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Foliage Clumping Index Over China’s Landmass
Retrieved From the MODIS BRDF

Parameters Product
Gaolong Zhu, Weimin Ju, Jing M. Chen, Peng Gong, Bailing Xing, and Jingfang Zhu

Abstract—The three-dimentional plant canopy architecture is
often characterized using the foliage clumping index useful for
ecological and land surface modeling. In this paper, an algorithm is
developed to retrieve the foliage clumping index with the Moderate
Resolution Imaging Spectroradiometer bidirectional reflectance
distribution function (BRDF) parameter product (MCD43A1),
which is generated using the RossThick-LiSparse Reciprocal
(Ross–Li) model. First, the Ross–Li model is modified to improve
the simulation of the reflectance at hotspot using the Polarization
and Directionality of Earth Reflectance measurements as bench-
marks to determine BRDF parameters. Then, the modified model
(Ross–Li-H) is used to simulate the reflectance at hotspot and
darkspot, which is used to calculate the normalized difference
between hotspot and darkspot (NDHD). With the relationship
between clumping index and NDHD simulated by the 4-Scale
geometrical model, the clumping index over China’s landmass
at 500-m resolution is retrieved every 8 days during the period
from 2003 to 2008. Finally, The effect of topography on the
retrieved clumping index is corrected using a topographic com-
pensation function calculated from the digital elevation model at
90-m resolution. The topographically corrected clumping index
values correlate well with field measurements at five sites over
China, indicating the feasibility of the algorithm for retrieving the
clumping index from the MCD43A1 product.

Index Terms—Clumping index, hotspot, Moderate Resolution
Imaging Spectroradiometer (MODIS), normalized difference be-
tween hotspot and darkspot (NDHD), Polarization and Direction-
ality of Earth Reflectance (POLDER).
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I. INTRODUCTION

THE FOLIAGE clumping index (Ω)[1] quantifies the spa-
tial distribution of leaves within distinct vegetation struc-

tures such as tree groups, tree crowns, whorls, branches, and
shoots [2]. It is an important parameter for ecological, hydro-
logical, and land surface models [3], [4] and for retrieving other
vegetation structural parameters from remote sensing data, such
as leaf area index (LAI). This parameter is an indispensable
correction factor to convert the effective LAI (Le) [5], which
assumes a random distribution of leaves in space, to the true
LAI [6]–[8]. It is also needed for the separation of the canopy
into sunlit and shaded leaves, which is crucial for accurate
simulations of photosynthesis and evapotranspiration [9]–[11].

Natural vegetation canopies are often clumped. Foliage
clumping varies considerably with land cover type, vegetation
development stage, and season, making it difficult to retrieve
this parameter reliably at regional scales. It is even difficult
to measure it accurately in the field because foliage clumping
often occurs at many levels: shoot [2], between-crown [12], and
ecosystem [13]. Tracing radiation and architecture of canopies
(TRAC) [14], digital hemispheric photography, and multiband
vegetation imagers have been practically used to measure the
clumping index in various ecosystems over the world [6], [15]–
[17]. However, measurements by these three instruments are
significantly different in some sites [18].

Currently, clumping index values are often assumed to vary
only with land cover types in most operational LAI retrieval al-
gorithms and ecological models [19], [20]. Such simplification
can induce large uncertainties in the retrieved LAI and modeled
ecological results. For example, the net and gross ecosys-
tem primary productivity may be considerably underestimated
when foliage clumping is ignored in the Boreal Ecosystem
Productivity Simulator (BEPS) model [4]. Lacaze et al. [21]
reported that the estimation of daily canopy photosynthesis can
differ by 20% for a black spruce stand if the clumping effect is
ignored. Therefore, it is highly desirable to map the clumping
index from remote sensing data for different types of biomes
for improving the retrieval of LAI and model simulations.

The bidirectional reflectance distribution function (BRDF)
measured by multi-angular remote sensing is an intrinsic prop-
erty characterizing the anisotropy of surface reflectance, which
contains the structural information of vegetated surfaces [4],
[7], [22]–[27]. Several angular indices calculated from the
combination of some specific directional reflectance or linear
kernel-driven BRDF model parameters have been proposed to
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retrieve the clumping index using multi-angular remote sensing
data. Roujean and Lacaze [7] retrieved the clumping index from
the vertical difference vegetation index (DV I0), which was
calculated as the difference between the values of isotropic
kernel for near infrared (NIR) and visible bands. Chen et al.
[28] and Lacaze et al. [21] proposed that clumping index is
linearly correlated with the hotspot and darkspot index (HDS).
Chen et al. [4] suggested that the improved angular index
named normalized difference between hotspot and darkspot
(NDHD) may be more linearly related to the clumping in-
dex than HDS. The applicability of NDHD in retrieving the
clumping index has been recently proved by ground measure-
ments [17], [29]. These studies have demonstrated the poten-
tial to retrieve the clumping index from hotspot and darkspot
reflectance.

The global and continental clumping index maps have been
generated using 6-km multi-angular Polarization and Direction-
ality of Earth Reflectance (POLDER) data [4], [7], [21], [29]–
[31]. The reliability and accuracy of these maps have been
validated using various independent field measurements taken
in different regions and seasons [7], [17], [32]. The availability
of such clumping index products would definitely improve the
performance of regional/global ecological, hydrological, and
land surface models. However, the spatial resolution of cur-
rently available clumping index maps is relatively low (6 km)
and cannot fully satisfy the requirements of regional/global
ecological, hydrological, and climate models. Therefore, efforts
should be made to improve the spatial resolution of clumping
index maps using presently available remote sensing data.

The main objectives of this study are: 1) to explore the feasi-
bility of deriving the clumping index at 500-m resolution based
on NDHD, which is calculated from the Moderate Resolution
Imaging Spectroradiometer (MODIS) BRDF parameters prod-
uct in the NIR band; 2) to validate the retrieved clumping index
with ground measurements; and 3) to analyze the spatial and
temporal variations of the retrieved clumping index in China.

