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Locally Adjusted Cubic-Spline Capping for
Reconstructing Seasonal Trajectories of a

Satellite-Derived Surface Parameter
Jing M. Chen, Feng Deng, and Mingzhen Chen

Abstract—Satellite-derived vegetation indices and their result-
ing surface parameters, such as the leaf area index (LAI), are
inevitably affected by the atmosphere. Errors in the atmospheric
corrections can often be easily identified in a seasonal trajectory
of a surface parameter because the atmospheric effect generally
causes erratic reductions in vegetation indices. A locally adjusted
cubic-spline capping (LACC) method is developed here to screen
affected data points in a pixel and to replace them through tem-
poral interpolation. In LACC, a variable local smoothing para-
meter, which controls the local smoothness of the fitted curve,
is automatically determined according to the local curvature of
the original seasonal variation pattern. An iteration procedure is
designed to produce a seasonal capping curve by progressively
replacing abnormally low values with fitted values. This method
has two advantages over existing methods based on harmonics,
namely: 1) cubic splines are flexible for simulating a wide range
of seasonal variation patterns and 2) a variable local smoothing
parameter allows the fitted capping curve to mimic either rapid
or slow variation patterns in various seasons. The capping curve
is also mathematically differentiable for further applications. The
effectiveness of this method is demonstrated through case studies
for several cover types in China and processing a series of Moder-
ate Resolution Imaging Spectroradiometer LAI images of China
in 2001.

Index Terms—Cubic spline, leaf area index (LAI), residual
cloud screening, seasonal trajectory.

I. INTRODUCTION

THE LEAF area index (LAI), defined as one-half the
total green leaf area (all sided) per unit ground surface

area [1], is one of the surface parameters that can be derived
using satellite optical imagery and is a basic input to many
regional and global water and carbon cycle models. Global
LAI products are now routinely produced from data acquired
by Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors onboard Terra and Aqua platforms as part of the Na-
tional Aeronautics and Space Administration (NASA) Earth
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Observation System [12]. Other LAI products were also pro-
duced using imagery from the Advanced Very High Resolution
Radiometer (AVHRR), VEGETATION [2], [5], and the Multi-
angle Imaging SpectroRadiometer [8]. The European Space
Agency also funded a new initiative named GLOBCARBON to
produce global LAI products using the VEGETATION, Along
Track Scanning Radiometer, and Medium Resolution Imaging
Spectrometer sensors [13] for the purpose of global carbon
cycle modeling. These new data sets provided unprecedented
opportunities for studying the global ecology and the impact on
the Earth’s climate. Since its inception in 2000, the MODIS LAI
product (MOD15A2) has been increasingly used for various
global and regional studies [10], [11]. In the present study, we
address the issue of residual effects of atmospheric correction
and other artifacts on the retrieved LAI based its seasonal
variation pattern. The retrieval of LAI using multispectral
remote sensing data depends on the reflectances in the red,
near-infrared (NIR), and sometimes shortwave infrared (SWIR)
bands at the surface level, which are often very sensitive to
the atmospheric effects including clouds, aerosols, water vapor,
ozone, etc. [21], [22]. Whereas much of these effects can be
removed using real-time or near real-time atmospheric observa-
tions made by the same sensor and other sensors [9], [22], the
remaining effects can sometimes be very large. These remain-
ing effects generally cause increases in the reflectance in the red
band much more than in the NIR band, resulting in decreases
in the retrieved LAI. In a seasonal trajectory, these effects
can be identified as abnormally low values. Seasonal variation
patterns of remotely sensed surface parameters can therefore
provide an additional quality control [3], [4]. Variations in
other factors, such as satellite view angle and solar illumination
angle, can also cause errors in retrieved LAI, although these
angular effects are considered in the MODIS LAI algorithm
[11]. Inaccuracies in modeling the angular variation pattern can
cause either positive or negative errors in retrieved LAI [3],
and excessive atmospheric corrections on the red band can also
cause positive biases in vegetation indices and LAI. The method
presented here is only effective in removing the negative errors.

