
RZ(;(nir) 0.05
RZT(HiI') 0.08 Vaw 4 777

Fig. 8. Geometry determining the hotspot on the ground due to the
shows how a gap of certain size contributes to the hotsrg@toccurrance of illumination and observation within the same gap between
. . . tree crowns.
kernel. The angle range in which the viewer can see the suniit
ground through the same gap as the illumination is determined
by the gap size and the effective height of the gap column thaedifying the hotspot shape and magnitude. An important
depends on the view zenith angle. For one gap of aiz@e Structure within conifer trees is the shoot, which is the basic
have the hotspot function collection of needles. Needles are grouped tightly in shoots,
¢ which allow little radiation penetration and can be treated as
&) =1- ——r7sr (50) the basic foliage units for radiation modeling [7]. Similar to
tan™" (A/H) the distribution between crowns, a gap size distribution within
whereH = [H,+ H,+ H_./3]/ cos(65). For the whole canopy the crown is used to calculate the gap number density function
containing multiple gaps of different sizes with a number
density of N(A), the hotspot function is obtained through the
following integration:

[ - i YO
A TN dA '

min

NoO\) = _dP(A) EG—LS[H(/\/WS)} (53)

d\ W,

The formulation presented above has implications on the
inversion of the model for leaf area index because the mi-
(51) croscale structures within the tree crowns affect the BRD and
cannot be ignored.
In computing the hotspot within the tree crowns, the self-
W%padowing and the vertical tree crown structure must be
considered. Discontinuities in mathematical expressions are
I{olusnd at nadir or the boundary between sunlit and shaded sides
of a crown. Therefore, we treat the two sides separately. On the
sunlit side, the probability of seeing the illuminated foliage
(52) atthe hotspot is simply — P, i.e., the viewer sees either the
. . o sunlit ground or the sunlit foliage. Considerable complication
The ground reflectance is assumed to be isotropic in this PaR&ses when we treat the tree crown surface as a complex
. surface with microscale structures. In this case, a view line can
B. Hotspot within Tree Crowns penetrate into the depth of the crown and reach to the shaded
In the estimation of the hotspot within the tree crown, #oliage behind the sunlit part even though the imaginary tree
gap size distribution within individual tree crowns is used. Inrown surface is theoretically sunlit. The problem may be
previous geometric-optical models, the imaginary tree crowmderstood in the extreme cases: 1) a tree crown is very
surface has been treated as a smooth surface in the calcdense—the imaginary surface can reasonably represent the
tion of the hotspot [22]. Some more elaborate models hatree crown, and 2) a tree crown is very sparse—the imaginary
dealt with the crowns as object containing turbid media witburface ceases to have meaning. The reality is in between these
multiscattering [29], [23]. Since shadows can be observed twio extremes, i.e., the imaginary surface exists but is unsmooth
the sunlit side of real tree crowns, the microscale structurescomplex. In this case, the effect of mutual shadowing among
within tree crowns have important contributions to the hotspdgliage elements within a tree crown cannot be ignored.

Ft(g) =

For a given angle difference between the sun and the vie
there is a minimum gap size;, in which the view line
penetrates through the same gap as the solar beam.
determined by

Amin = H tan(§).
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Fig. 9. Examples of (a) the ground and (b) the tree crown hotspot kerné}, fer 45° calculated using (51) and (67) with parameters given in Table I.