II. DATA USED AND METHODS

A. Remote Sensing Data

The POLDER-3 instrument onboard the PARASOL mi-
crosatellite is a radiometer designed to measure the directional
and polarized reflectance of the surface-atmosphere system.
It provides an adequate directional sampling of every point
on the Earth with view angles up to 60◦–70◦ and a full az-
imuth range, at a spatial resolution of about 6 km, when the
atmospheric conditions are favorable [33]. The monthly global
POLDER-3/PARASOL BRDF data set built by the Laboratoire
des Sciences du Climat et de l’Environnement (LSCE) is used
in this study. This data set contains the highest quality BRDFs
of POLDER-3 at 490, 565, 670, 765, 865, and 1020 nm for
each month during the period from November, 2005 to October,
2006. Totally, there are 20985 thematically homogeneous pixels
based on the GLC2000 classification system in this data set.
The percentage of thematic homogeneity within each pixel
is higher than 80%. The data of BRDFs for each pixel con-
sist of the surface reflectance in each band at different view

Fig. 1. Example of the BRDF sampling of a POLDER-3 pixel (24.64N,
105.52W) in February 2006. The radius represents view zenith angle (◦), and
the polar angle represents relative azimuth angle (◦). The solar zenith angle of
these observations by POLDER-3 ranges from 36.4◦ to 40.1◦.

angles acquired in a certain month, latitude and longitude,
GLC2000 land cover type, normalized difference vegetation
index (NDVI), percentage of homogeneity, date of observation,
solar zenith angle, view zenith angle, and relative azimuth an-
gle. On average, there are 132 valid observations from different
angles for a POLDER-3 pixel in a month (Fig. 1). With the as-
sumption that surface properties change little during this period
of time, POLDER-3 can provide an adequate sampling of di-
rectional space for a given pixel to reconstruct BRDF of surface
targets, including the exact observations at the hotspot [34].

The MODIS BRDF model parameters product (MCD43A1)
provides the weighting parameters associated with the
RossThick-LiSparse Reciprocal BRDF model (Ross–Li model)
that describes the anisotropy of surface reflectance. This prod-
uct is operationally generated using following linear kernel-
based semi-empirical model [35]–[38]:

R(θ, ϑ, φ,Λ) = fiso(Λ) + fgeo(Λ)Kgeo(θ, ϑ, φ)

+ fvol(Λ)Kvol(θ, ϑ, φ) (1)

Kvol(θ, ϑ, φ) =
(π/2− ξ) cos ξ + sin ξ

cos θ + cosϑ
− π

4
(2)

Kgeo(θ, ϑ, φ) =O(θ, ϑ, φ)− sec θ − secϑ

+
1

2
(1 + cos ξ) sec θ secϑ (3)

O(θ, ϑ, φ) =
1

π
(t− sin t cos t)(sec θ + secϑ) (4)

cos t =2

√
D2 + (tan θ tanϑ sinφ)2

sec θ + secϑ
(5)

D =
√

tan2 θ + tan2 ϑ− 2 tan θ tanϑ cosφ (6)

cos ξ = cos θ cosϑ+ sin θ sinϑ cosφ (7)
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where R(θ, ϑ, φ,Λ) is the directional reflectance in wave-
band Λ; Kgeo and Kvol are the geometric optical kernel
(LiSparse Reciprocal kernel ) and volumetric scattering kernel
(RossThick kernel), respectively, and are functions of solar
zenith angle (θ), view zenith angle (ϑ), and relative azimuth
angle (φ); fiso(Λ), fgeo(Λ), and fvol(Λ) are the weights for
the isotropic, geometric, and volumetric kernels in waveband
Λ, respectively; and ξ is the scattering angle, i.e., the angle
between the sensor and the sun relative to the target. With these
three BRDF parameters, the Ross–Li model is able to simu-
late the directional reflectance at any desired illumination and
view angles.

The MCD43A1 product is generated every 8 days from
the multi-angular reflectance observations of MODIS onboard
Terra and Aqua acquired in 16 days. MCD43A1 is provided as a
level-3 gridded product in the Sinusoidal projection at 463.3-m
spatial resolution. The quality assessment (QA) information
of MCD43A1 is correspondingly provided in MCD43A2,
with QA = 0 for best quality, full inversion, QA = 1 for good
quality, full inversion, QA = 2 for magnitude inversion (num-
ber of observations > 7), QA = 3 for magnitude inversion
(number of observations > = 3 & < 7), and QA = 4 for
filled values.

B. Validation of the Ross–Li Model Using POLDER-3 Data

The accuracy assessment of BRDF acquired from satellite
sensors at coarse spatial resolution is not straightforward [39].
One possible strategy to validate a BRDF product is to compare
BRDF measurements from different spaceborne or airborne
sensors on a homogeneity landscape [39]. The NIR channel of
MODIS covers a spectral domain from 841 to 876 nm. The NIR
band of POLDER-3 is centered near 865 nm with a bandwidth
of 40 nm. Both the POLDER-3 BRDF data and the MODIS
BRDF model parameters product (MCD43A1) are derived from
the geocoded, calibrated, atmospherically corrected, and cloud-
screened input data measured over multidate periods. Since the
land cover types of selected POLDER-3 pixels are almost ho-
mogenous (The coverage of a dominant cover in a POLDER-3
pixel is above 80%), the scale difference between POLDER-3
and MODIS data is expected to be small and hence ignored in
this study. Therefore, it is practical to use the surface directional
reflectance observed by the POLDER-3 instrument as a bench-
mark for evaluating the accuracy of NIR reflectance simulated
by the Ross–Li BRDF model despite the slight difference in the
NIR spectral domain of these two sensors.