Different techniques have been used to determine the sea-
sonal patterns of surface parameters and to exercise a final
quality control through identifying dates of erroneous data
and to replace them through temporal interpolation [7], [17],
[18], [23]. Based on Roerink et al. [15], Verhoef et al. [20]
developed a method for reconstructing the seasonal series of the
normalized difference vegetation index (NDVI) through Fourier
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analysis. Similar Fourier methods have been used in the FASIR
procedure by scientists at NASA [16] and further developed in
the ABC3 model by scientists at the Canada Centre for Remote
Sensing (CCRS) [3], [4]. As the number of cloud-free scenes in
a year is often small at a given location, these Fourier analysis
methods make use of only two harmonic frequencies represent-
ing the annual and semiannual cycles. The resulting curve after
combining these two harmonics is often too rigid to simulate
realistic seasonal changes in surface parameters. Many natural
seasonal variations, such as the rapid vegetation change at the
beginning and end of the growing season, bimodal patterns in
double-cropping agricultural systems, cannot be well fitted with
only two harmonics. For near square-wave type of variation
patterns, such as seasonal variation of LAI of deciduous forests,
harmonics are very inefficient in curve fitting, needing tens
of harmonics to mimic rapid changes. Viovy and Arino [23]
proposed a simple method to remove atmospherically affected
data through a moving-window curve capping procedure, but
the method depends on a number of good observations in a
given moving window, and the result is sensitive to the choice
of the size of the moving window. The resulting curve is
often mathematically unsmooth for making the first and second
derivatives needed for determining growing season parameters,
such as leaf-on and leaf-off dates. In processing regional and
global remote sensing products of land surface parameters, a
flexible and generally applicable curving fitting technique is
yet needed for seasonal trajectory analysis. The objectives of
this study are therefore as follows: 1) to develop a locally
adjusted cubic spline capping (LACC) method, which can
produce flexible and mathematically smooth capping curves
and fit rapid seasonal changes, for the purpose of identifying
atmosphere-contaminated data points and their replacement
through temporal interpolation, and 2) to test the method for
a region using the MODIS LAI product to demonstrate its
effectiveness and discuss possible limitations. Although the
application of the method is made on LAI time series, it can
also be applied to other parameters such as vegetation indices
and the fraction of photosynthetically active radiation (FPAR)
absorbed by vegetation.

II. PRINCIPLES OF LACC AND GLOBALLY UNIFORM

CUBIC-SPLINE CAPPING (GUCC)

LACC and GUCC methods were developed here based
on principles of the locally weighted regression method, or
locally weighted scatterplot smoothing (LOESS), developed
for curve fitting on noisy data series [6]. Different mathe-
matical functions, e.g., polynomials of different orders, can
be used in LOESS to do piecewise smooth curve fitting for
a time series. In the application of LOESS, a preliminary
curve is first fitted to the existing data points, and weights
to all the points for the second curve fitting are determined
according to the departures of the points from the prelimi-
nary curve. The final smoothed curve is found after applying
the weights in the second curve fitting. The weight is the
smallest for those with the largest departure, and the weight
is symmetric above and below the curve. Although LOESS
is capable of fitting desired curves shapes, it has two ma-