Tree Crown Outline the accumulated sunlit leaf area from Qitar) is 1—c L),
mﬂﬁﬂm “ﬁgé\ Crown element whereC; = G(6,)Qr /ve sin(f; + «) to take into account the
viewer 1 (leaves, shoots) cone inclination and the vertical structure. At positionthe
increment of sunlit leaf area with increasidgz) is
Sun
. d
1= —C,L(x) _ Cs —CSL(w)' 54
S L (54)
3 Similarly, the increment of leaf area seen aftidr(x) is
. d
viewer 2 S | I G—CUL(J;) _ CUC—CUL(J;)' 55
iy i dL(a:)[ ] ( )

If we denoteLy as the leaf area index accumulated hori-
zontally from the sunlit side to the shaded side, the total
probability of viewing sunlit leaf area from 0 tby is then

Ly
Q1(Ly) =I(¢) / C,Cye™Co @) o=CaL@) g ()
0

C,C,
—_— 56
o C} (56)
Pszz(8,) where I'(¢) is the first-order scattering (geometric shadow)
phase function of the foliage elements. It is defined as

r© = [1- %] (57)

™

=T(&[1 - C—LH(CS—I—CU)] {

whereC,, is a coefficient determined by the optical properties
Fig. 10. Gap probability used in modeling the probability of observing suni@f foliage elements. If the elements are solid spheres with a
foliage inside a tree crown from the sunlit sig@ for viewer 1) and from | gmbertian surface?p is unity, resulting in the phase function
the standard sideq: for viewer 2). being 1.0 at = 0, 0.5 at¢ = 7/2 and 0 at¢ = =. The phase
function in this case gives the proportion of the sunlit sphere

Fig. 10 shows the physics involved in the determination slurface seen by the viewer. Although a conifer shoot can be
the hotspot within a tree crown, where a tree is consideragproximated by a sphere to describe the projected area [2], it
as a vertical structure with spherical foliage elements (shootgn not be treated as a solid because of the gaps within it. The
dispersed within it. Usind.(x) as the accumulated LAI from value ofC,, for porous elements is smaller than unity. Because
the imaginary surface to a given locatignwithin the crown, of lack of data, we assume th&l, = 0.75 in this paper. This
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constant is found to affect the sharpness of the hotspet. the same principles ak;(¢) but it involves foliage elements

must be calculated for all trees, it gives (shoots) instead of tree crowns.
i ~ &
Quor = Y_ Q1(j - L) - Pj(Vy) (58) /)\ [1 tan=1(\/H,) N dl
j=1 FS (5) = = [ES) (67)
Ns(A) dA
where FP,;(V,) is the probability of a view line going through A W)

j tree crowns calculated by (20). On the shaded side, th%

. . . . ' YV ereH, is the effective distance between two layers of leaves
probability of observing sunlit leaves also exists, especially . . i
|ﬁtS|de a tree crown. In our model, it is inversely proportional

in canopies with sparse tree crowns. The increment of sunlity o |eaf area density in the tree crown oy, i.e
leaf area along the sun'’s direction is calculated using (54), but y i T
the increment of leaf area viewed from the opposite side is H, = r (68)

calculated differently as follows: Lo
d where r is the tree crown radius. This definition produces
— = [l — e En=L@)] = _Q,e~Ce(En=L(=))  (59) sharper hotspots in canopies with sparser tree crowns. After

dL(z) considering the hotspot on tree crowns, the overall probability
At a given depthe, the probability of observing sunlit foliage of observing sunlit foliage is
IS Pr = Pry+[(1 = Piy) — Prs]Fs(8). (69)

(&)Chem @ H [—CUG_C”(LH_L(“J))] (60) This givesPr; outside of the hotspot wherE, (¢) = 0 and
. ) (1 - P,,) at the centre of the hotspot wheFg(¢) = 1. Fig. 9
After integration fromLy to O across the tree crown, thegh,ys examples of the hotspot kernel calculated using (51)
overall probability becomes and (67) along the principal solar plane at a solar zenith angle
Coll, —cor o C,C, of 45°. As the first approximation, the shape of the kernel is
Qa(Ly) = [1 - T} [emetm — e H][ } the same in all directions, i.e., the hotspot has a circular shape.