In this paper, 1193 tiles of MCD43A1 and MCD43A2 data
acquired between November 2005 and October 2006 are down-
loaded from the Land Processes Distributed Active Archive
Center (LP DAAC). The POLDER-3 and MCD43A1 data are
both in the Sinusoidal projection. The size of a POLDER-3
pixel approximately equals that of 13 × 13 MODIS pixels. If
the data of 169 MODIS pixels are all in the best or good quality
(MODIS QA = 0 or 1), the average simulated directional re-
flectance of 169 pixels is compared with the POLDER-3 data
acquired in the same period. For each MODIS pixel, the direc-
tional reflectance is simulated with the Ross–Li model driven
by the MCD43A1 BRDF parameters and corresponding solar

Fig. 2. Distribution of 9961 pixels extracted from POLDER-3 BRDF data set
used to validate MODIS BRDF model parameter product.

zenith, view zenith, and relative azimuth angles extracted from
the POLDER-3 BRDF data set. Among all 20,985 pixels in the
POLDER-3 BRDF data set, only 9961 vegetation pixels with
714,652 observations under different angular conditions are
selected with the criteria that the NDVI value of a POLDER-3
pixel is above 0.15 and corresponding MCD43A1 products of
169 MODIS pixels are in the best or good quality (MODIS
QA = 0 or 1). These 9961 pixels are distributed globally and
belong to different land cover types (Fig. 2).

C. Modifications for the Ross–Li Model

The hotspot reflectance, which occurs when the illumination
and view directions coincide, is needed for the reliable retrieval
of clumping index. Although MODIS does not directly capture
the hotspot signal due to its design and orbit limitations, the
hotspot reflectance can be obtained through extrapolating using
the kernel-based Ross–Li model. This model has been found
to underestimate the hotspot magnitude because the correlation
between the solar beam and the view line within the same
canopy gap is not considered in kernel-based models [41], [42].
The comparison between the POLDER-3 data and reflectance
simulated using the original Ross–Li model driven by the
MCD43A1 data confirms this hotspot underestimation problem
(see Section III). Several studies have been previously con-
ducted to improve the BRDF model for simulating the hotspot
signals. Chen and Cihlar [41] proposed a hotspot function based
on the canopy gap size distribution theory [40] to correct the
underestimation of hotspot reflectance simulated by the kernel-
based model. The directional reflectance is simulated as

Rc(θ, ϑ, φ,Λ) = (fiso(Λ) + fgeo(Λ)Kgeo(θ, ϑ, φ)

+ fvol(Λ)Kvol(θ, ϑ, φ))
(
1 + C1e

(−ξ/π)C2

)
(8)

where ξ is the scattering angle. C1 and C2 are two parameters
controlling the magnitude and width of the hotspot, respec-
tively, and vary with land cover types. Equation (8) is named
as the Ross–Li-C model hereinafter. This model can simulate
well the peak reflectance at hotspot observed by the Advanced
Very High Resolution Radiometers (AVHRR) [41].

Maignan et al. [42] proposed an algorithm to improve the
simulation of hotspot reflectance through only modifying the
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RossThick kernel, i.e.,

Kvol_M(θ, ϑ, φ) =
(π/2− ξ) cos ξ + sin ξ

cos θ + cosϑ

×
(
1 + (1 + ξ/ξ0)

−1
)
− π

4
(9)

where ξ0 is a characteristic angle that can be related to the ratio
of the scattering element size to the canopy vertical density, and
it takes a constant value of 1.5◦ [42]. This model is named as
the Ross–Li-M model hereinafter.

Compared with the Ross–Li-C model, the Ross–Li-M model
is simpler and has no parameters to be assigned (such as C1 and
C2 in the Ross–Li-C model). However, validations show that
the Ross–Li-M model overestimates hotspot reflectance due to
the overcorrection of the RossThick kernel when ξ approaches
zero (see Section III). To improve the simulation of hotspot
reflectance, a new model which combines the Ross–Li-C model
and Ross–Li-M model is developed as follows:

RH(θ, ϑ, φ,Λ)=fiso(Λ)+(1+Ae−ξ/ξ0)fgeo(Λ)Kgeo(θ, ϑ, φ)

+ (1+Be−ξ/ξ0)fvol(Λ)Kvol(θ, ϑ, φ) (10)

where A and B are two parameters used to adjust the hotspot
magnitude caused by geometrical and volumetric scattering. ξ0
is a parameter to control the hotspot width. This model is named
as Ross–Li-H model hereinafter.

D. Determining Parameters for the Ross–Li-C and
Ross–Li-H Models

To optimize the C1 and C2 values in the Ross–Li-C model,
3572 pixels of different land cover types with at least one
observation near the hotspot (ξ < 5◦) for each pixel are ex-
tracted from the above POLDER-3 BRDF data set. The NIR
reflectance of 169 MODIS pixels within a POLDER pixel is
individually simulated using the Ross–Li-C model based on the
corresponding MCD43A1 data and different combinations of
C1 and C2 values. The NIR reflectance of 169 MODIS pixels
is averaged and compared with POLDER-3 observed data. C1

is allowed to increase from 0 to 1 at steps of 0.01, and C2 is
allowed to increase from 0 to 120 at steps of 0.5. The optimum
C1 and C2 values for each pixel are determined when the root
mean square error (RMSE) of simulated NIR reflectance by the
Ross–Li-C model reaches the minimum value. The optimum
C1 and C2 values for a specific land cover type are the averages
of optimized C1 and C2 of different pixels belong to this land
cove type.

The optimal values of A, B, and ξ0 in the Ross–Li-H model
are determined using a multivariate regression method. First,
the NIR reflectance observed by POLDER-3 (RP) is supposed
to equal the reflectance simulated by the Ross–Li-H model, i.e.,

RP = fiso(Λ) + (1 +Ae−ξ/ξ0)fgeo(Λ)Kgeo(θ, ϑ, φ)

+ (1 +Be−ξ/ξ0)fvol(Λ)Kvol(θ, ϑ, φ). (11)

Then, the above equation can be rewritten as

(RP −R(θ, ϑ, φ,Λ)) /e−ξ/ξ0 = Afgeo(Λ)Kgeo(θ, ϑ, φ)

+ Bfvol(Λ)Kvol(θ, ϑ, φ) (12)

where R(θ, ϑ, φ,Λ) is the NIR reflectance simulated by the
original Ross–Li model.