jor problems when applied to remote sensing series, namely:
1) symmetric weight distribution is not suitable for seasonal
trajectory applications because atmospheric effects generally
cause negative biases in vegetation indices and their resulting
surface parameters. Our purpose of curve fitting is to identify
this type of biases and produce a seasonal capping curve. Points
below the curve should therefore receive much smaller weights
than those above the curve; and 2) preliminary curve fitting
needs a control on the curve smoothness, and it is difficult to
set a global smoothing parameter as the seasonal variability
in surface parameters is generally not uniform with time. To
overcome these problems, we developed the LACC method.
Cubic splines are chosen for their flexibility in fitting desired
curve shapes. Without a control on the curve smoothness, a
cubic spline can exactly fit all data points so no departures of
the data points from the fitted curve are found. A smoothing
parameter is therefore used to control the smoothness of the
cubic spline to identify abnormally low values. LACC differs
from LOESS in the following ways: 1) after the preliminary
curve fitting, all points below the fitted curve are replaced by
the fitted values, whereas others remain unchanged. An iterative
procedure is followed to repeat this process until an effective
capping for the original data series is found. We found that three
iterations are generally sufficient, so this is also computation-
ally efficient for image processing and 2) preliminary curve is
fitted with a fixed global smoothing parameter, and based on the
curvature of the fitted curve, a local curve smoothness matrix
is automatically constructed to scale the relative values of the
local smooth parameter at all data points, and this matrix is then
used for the second curve fitting and iteration. In this way, the
problem with the uneven seasonal variability is minimized, e.g.,
at the beginning and the end of the growing season, when the
curvatures are the largest, the smoothing parameter is the largest
to capture the rapid changes. The GUCC method makes use of
only one value of the smoothing parameter and is used here as
a comparison to LACC. Mathematically, the LACC and GUCC
methods are described below.

For one pixel, there can be n + 1 cloudless (clear) remote
sensing images in a year. The remotely derived surface pa-
rameter, such as LAI or NDVI, is denoted as y, and time
(day of year or DOY) as x, so a two-dimensional array, i.e.,
(x0, y0), (x1, y1), . . . , (xn, yn), is constructed. In this series,
the time step can be irregular. The first step is to bridge the
gap between adjacent points (xi, yi), (xi+1, yi+1) using cubic
splines Si, i = 0, 1, . . . , n − 1, so as to piece together a smooth
curve allowing for the first and second derivatives.

The function Si can be expressed as

Si(x) = ai(x − xi)3 + bi(x − xi)2 + ci(x − xi) + di (1)

where x ranges from xi to xi+1 [19]. Under the assumption
that the ends of a time series are left free, the conditions
S ′′

0(x0) = 2b0 = 0 and S ′′
n(xn) = 2bn = 0 are satisfied, and we

then have

b0 = bn = 0.

This function is fitted to the available data points piecewise but
continuously to produce a smooth curve for the whole time
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series. The coefficients ai, bi, ci, and di can be derived by
introducing intermediate values as follows:

hi−1 =xi − xi−1

pi =2(hi−1 + hi)

ri =
3
hi

fi = − (ri−1 + ri)

where i = 1, 2, . . . , n, and solving the following systems of
equations.

1) The coefficients bi (i = 0, 1, . . . , n − 1) are derived from

(M + µQT ΓQ)b = QT y (2)

where

M =




p1 h1 0 · · · 0 0
h1 p2 h2 · · · 0 0
0 h2 p3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . pn−2 hn−2

0 0 0 · · · hn−2 pn−1




b =




b1

b2

b3
...

bn−2

bn−1




QT =




r0 f1 r1 0 · · · 0 0
0 r1 f2 r2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · rn−2 0
0 0 0 0 · · · fn−1 rn−1




y =




y0

y1
...

yn




where QT is the transpose of Q. µ = (2(1 − λ)/3λ),
where λ is a parameter related to the global smoothing
parameter controlling the smoothness of the fitted curve
[14]. The λ value falls in the range from 0 to 1. The
smaller the λ value, the smoother is the fitted curve. If
the maximum value of 1 is chosen, the fitted curve would
mimic the original data points, and it becomes impossi-
ble to identify problematic data points even in a noisy
seasonal time series. If the value is too small, the curve
becomes too smooth, and the seasonal variation pattern
may be distorted. Γ is the local curve smoothness matrix
consisting of scalars of the local smoothing parameter at
all input data points [defined in (6)].

2) The value d can be calculated in terms of the coefficients
bi in matrix form with

d = y − µΓQb′ (3)

and

b′ =




b0

b1

b2
...

bn−1

bn




.