CU - Cs
(61)
This phenomenon must be considered on each tree along ¢heCanopy Reflectance
path of view. On the first tree, it is simpl@2(Lx). Fori  For estimating the first order scattering, the model computes
trees along the path it is the various components: sunlit foliagé’s), sunlit ground
" (Pg), shaded foliagél — P,, — Pr) and the shaded ground
Q2tot = QQ(LH)Z'Ptt(i) - K(4) (62) (P,, — Pg). If direct solar beams are the sole source of
i=1 illumination and no multiple scattering occurs, only the first
where two components are responsible for the reflectance of the
canopy. However, since the diffuse radiation from the sky
Pyi(4) = Pou(d) Por(i — 1)Pgi;p1(9,v) (63) is considerable compared with the direct radiation and the
) ) multiple scattering is also inevitable, the shaded components
in which cannot be ignored. These components are considered in our
i model by assigning the appropriate reflectivities to them as
Pu(i) = > Py(Vy). (64)  follows:
! Rzr = Cp - Fyy - Ry (70)

P,:(i) represents the probability of havirigrees within one

path. The probability of seeing thh tree behind — 1 trees and

is found by_ the probability _o_f having—_ 1 tree overlapping, Rzg = Cy - Fuy - Ra, (71)
Py (1—1), times the probability of passing throughk- 1 trees, o ]
Piz1(8,). As the view line penetrates through the forest, where Rz and Rz are the reflectivities for shaded 'fc?lyage
reaches the lower portion of the canopy where shaded folia?%d ground, respectivelyizy and R, are the reflectivities

is more likely to be observed. For thigh tree on the path, this for sunlit foliage and ground, respectivelyiy; and Fy,
are the fractions of diffuse irradiance in the total incoming

‘ solar irradiance above and below the stand, respectively; and
K (i) = ¢t (0:)-SLp-cos(6,)/ cos(6,)6p (65) C,, is a multiple-scattering factorRzr and Rz can also

) . _ be measured directly from a forest stand. The total canopy
With the proportion of sunlit and shaded tree crownFasand | ofectance is

(1 — Py) respectively, we can then calculate the probability
of seeing the illuminated foliage as R=Rr-Pr+Rg -Pog+Rzr - Zr+ Rzg-Za (72)

height attenuation is considered by

Prj =Py - Quiot + [1 — Pui] - Qator- (66 where_Z_T_ =1-Fy—PrandZg = Py, — Pag. AII_ these
reflectivities are wavelength dependent. In modeling canopy
This equation is only valid far from the hotspot. A hotspoteflectance in red and near-infrared bands, (72) is used with a
function, similar to (51), can also be definef,(¢) follows different value for each reflectivity.
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Fig. 11. Canopy gap fraction modeled with different Neyman group sizes as compared with the measurements from a black spruce forest.

V. MODEL RESULTS illuminated (F%;) decreases, and so does the probability of
seeing a tree illuminatedPr). This is mainly because of
the increase in the gap fraction. In accordance with,
the probability of seeing the illuminated ground surféée;)

The model first computes the canopy gap fractiyp (18). increases. Red and near infra-red reflectances decrease with the
Measurements from a boreal black spruce forest were used\iyman grouping because ground reflectivity is low compared
validate the computation. According to Chen [2], the followingo the crown reflectivity.
values are used: 4000 for the tree density (stems per hectare),

6.5 m for the average tree height, 4.5 for LAI, and 0.45 m

for the crown radius. The quadrat size is fixed at 408 mB:- BRD and Hotspot

having an average of 200 trees per quadrat. Fig. 11 showdhe plots in Fig. 13 were computed using the same inputs
P,, distributions calculated using the Poisson model and ths in Fig. 12 and the reflectivities summarized in Table I.
Neyman model with groupings of four, 12, and 24. Near tHeased on measured spectra (Whetieal. [36], Middleton et
vertical view direction, the different sizes of Neyman groupingl. [24], Soffer [32]) , R = 0.06 and Ry = 0.13 for the

do not have much effect because the forest is very open. Ted band andRs; = 0.20 and Ry = 0.53 for the near-
effect of the grouping is more pronounced trbetween 15 infrared band. The ground reflectivity in the red band is smaller
and 60. The best fits are found with small Neyman groupghan that of leaves even though the overall reflectivity of
An analysis of 24 quadrats of 18 10 n? each measured the stand is lower than the ground reflectivity because of the
in black spruce stands gives, = 2 calculated with (5), but shadow components in the stand. Using (70) and (71) we can
when grouped into six 400 fquadratsyz, = 4. A grouping attribute the appropriate reflectivities to the shaded tree crown
of 4 is used in all simulations unless noted otherwise. and ground surfaces. Because of the small contributions from