In the above (12), there are three unknown parameters (A, B,
and ξ0). If ξ0 is given, this equation can be further simplified as
a bivariate linear regression, and parameters A and B can be
determined using the least squares fit method. The RMSE and
R2 of simulated reflectance can be correspondingly calculated.
In this paper, ξ0 is allowed to change from 0 to 10 at steps of
0.01 since the width of the hotspot is mostly smaller than 10◦.
If a combination of A, B, and ξ0 values produce the minimum
RMSE and maximum R2, this set of A, B, and ξ0 is used as the
optimum parameters for the Ross–Li-H model.

Bréon et al. (2002) indicated that the hotspot width is related
to cover type and is independent of wavelength. The hotspot
half width ξ0 of most targets is between 1◦ and 2◦, with a
range from 1◦ to 5◦[43]. Therefore, a total of 6833 observations
with the scattering angle (ξ) less than 5◦ are extracted from the
above POLDER-3 BRDF data set as the observations of hotspot
reflectance to determine A, B, and ξ0. To limit the effect of
nonuniform distribution of scattering angles of observations on
the determinations of A, B, and ξ0, these 6833 observations
are grouped at 0.1◦ intervals of ξ. The mean POLDER-3
reflectance of each interval and the corresponding mean values
of R(θ, ϑ, φ,Λ), fgeo(Λ)Kgeo, and fvol(Λ)Kvol are used to
determine parameters A, B, and ξ0. The mean reflectance of
large numbers of pixels of various cover types can moderate
the effects of the variations of cover types, vegetation density,
and solar zenith angle on the determination of parameters A,
B, and ξ0.

E. Retrieval of Clumping Index and Topographic Correction

The clumping index is retrieved from NDHD, which is
defined as [4]

NDHD = (ρh − ρd)/(ρh + ρd) (13)

where ρh and ρd are the reflectance at the hotspot and darkspot,
respectively. The widely accepted explanation for the hotspot
phenomenon is shadow hiding [43]. At the hotspot where the
illumination and view directions coincide, all shadows are
hidden by the surface targets that cast them, resulting in the
maximum backscatter strength. The darkspot, on the other
hand, contains the maximum shadows observed in the forward
scattering direction, where the reflectance is minimum. Most
of the clumping information is contained in the darkspot re-
flectance, which is determined by the vegetation density as well
as the shape and size of foliage clumps (tree crowns, branches,
shoots, shrubs, row crops, etc.) [30]. For a given solar zenith
angle, the hotspot intensity mainly depends on the target optical
properties and its structural characteristics. The ratio form of
NDHD can minimize the influences of foliage optical properties
and accentuates the structural information [30].
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NDHD is found to be linearly related to the clumping index
for the red and NIR bands when the canopy coverage is greater
than 25% [30]. The relationship between NDHD and clumping
index depends on the solar angle and the crown shape. Other
forest structural parameters such as LAI, stand density, and
canopy height have small effects on this relationship [30].
Pinty et al. [23] asserted that the red band provides better
contrast between vertically clumped elements and the back-
ground due to weaker multiple scattering. However, a stronger
relationship between NDHD and clumping index in the NIR
band was found by Chen et al. [30] and Simic et al. [17]
due to lower atmospheric noise in this band than in the red
band for the spaceborne sensor. In this paper, only the MODIS
BRDF model parameters with best or good quality (MODIS
QA = 0 or 1) in the NIR band are used to retrieve the clumping
index. The hotspot and darkspot reflectance in NIR band is
simulated using (10) with the solar zenith angle and view
zenith angle both set as 45◦. The azimuth angle (φ) is set as
0◦ for hotspot reflectance simulation and 180◦ for darkspot
reflectance simulation. These fixed angular configurations for
hotspot and darkspot were proposed by several previous studies
[25], [44], [45], and are used to calculated MODIS BRDF
shape indicators [46]. Based on the findings of Chen et al.
[30], a cone/cylinder crown shape is assumed for coniferous
forests (Ω = −0.61NDHD + 0.82), and an ellipsoid for other
vegetation types (Ω = −1.4NDHD + 1.28). The GLC2000
land cover map at 1-km resolution is resampled to 500-m
resolution to determine the land cover type for each MODIS
pixel.

Topography might have a severe impact on BRDF due to ter-
rain shadowing, adjacent hill illumination, view factor effects,
and/or the aspect and steepness of individual slopes [47]. The
topographic shadows may enhance the reflectance contrast be-
tween hotspot and darkspot, which will lead to underestimation
of the retrieved clumping index. Since most forests in China
are located in mountainous areas, the terrain effects on clump-
ing retrievals cannot be ignored. A topographic compensation
approach proposed by Pisek et al. [29] is used in this study to
correct the influence of topography on the retrieved clumping
index. First, a digital elevation model (DEM) SRTM4.1 (Shuttle
Radar Topography Mission) with 90-m resolution for the entire
China is downloaded from International Centre for Tropical
Agriculture website (http://srtm.csi.cgiar.org). The standard de-
viation (σ) of elevations is calculated within each MODIS pixel
(463.3 m). All valid retrievals of the clumping index averaged
over the growing seasons (from April to September) from 2003
to 2008 are binned into 25-m intervals of σ. The mean clumping
index value (Ωm) is calculated for every σ interval. Second, a
cubic polynomial (R2 = 0.996) is fitted using the Ωm values
and corresponding medians of different σ intervals

ΩT = −9.042× 10−10σ3 + 1.6× 10−6σ2

− 1.014× 10−3σ + 0.755 (14)

where ΩT describes cross-biome, terrain shadow-induced de-
creasing trend in the topographically uncorrected Ω with in-
creasing topographic variability, represented by σ [29]. In other
words, the foliage clumping is assumed to be independent of

σ in the derivation of ΩT since the area fractions of different
biome types vary in a limited range at each σ interval, which
suppresses the foliage structural effects on the ΩT deriva-
tion [29]. Therefore, for each MODIS pixel with topographic
variability of σi, the terrain-induced clumping is equal to the
difference δ between ΩT at σ = 0 (flat terrain) and ΩT at
σ = σi. Finally, the effect of topography is removed by added
δ to the topographically uncorrected Ω for each pixel in the
clumping index map.