The measured gap fraction data at large zenith angles ahaded ground and crowns, we use constant multiscatterring
positively biased because of the effect of multiple scatterifigctors, leading ta’;,, - I'y; = 0.08 and C,,, - Iy, = 0.10 for
on the measurements using an optical instrument [2]. Thee red band and’,, - Iy, = 0.15 andC,, - Fy, = 0.25 for the
modeled curves all show a sharp increase near the vertinabr infra-red band. The six plots in Fig. 13 show the same
direction because of the simple geometry to represent themponents as those in Fig. 12 but as distributions against
tree crown and overlapping of the crowns without considerir, on the principal solar plane #& = 35°. For the view
the repulsion effect. This creates unsmoothness of the modrgled,,, we use the following sign convention: negative for
results at the nadir as shown later. In reality, the tree crovaackscatter and positive for forwardscatter. Fig. 13(a) shows
geometry is more variable and the reflectance distribution ahee gap fraction versus the view zenith angle for a Neyman
usually smoother around nadir. grouping of 4. Fig. 13(b) is the proportion of the imaginary

To understand the effect of the Neyman grouping, Fig. e crown surface seen by the viewer that is illuminated.
shows different components of the model for a rangengf From 8, = —90° to —35° it equals unity, meaning that all
values from 1 to 50 afl, = 30°,0, = 55° and¢ = 0. The tree crowns imaginary surface in view are illuminated in the
grouping of trees produces a larger gap fraction becausepiiincipal solar plane. At nad{i¢,, = 0), there is a discontinuity
increases the probability of having quadrats with few treelsecause the viewer can only see the cone part of the tree
With the increasing grouping size, the proportion of canopyrown which is mostly illuminated. On the backscattering

A. Effect of Neyman Grouping
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Fig. 12. Different components of the model versus the Neyman grouping at a view zenith andgléft8sprinciple solar plane at a solar zenith angle ¢f.55

side, P,; decreases near the vertical direction because thef, = 35°). Figs. 13(e) and 13(f) describe the BRD in
viewer can see the lower part of the cylinder that is shadéte red and near-infrared bands. Both distributions resemble
by other cylinders. On the fowardscattering side, the cylindére probability of seeing illuminated foliagePr) because of

is completely shaded, and ég increases, more of the shadedhe large P values and the large reflectivity values for the
cylinder occupies the view. At very largg values, the conical foliage. Although the magnitudes of the red and near-infrared
part dominates the view, and the proportion of the tree neflectances are very different, the shapes of the distributions
view that is illuminated increases because more than half ae remarkably similar because only the first-order scattering
the cone surface is usually sunlit. Fig. 13(c) represents tiseconsidered in the calculation and the multiple scattering
probability of seeing illuminated foliage within tree crownseffects are included as invariant offsets. However, there are
It includes the probability of observing sunlit foliage from thesubtle differences in the shapes due to the different foliage and
shaded side and the hotspot effect on the illuminated side.gfound reflectivity combinations witR; and Pg;. These small
pronounced hotspot peak is computed at= 35°. Fig. 13(d) differences have implications on the angular distribution of
is the probability of seeing the ground illuminated by the sunegetation indices calculated from the two bands and deserve
The bi-module distribution pattern results from the peaks at thather investigation.