F. Clumping Index Field Measurements

To validate the retrieved clumping index, field measurements
of this parameter were conducted at five sites in China from
April to September, 2009 (see Table III). The vegetation types
include broadleaf, needle-leaf, and mixed forests, shrubs, and
bamboos. About 75 plots in these sites were located on rel-
atively flat terrains and covered by relatively homogeneous
vegetation types. Two 50-m parallel transects perpendicular to
the sunray and separated by 25 m were laid in the center of
each plot. These transects were marked every 10 m. The TRAC
instrument was used to measure sunfleck widths along these
transects beneath the canopies in cloud-free conditions at a
steady pace (about 0.3 m/s). The location of each plot was
measured using a GPS device.

TRAC can only measure the element clumping index (ΩE),
which quantifies clumping effects at scales larger than the
shoot. TRACWin was used to compute ΩE. The ΩE of a plot
is the mean of ten segment measurements at the plot. The total
clumping index Ω is calculated as

Ω = ΩE/γE (15)

where γE is the ratio of needles to shoots for needle-leaf
species, which accounts for the clumping of needles into shoots
[48]. For broadleaf forests, γE is set as 1.0. For other species,
γE values are determined by empirical values [49], [50].

The plot-level measured clumping index is used for validat-
ing the clumping index retrieved using the MODIS BRDF prod-
ucts. The direct use of clumping index measurements at the plot
level to validate the results retrieved from MCD43A1 data is an
approximation due to the difference in the sizes of the plots and
MODIS pixels (463.3 m). The local field-level measurements
should be optimally integrated with high-resolution imagery to
validate the moderate-resolution remote sensing products [51].
Unfortunately, no high-resolution maps of the clumping index
are currently available, except for one made by Simic et al.
[17] with a limited spatial coverage, to allow a real product
validation. There are currently no high-resolution multi-angular
remote sensing data available in China for us to retrieve high-
resolution clumping index maps to validate this parameter
retrieved from MCD43A1 data in this study. Pisek et al. [29]
pointed out that the clumping index measured by TRAC is
the most suitable for comparison with the moderate resolution
clumping index product since the instrument allows to sample
in extensive spatial coverage. The relatively flat terrains and
homogeneous vegetation types of plots selected in this study
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TABLE I
VALUES OF C1 AND C2 IN THE ROSS–LI-C MODEL FOR DIFFERENT COVER TYPES DERIVED FROM POLDER-3 DIRECTIONAL REFLECTANCE AND

MODIS BRDF MODEL PARAMETERS PRODUCT. THE STANDARD DEVIATIONS OF C1AND C2WITHIN EACH COVER TYPE ARE ALSO SHOWN

can partially constrain the scale effect on the difference between
measured and retrieved clumping index.

III. RESULTS AND DISCUSSION

A. Optimized Parameters for the Ross–Li-C and
Ross–Li-H Models

Table I shows the averages of optimized C1 and C2 of
the NIR band for different land cover types in the Ross–Li-C
model. The hotspot magnitude coefficient C1 value for forest
is larger than those for cropland and grassland. Needle-leaf
deciduous forest has the largest C1 value equal to 0.37, while
barren land has the smallest C1 value equal to 0.155. Forest
has more distinct and heterogeneous canopy structure than
grassland, cropland, and barren land, resulting in a relatively
large hotspot magnitude. C1 optimized here is much smaller
than the values reported by Chen and Cihlar [41] for the
AVHRR data. They used 0.40, 0.65, 0.60, and 0.50 for cropland,
forest, barren, and grassland, respectively. The hotspot width
parameter C2 varies from 8.5 to 35.8. The mean C2 value of
29.1 for forest corresponds to the mean hotspot half width ξ0
of 6.2◦(ξ0 = 180/C2), which is somewhat larger than the value
introduced by Bréon et al. [43]. In contrast, C2 optimized here
is considerably larger than the values of 8.33, 12.5, 12.5, and
8.33 used by Chen and Cihlar [41] for cropland, forest, barren,
and grassland, respectively. We believe that the new C1 and C2

values found in this study are more reliable than those found in
Chen and Cihlar [41] as POLDER-3 instrument can measure at
angles much closer to the hotspot than AVHRR. However, the
intraclass variability of the values of C1 or C2 is significant, as
indicated by their relatively large standard deviations for each
land cover type (Table I).

Fig. 3 shows the changes in R2 and RMSE of the hotspot
reflectance of NIR simulated by the Ross–Li-H model using the
optimized parameters A and B with the hotspot half width ξ0.
When ξ0 is less than 2◦, R2 is below 0.035. When ξ0 is larger
than 2◦, R2 increases quickly with ξ0 and approaches the peak
value of 0.62 at ξ0 equal to 4.18◦. If ξ0 further increases, R2

Fig. 3. Optimal parameters A and B of the NIR band in Ross–Li-H model
change with the hotspot half width ξ0 assigned in the Ross–Li-H model. The
optimal parameters A and B corresponding to a given ξ0 are determined by the
least squares fit between the hotspot reflectance in the NIR band observed by
POLDER-3 instrument and that simulated by the Ross–Li-H model. The R2

and RMSE of each pair of A and B are also showed.

starts to decrease. The RMSE of simulated reflectance shows
different changes with ξ0 from R2. With ξ0 increasing from 1◦

to 4◦, RMSE decreases quickly from 1.147 to 0.009. When ξ0
is larger than 4◦, RMSE increases slightly with increasing ξ0.
The optimized parameters A and B in the Ross–Li-H model
are correlated with the hotspot half width ξ0. When ξ0 is
smaller than 3◦, parameter A increases quickly, and parameter
B decreases quickly with the increase in ξ0. Both parameters A
and B slowly approach their asymptotes at ξ0 above 3◦. When
ξ0 equals 4◦, the RMSE of simulated reflectance minimizes at
a value of 0.009 and corresponding R2 value equals 0.6, only
slightly smaller than the maximum value of 0.62. Correspond-
ing to ξ0 equal to 4◦, the optimized A and B are 0.52, and 1.60,
respectively. These values are used in the Ross–Li-H model.
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Fig. 4. Comparison of the directional reflectance at 865 nm simulated by the Ross–Li model, Ross–Li-C, Ross–Li-M, and Ross–Li-H based on MCD43A1
BRDF model parameters along the principal plane with POLDER-3 observations for four representative land cover types. The positive values in x-axis denote
backward reflectance, and negative values indicate forward reflectance.