hotspot and at nadir. The peak at the nadir is due to the largesComparisons of the model results were made with mea-
gap probability at that angle. The other peak at the hotspotsisrements of a boreal black spruce forest [9]. Fig. 14(a) and
obtained after the introduction of the hotspot function (51L4(b) show the calculated and measured reflectance in the
otherwise theP; curve would be symmetric about the centrered band for two differen®, values, 40 and 5%, in the

At the hotspot, all the ground areas in view are illuminategyincipal plane. At6; = 40°, the model is overestimating
and the value ofF; is simply P,, at the same angle (0.35the reflectance on the forwardcattering side. This is mainly
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Fig. 13. Different components of the reflectance in the princpal plane at a solar zenith angle. of 30

due to the constant reflectivities used for the shaded foliagesulted from the simplified geometry used to represent the
and ground. The model uses constant values Kgr and tree crowns. The model geometry is such that, all foliage is
Fyy in (70) and (71) for the fraction of diffuse radiation inconfined within the cone or cylinder, while in reality branches
the total incident solar irradiance. As the fraction changextend much further than the mean radius and intercept more
during the course of the day, these constant values beti@diation than the model prediction. One way to handle the
represent the average daily conditions. Near solar noon whaoblem is to increase the mean radius of the tree crowns, but
the sun is high, the diffuse fraction is smaller than the daiip that case the branch structure needs to be more vigorously
average and the reflectivities for the shaded components described to allow more gaps within the tree crown. This
also correspondingly smaller than the daily average, resultisgggests that geometric-optical models are still approximations
in the discrepancies between the modeled and observed valeeseality and accurate simulation of BRD requires accurate
at §;, = 40°. The comparisons suggest that the model wilescriptions of the canopy architecture at all scales. Fig. 14(c)
benefit from accurate separation of the diffuse and direct solrows a comparison between the model and measurements
radiation. The model shows sharp spikes at the hotspotfor the reflectance in the near-infrared bandfat = 40°.
comparison with the measurements. The gentle variation in fRiiee model is able to simulate the measurements closely.
measurements may be a result of the low angular resolution Fig. 14(d) wheref, = 60°, the model performs well
(15°) which effectively produced window-averaged resultexcept for the largest,, especially on the backscattering side,
The effect of the averaging is to dampen and broaden timglicating the effect of nonuniform distribution of multiple
peak at the hotspot. Fé, = 40° and other smalb, values scattering on BRD which is not considered in the present study.
not shown here, the width of the hotspot is well modeled. The Fig. 15 shows hemispheric distributions of reflectance in
model does not perform as well at the larger solar zenith angtee red band at four solar zenith angles. The hotspot varies
like Fig. 14(b) forf, = 55°. This model deficiency may havein size, being generally larger when the sun is higher in the
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Fig. 14. Comparisons of measured and modeled BRD in the principal plane for a black spruce in the red bang. fo=(4)°, and (b) 58, and in the
near infrared band for (c§s = 40°, and (d)¢; = 60°. The measurements were made by Deeen@l [9].

sky. The model does not show much of the usual bowl-shaten and is expected to approximate more closely natural living
because of the high LAl and the fixed diffuse fractions used arganizms. We believe that such a model contains more flexi-
the model. Some of the bowl-shape can be seen in Fig. 156iljty to adapt to different plant canopies than previous models.
and (d). Fig. 16 shows the corresponding distributions in theMuch mathematical complexity arises, though still tractable,
NIR band. The distributions are similar to those in Fig. 1when we treat the tree crown surface as a complex surface
but the bowl-shape is more pronounced #ar = 60° and within which mutual shadows and the hotspot also occur.
75°. The increase in reflectance at lajevalues, where the Through our numerical simulation, we believe that the sub-
ground is hidden under the tree crowns is due in part to te@nopy structures have profound effects on the directional
larger reflectivity of the shaded foliage as compared to thegflection behavior of the canopy and deserve such attention.
shaded ground A singularity is seen at nadir for the larggy 17 shows the sensitivity of the model to the foliage
solar zenith angles, i.e., Fig. 16(d) because of the large shag@@sity within tree crowns. With the fixed stand density and

ground components viewed vertically. tree crown shape and dimensions (Table |), the foliage density
increases proportionally with LAI. For these simulations, we
VI. DiscussION kept the multiscattering factors constant, and realized that

The four-scale model presented here was developedS@ne inaccuracies occurred in the model results because
investigate the effect of canopy architecture at different scal@ger LAl should induce more multiscattering in the canopy.
on the bidirectional distribution. Since we have incorporatdoth the red and NIR reflectances increase with decreasing
mathematics descriptions of canopy architecture at scaledl in the forward scattering direction due to the increased
larger and smaller than the tree crown, it becomes a fuzRyobabilities of observing sunlit foliage from the shaded side
geometric-optical model in the sense that the clearly defin#iifough sparse tree crowns. The hotspot is smaller for a sparser
canopy geometry, such as that of Li and Strahler's modetgnopy (lower LAI) because of the increased probability of
is disintegrated and defined probalistically. The inclusion @bserving the ground, which has a lower reflectivity than the
canopy architecture at the various scales in a geometric-optitadlage. These model results support the findings of Soffer [32]
model may be considered as an influx of negative entroffyat the measured reflectance on the shaded side of jack pine
which increases the orderliness of the system under investigeswns is considerably larger than the predictions of a Li and
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Fig. 15. Modeled hemispherical reflectance distributions in the red band at four solar zenith @gles

Strahler model. Black spruce crowns are generally denser aed leaf area index. Clumping of needles within shoots, for
the shaded side appears darker than the jack pine. Our mag&mple, affects the radiation interception in the plant canopy
is able to simulate such differences. and hence vegetation indices derived from the reflectances in
The assumption of random tree distribution is removed ed and near-infrared bands. Grouping of shoots in branches
the expense of lengthy mathematical descriptions using thlso has similar effects. Accurate estimation of LAl from the
combined Neyman and binomial distributions. Apparentlynodel requires appropriate descriptions of architecture at these
such effort has not been very rewarding with regard to imib-canopy levels.
impact on the final BRD results for the stand investigated. In this paper, the effect of multiple scattering on BRD is not
Fig. 18(a) shows that the Neyman grouping increases timestigated. Our attention is first given to canopy architecture
reflectance in the red band only on the forward scatterimgcause the first order scattering is usually much larger than
side near the vertical direction. The increased opennesstiid sum of multiple scattering and the angular distribution
the forest due to the Neyman grouping is the main caueéthe multiply scattered radiances is usually considered to
of the increase in the modeled reflectance. The Neymha isotropic [31]. However, at NIR wavelengths, the multiple
grouping decreases the width of the hotspot because a largeattering effect is larger than that at visible wavelengths and
mo gives a smallef?, which affects the hotspot kernel forthe isotropic assumption may lead to some inaccuracies in
the ground. At large view angles, a larger Neyman groupirige BRD results. Such subtle differences may have significant
gives a smaller reflectance because the contribution of thiects on the simulated vegetation indices using reflectance
ground to the reflectance becomes very small and the tfeetors for these two bands. We hold the believe that in
crown properties dominate at these angles. The change of thedeling the multiple scattering, the canopy architecture is
hotspot width is more important in the NIR than the red barfdremost important because it dictates the direction of first
because the Neyman grouping affects the proportion of tbeder scattering and the probability of observing the reflecting
ground illuminated P ). Our present simulation is limited to surfaces at different steps of the scattering sequence. The
small quadrats with small Neyman groupings. More researchapproaches of Goeilt al. [14] and Strahler and Jupp [33] in the
needed to determine the grouping effect at larger scales (ladgscription of plant canopy architecture have such merits, but
guadrats with large groupings). forest canopies are much more complex than what have been
Sub-canopy architecture is not only important in investdescribed. The model presented here provides a framework in
gating the BRD of vegetated surfaces but also critical in tlvehich the effect of canopy architecture at various scales on
inversion of the model to obtain biophysical parameters suBiRD can be systematically investigated.
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VII. CONCLUSION canopies which are usually well organized at various scales.