B. Comparison of Simulated Directional Reflectance With
POLDER-3 Data

Fig. 4 shows the comparison of the directional re-
flectance along the principal plane simulated by the aforemen-
tioned BRDF models (Ross–Li, Ross–Li-C, Ross–Li-M, and
Ross–Li-H) driven by the MCD43A1 BRDF parameters with
the POLDER-3 observations for four typical pixels of different
land cover types. The Ross–Li model is able to reproduce
reflectance close to POLDER-3 data in most cases. However,
it significantly underestimates the hotspot reflectance. In con-
trast, three modified BRDF models are all able to capture the
reflectance peaks at and near the hotspot. However, compared
with the observations of POLDER-3, the Ross–Li-M model
overestimates hotspot reflectance due to its overcorrection for
the RossThick kernel when ξ approaches zero. The Ross–
Li-H model successfully simulates the observed BRDFs along

the principal plane of these pixels, including the reflectance of
hotspot and darkspot.

A total of 6833 observations of NIR reflectance near the
hotspot (ξ ≤ 5◦) are selected from the POLDER-3 data set
to test the ability of aforementioned BRDF models (Ross–Li,
Ross–Li-C, Ross–Li-M, and Ross–Li-H) to simulate reflectance
close to the hotspot (Fig. 5). Overall, the hotspot reflectance
simulated by the Ross–Li model is 14% lower than the
POLDER-3 observations. The underestimation is larger for
higher reflectance observed by POLDER-3. The R2 and RMSE
of reflectance near the hotspot simulated by the Ross–Li model
are 0.847 and 0.069, respectively. The failure of the Ross–Li
model to simulate the hotspot signal is mainly caused by the
inability of its volumetric scattering kernel to account for the
hotspot effect [36], [42]. Although the geometric optical kernel
of the Ross–Li model has a peak value at the hotspot [35],
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Fig. 5. Comparison of the 865-nm reflectance near the hotspot (scattering angle smaller than 5◦) simulated by (a) the Ross–Li model, (b) Ross–Li-M model,
(c) Ross–Li-C model, and (d) the Ross–Li-H model with POLDER-3 observations.

this peak is not large enough to capture the hotspot signal. The
geometric optical kernel also needs further correction.

Three modified Ross–Li models substantially improve the
simulation of reflectance near the hotspot. The Ross–Li-C
model overperforms other models in reproducing directional
reflectance near the hotspot, with the highest R2 value of
0.877 and the smallest RMSE value of 0.038. The Ross–Li-H
model demonstrates the ability similar to the Ross–Li-C model
to simulate the hotspot reflectance, with R2 and RMSE equal to
0.87 and 0.040, respectively. The Ross–Li-M model performs
relatively poorer than the Ross–Li-C and Ross–Li-H models,
but still much better than the original Ross–Li model in simu-
lating reflectance near the hotspot.

The abilities of above models to simulate the hotspot (ξ =
0◦) and darkspot reflectance are further compared. The NIR
directional reflectance of 714,652 observations by POLDER-3
and their simulations by the original and modified Ross–Li
models are grouped at 1◦ intervals of ξ. The difference between
the mean reflectance of each group observed by POLDER-3
and the corresponding simulations by each model are shown
in Fig. 6. When ξ is smaller than 0.5◦ (close to the hotspot),
the mean reflectance simulated by the original Ross–Li model
is 0.1 smaller than the POLDER-3 data, which is in agree-
ment with the conclusion drawn by Bréon et al. [43] that
the hotspot reflectance amplitude is generally in the range of
0.1–0.2 at 865 nm. In contrast, the Ross–Li-M model overes-
timates hotspot reflectance by 0.075 in comparison with the
POLDER-3 data. Both the Ross–Li-C and Ross–Li-H mod-

Fig. 6. Changes in the difference between the mean directional reflectance
at 865 nm observed by POLDER-3 and simulated by models with scattering
angle (ξ). The difference values are binned at one degree intervals of ξ. The
dashed-dotted, dotted line, dashed, and solid lines represent results for the
Ross–Li, Ross–Li-C, Ross–Li-M, and Ross–Li-H model models, respectively.
Positive values mean that the simulated reflectance is larger than POLDER-3
data, vice versa. A total of 714 652 observations of POLDERT-3 are used in the
comparison.

els improve the capabilities to reproduce the hotspot re-
flectance. The Ross–Li-H model performs slightly better than
the Ross–Li-C model in simulating reflectance close to the
hotspot (ξ = 0◦). When ξ is in the range from 20◦ to 110◦, the
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Fig. 7. Comparison of the darkspot reflectance at 865 nm simulated by the
Ross–Li model and the POLDER-3 observations.

reflectance difference between the observations of POLDER-3
and the simulations by the original Ross–Li, Ross–Li-C, and
Ross–Li-H models is very small, indicating the good ability of
these models to simulate the observed BRDFs in most cases.
Meanwhile, the reflectance simulated by the Ross–Li-M model
is slightly larger than POLDER-3 observations. When ξ is
larger than 110◦, the original and modified Ross–Li models
produce lower reflectance than POLDER-3 data. These errors
may be related to the assumption of the LiSparse kernel in the
Ross–Li model that the total area of vegetation and shadows
should be much smaller than the total area of view field [52].
This assumption fails in the case of large view zenith angles or
large solar zenith angles, resulting in large errors in simulating
directional reflectance.

Reflectance observed by POLDER-3 with the view zenith
angle ranging from 45◦ to 50◦ and the relative azimuth angle
from 170◦ to 190◦ is selected to validate whether models are
able to simulate reflectance near the darkspot. The darkspot
reflectance simulated by the Ross–Li model is very close to the
observations of POLDER-3 (R2 = 0.947, RMSE = 0.011)
(Fig. 7). As shown in Figs. 4 and 6, the darkspot reflectance
simulated by three modified BRDF models is almost equivalent
to that simulated by the Ross–Li model since ξ equals 90◦

for darkspot, making the correction factors [e−ξ/ξ0 in (8) and
(10) or (1 + ξ/ξ0)

−1 in (9)] approach zero. The close agree-
ment in darkspot between POLDER-3 and MODIS indicates
that the NIR spectral difference is very small between these
two sensors. The hotspot difference between the POLDER-3
observation and the MODIS BRDF product is mainly caused
by the MODIS BRDF representation.