In contrast to the turbid-medium type of models suitableompared with previous two-scale geometric-optical models,
for short vegetation canopies without distinct foliage strugvhich describe trees as randomly-distributed discrete objects
tures, geometric-optical models are more appropriate for foresintaining turbid media, the four-scale model presented in this
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paper includes the effects of two additional scales of canopsherez 4 = rcos(6,); (z4,y.4) is point A; andy4 = 0.r is
architecture: tree distribution pattern and foliage distributicthe base radius of the cone. Ry < « the cone area seen is
pattern within trees. The four-scale model simulates closely the
measurements of tree distribution, canopy gap fraction and the
bidirectional reflectance. It is shown in model simulation thaj/heng, > «, the pointB is outside the ellipse. This new area
the architecture within tree crowns has profound effects on th@lledt,.., in the paper) can be easily computed by integrating
bidirectional reflectance distribution (BRD) Tree diStribUtiOﬁM/ice from the ellipse to the segmeBtD from 0 to YD:
patterns have small but significant effects on BRD for the y
stand investigated and may have larger effects for more patchy ~ fac =77 cos(6y,)
stands. e y—bpp
. . - 2 =Vrt—yr-——=1\d 75
In our model, a tree crown consists of conical and cylindrical + /0 y VT MBD vy (79)
parts. An effective mathematical scheme is devised to estimatﬁ :
. where and are the intercept and the slope of the
the mutual shadowing effect between tree crowns and am bep MBD P P

foliage elements within tree crowns. The canopy gap Si segment(z 5, y5) denotes point B, which is the projected

2 : .
distributions between and within tree crowns are used Tg of the cone(ys = 0).(zp, yp) is the intercept between the

describe the hotspot size and shape. The description, for s%%ﬂ,?('; and the ellipse. The integral in (75) has an analytical

first time, closely relates the bidirectional reflection behavior When the solar zenith angé is larger than the apex angle

to canopy attributes. «, self-shadowing on the cone occurs. At nadir, the illuminated
area is expressed by

toe =T -1 - x4 = 777 cos(f.,). (74)

Y
APPENDIX tic = [— + ’7} r? (76)
2
CoNE GEOMETRY

_ . _1 . . .
The computation of the proportion of iluminated area on YNere?Y = sin [tan(a)/ tan(6,)] [19]. This is valid for all

. - . imuth anglesp. On the backscattering side of the principal
cone is done using simple geometry. The area of the CO?‘?I . .
projected to a viewer can be separated into two parts: ne [Fig. 19(a)], the shadow can be seen wéile: 6. For

ellipse and a triangle. The nine schematic representationsgi‘nS @ we have

Fig. 19 show the typical shaded areas viewed on the cone. Thg = yx - (g — x5) + 774 - [sin(y) cos(y) — v +7/2] (77)
origin of the coordinates is always the centre of the ellipse and

the x-coordinate of each point stays the same. The ellipse/{§€re(zk,yr) denotes pointE. xp = x4 - sin(y + ¢) and
expressed by ye = 7 -cos(y + ¢) As 6, increases, the triangular part

appears to the viewer. Two shadowed areas can be seen on the
triangle part. Outside the principal plane, the symmetry does
i + ¥y _q (73) not exist, but the same equations can still be used. The third
xy o r? plate of Fig. 19(b) shows such a case. The computation of the
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Fig. 19. Examples of illuminated cone surface aféa) at different view angles.

shaded area is an integration of areas inside the ellipse whidie shadow on the ellipse is, as above, calculated by separat-
is separated into four parts to facilitate the selection of integrialg the ellipse into four partsHOAJ, GOAI, FGOK, and
limits. Fig. 19(b) fora > 6, >0 we have the shadowed areat HOK.

in three parts of the ellipse, it is calculated as follow:
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