C. Spatial and Temporal Variations of the Retrieved
Clumping Index in China

Since the Ross–Li-H model shows a better performance in
simulating reflectance close to the hotspot, and it only has
to determine two parameters (A and B) for all land cover
types, it is used to simulate the hotspot and darkspot reflectance

using 8-day MCD43A1 product for retrieving the clumping
index. Clumping index maps of every 8 days are generated
with simulated reflectance at hotspot and darkspot. Based on
these 8-day maps, 36 maps of the monthly mean clumping
index are calculated during the growing seasons (from April
to September) for the years from 2003 to 2008. Topographical
corrections are conducted for these maps using (14). Fig. 8
shows the spatial distribution of the average clumping index
calculated from these 36 maps. The spatial distribution pattern
of the clumping index is distinct and mirrors that of land cover
types quite well (Fig. 9).

Grasslands have the largest clumping index, ranging from
0.8 to 1.0, due to their nearly random spatial distribution of
foliage during the growing seasons. The clumping index of
croplands is also high, ranging from 0.7 to 1.0. The nationwide
means of clumping index for grasslands and croplands are in
the range from 0.77 to 0.8 (Table II). Forests have smaller
clumping index values than grasslands and croplands. The
means of the clumping index for forests range from 0.63 to
0.77. During April and September in years from 2003 to 2008,
the means of the minimum and maximum clumping index are
0.61 and 0.71 for needle-leaf forests, respectively. These values
are 0.62 and 0.83 for broadleaf forests, respectively. During
the growing seasons, deciduous forests generally have smaller
means and standard deviations of the clumping index than the
evergreen forests. However, closed broadleaf deciduous forests
are an exception and have the largest mean clumping index and
smallest standard deviation among all types of forests.

The comparison of the product with existing/previous satel-
lite products is part of the validation protocol defined by the
Committee Earth Observing Satellites Land Product Validation
Subgroup [51]. The topographically corrected mean clumping
index map based on POLDER-3 data over China’s landmass
at 6-km resolution produced by Pisek et al. [29] is also
shown here (Fig. 10). In most areas, the spatial patterns of
the clumping index retrieved from the MODIS and POLDER-3
data are similar. The clumping index derived from MODIS
at 500-m resolution is generally larger than that derived from
POLDER-3 at 6-km resolution in northern China. However,
the opposite is true in southern China. The clumping index
retrievals from MCD43A1 are 0.05 and 0.08 smaller than
those retrieved from POLDER-3 data for open broadleaf de-
ciduous forests and needle-leaf evergreen forests (Table II).
For broadleaf evergreen forests, needle-leaf deciduous forests,
mosaic of tree cover/other natural vegetation, closed-open ever-
green shrubs, the averages of the mean clumping index retrieved
from the MCD43A1 product are almost equal to those re-
trieved from POLDER-3 data. For grasslands and croplands, the
clumping index values retrieved from MCD43A1 are slightly
larger than those retrieved from POLDER-3 data with the dif-
ference between them in the range from 0.03 to 0.05. For other
land cover types, the clumping index values retrieved from
MCD43A1 are larger than those retrieved from POLDER-3
data, and the differences between them are in the range 0.08
to 0.14. The standard deviations of POLDER-3 retrievals are
much larger than those of MODIS retrievals for each land
cover type (Table II). However, the relative differences among
cover types of the standard deviations of POLDER-3 retrievals
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Fig. 8. Spatial distribution of the topographically corrected MODIS-based clumping index averaged over the growing seasons (from April to September) from
2003 to 2008 over China’s landmass. The nonvegetation pixels including water bodies, snow and ice, artificial surfaces, and bare areas are excluded in the clumping
index map.

are smaller than those of MODIS retrievals. Theoretically, the
clumping index derived from POLDER-3 and from MODIS
will be same for a homogenous landscape. The relatively coarse
spatial resolution of the POLDER-3 pixels probably smoothes
the interclass variability of the retrieved clumping index be-
cause most POLDER-3 pixels are actually heterogeneous. On
the other hand, the across-biome heterogeneity of POLDER-3
pixels might enlarge the within-class variability of the retrieved
clumping index due to the large difference in the retrieved
clumping index among different land cover types. There are
visible errors of the clumping index retrievals from POLDER-3
data in southern China where these values are generally larger
than 0.85 for most forest pixels (Fig. 10), which may be due to
the lack of high quality POLDER-3 observations in these areas
with frequent cloud covers. We believe that the clumping index
values retrieved from MCD43A1 are more rational than those
retrieved from POLDER-3 data in China.

The retrieved clumping index demonstrates distinguishable
seasonal variations. Fig. 11 shows the monthly mean values
of clumping index averaged over the 6 years for eight domi-

nant cover types across the country. The needle-leaf deciduous
forests have smaller clumping index values in summer than in
other seasons. This could be due to the fact that the canopy
becomes more clumped in the summer when the crowns be-
come much denser due to needle growth in the spring. Other
cover types generally have the maximal clumping index values
in April and August. Some of these seasonal variations could
result from the fact that the solar zenith angle is fixed in
our algorithm for determining the hotspot and darkspot, while
the actual solar zenith angle during MODIS image acquisition
varies greatly with season. However, the general pattern of
smaller clumping index values (more clumped) in the mid-
summer could be due to the effect the canopy becomes denser
(casting more shadows) after the spring growth. The needle-
leaf evergreen forests exhibit the smallest annual change in
clumping index, ranging from 0.64 to 0.68 because of their
stable canopy structure. The shoot-level clumping variation
with season due to new needle growth and old needle fall is not
well detected by NDHD, although there is a small decrease in
the early summer possibly due to the new needle growth making
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Fig. 9. GLC2000 land cover map of China’s landmass at 1-km resolution (Global Land Cover 2000 database. European Commission, Joint Research Centre, 2003).

TABLE II
STATISTICS OF TOPOGRAPHICALLY CORRECTED CLUMPING INDEX DERIVED FROM MODIS BRDF MODEL PARAMETER PRODUCT FOR

DIFFERENT LAND COVER TYPES DURING THE GROWING SEASONS (FROM APRIL TO SEPTEMBER) IN YEARS FROM 2003 TO 2008

the canopy more clumped. Deciduous needle-leaf forests and
cultivated and managed areas have large annual variations in
the clumping index, ranging from 0.63 to 0.78 and from 0.72

to 0.81, respectively. Closed broadleaf deciduous forests and
evergreen broadleaf forests show very similar magnitudes of
seasonal variations in the clumping index.
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Fig. 10. Topographically corrected mean clumping index map based on POLDER-3 data over China’s landmass at 6-km resolution reported by Pisek et al. [29].

Fig. 11. Mean monthly values of topographically corrected clumping index from 2003 to 2008 for eight dominant cover types in China.

D. Validation of the Retrieved Clumping Index With
Field Measurements

Clumping index values retrieved from the MCD43A1 prod-
uct are compared with current field measurements taken by

TRAC at five sites in 2009 (Table III). For several plots, there
are no MCD43A1 data with the best or good quality acquired
in the same period as field measurements. The clumping index
of these plots listed in Table III is derived from the available
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TABLE III
COMPARISON OF THE TOPOGRAPHICALLY CORRECTED CLUMPING INDEX DERIVED FROM THE MODIS

BRDF MODEL PARAMETER PRODUCTS WITH FIELD MEASUREMENTS TAKEN BY TRAC

MCD43A1 data in the same period of 2008. If several plots
of field measurements are located within a MODIS pixel, the
clumping index values of these plots are averaged to compare
with MODIS retrievals.

The agreement between retrieved and measured clumping
index is satisfactory, with a R2 value of 0.61 (N = 46) and
a RMSE value of 0.08 (Fig. 12). It is obvious that the intr-
aclass variability of the measured clumping index of needle-
leaf forests or broadleaf forests is quite large in these sites. On
average, the measured clumping index of needle-leaf forests
is smaller than that of broadleaf forests. The average of the
retrieved clumping index for these 46 pixels is almost equal
to that of field measurements. The largest difference between
measured and retrieved results occurs in several Korean Pine,
Masson Pine, and bamboo stands (Table III). These disagree-
ments might be attributable to the following factors. First, the
size of MODIS pixels is much larger than field measurement
plots. In this paper, the retrieved clumping index of 463.3 m ×
463.3 m pixels is directly compared with measurements at

50 m × 50 m plots due to the absence of high-resolution
maps of the clumping index. The spatial scale effects are
not taken into account in such a direct comparison. Second,
both the ΩE measured by TRAC and the Ω derived from the
MCD43A1 product are shown to be dependent on the solar
zenith angle [48], [53]–[55]. The solar zenith angle is currently
assumed to be 45◦ in the retrieval of clumping index from the
MCD43A1 product and different from the solar zenith angle
when field measurements were taken. Although the effects on
the clumping index retrieved from MODIS data or measured by
TRAC from one angular observation are slight [30], [56], the
difference in the solar zenith angle between MODIS retrieval
and field measurements might induce additional disagreement
between measured and retrieved clumping index values to some
extent. Third, the 500-m land cover map used in this study is
downscaled from the GLC2000 land cover map at 1-km spatial
resolution. This simple application of 1-km GLC2000 land
cover map might result in uncertainties in retrieved clumping
index since the relationships between NDHD and clumping
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Fig. 12. Comparison of topographically corrected clumping index retrieved
from the MODIS BRDF model parameters product with measurements taken
by TRAC.

index differ slightly among land cover types, making themat-
ically heterogeneous landscapes appear smooth in the clump-
ing map. Finally, the correlation between clumping index and
NDHD is considerably stronger in the NIR band than that in
the red band because of the larger amplitude of the reflectance
and the lower atmospheric perturbation in the NIR band [17],
[42]. However, stronger multiple scattering in the NIR band
within vegetation decreases the shadow darkness, making the
NIR band less sensitive to changes in vegetation structure than
the red band [30].

IV. CONCLUSION

In this paper, POLDER-3/PARASOL directional reflectance
measurements are used as a benchmark to evaluate the ability
of the Ross–Li model driven by the MCD43A1 product to
simulate MODIS directional reflectance and to optimize the pa-
rameters in the modified Ross–Li models. With the reflectance
of hotspot and darkspot simulated by one of the best modified
models (Ross–Li-H), clumping index maps at 500-m resolution
over China’s landmass are generated. Using a 90-m resolution
DEM, the topographic effects in clumping index maps are
removed. According to this study, following conclusions can
be drawn.

1) The Ross–Li model effectively reproduces the directional
reflectance in most view angles, but it underestimates
the NIR hotspot reflectance by 14% compared with
POLDER-3 data.

2) Three modifications to the Ross–Li model have all im-
proved the simulation of hotspot reflectance. The algo-
rithm developed in this study to correct the Ross–Li
model only needs to determine two parameters [param-
eters A and B in (10)] for all land cover types and is able
to simulate hotpot reflectance based on the MCD43A1
product with satisfactory accuracy, indicating the appli-
cability of this algorithm for correcting the BRDF effect
and for retrieving the clumping index.

3) Retrieved clumping index values correlate well with field
measurements (R2 = 0.61), indicating the feasibility of
the algorithm developed in this study for retrieving the
clumping index from the MCD43A1 product. The re-
trieved mean clumping index map over China’s landmass
shows distinct spatial patterns closely related to land
cover types. Different cover types also show different
seasonal variation patterns when averaged for the period
from 2003 to 2008.

4) Compared with the previous POLDER-based clumping
index at 6-km resolution, the 500-m resolution MODIS-
based clumping index can provide more reasonably accu-
rate and up-to-date vegetation structure information for
modeling of terrestrial energy, carbon, and water cycle
processes, particularly in the heterogeneous vegetated
areas.
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