3) Finally, coefficients a and c are obtained from

ai =
bi+1 − bi

3hi
(4)

ci =
di+1 − di

hi
− hi

3
(bi+1 − 2bi) (5)

for all i = 0, 1, . . . , n − 1.
Once the cubic splines Si (i = 0, 1, . . . , n − 1) are found,

for the ith adjacent time period (xi, xi+1), the daily values of
the surface parameter can be interpolated using Si. After the
coefficients a, b, c, and d are calculated, the values of yi (e.g.,
LAI) at each xi (e.g., date of image acquisition) are estimated
and denoted as ŷi. This procedure is iterated three or more times
for each pixel. In each iteration, yi is replaced with ŷi if yi < ŷi.

This system of equations can be implemented in two ways.
1) GUCC. In this way, the global smoothing parameter is

taken as a constant, ranging from 0.1 to 0.9, and the curve
smoothness matrix Γ is given as a unity matrix.

2) LACC. In this case, the global smoothing parameter is set
at 0.5, but the matrix Γ is defined as

Γ =




γ00 0 . . . 0 0
0 γ11 . . . 0 0
...

...
. . .

...
...

0 0 . . . γ(n−1)(n−1) 0
0 0 . . . 0 γnn


 (6)

where γ00, γ11, . . . , γnn are calculated based on the local
curvature (second derivative y′′

i at data point i) of the
fitted curve by GUCC with λ = 0.5, as follows:

γii = 1 −
( |y′′

i |
y′′
max

) 1
2.5

(7)

under the condition that if |y′′
i | > y′′

max then |y′′
i | = y′′

max,
where y′′

max is the maximum second derivative found in
the GUCC-fitted curve over the full year for a given pixel.
The local curvature y′′

i can be either positive or negative.
The positive value often occurs at the beginning of the
growing season when the growth is accelerating, showing
a concave shape of the LAI curve. It sometimes also
occurs at the very end of the growing season when the
LAI decreasing rate is decelerating, also making a con-
cave curve shape. For other times of the year, the curve
is generally either flat (i.e., y′′

i ≈ 0) before and after the
growing season as well as in the midsummer or convex
(i.e., y′′

i < 0) in either side of the midsummer plateau. As
the absolute value of y′′

i is generally larger in the concave
curve portion than in the convex curve portion, we only
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make use of the maximum positive value of y′′
i . In this

way, we emphasize the importance of capturing the rapid
rise of LAI in the beginning of the growing season while
avoiding using large negative curvatures caused by any
abnormal convex curves. The γii value obtained in this
way would range from 0 to 1. At the point where the
largest concave curvature occurs (y′′

max), γii = 0. As in
(2), γii is multiplied with µ, where µ = (2(1 − λ)/3λ),
γii = 0 is equivalent of λ = 1, meaning no smoothing is
applied so as to allow the fitted curve to be as close to
the original data point as possible. Conversely, γii = 1
means that the local smoothing has the same strength as
the GUCC, i.e., λ = 0.5 in this study. The LACC method
therefore effectively allows λ to vary between 0.5 and 1.
The exponent (1/2.5) is given a smaller value than unity
not to make the λ value overly sensitive to local curvature.
GUCC is a simple method used here as compared with
the advanced method of LACC. The advantages of LACC
over GUCC are demonstrated in Section IV.

III. TEST DATA AND PROCEDURE

The GUCC and LACC methods are tested against an avail-
able LAI image series. Forty-six LAI maps in 2001 from
the MODIS sensor (MOD15A2) over the entire China’s land-
mass are processed to test the methods. The LAI of cloud-
contaminated pixels labeled in MOD15A2 with “significant
clouds were present” and “mixed clouds were present” are
excluded from further analysis. For each pixel, the GUCC
and LACC methods are used with “cloudless” LAI values
to reconstruct the seasonal variation through identifying and
replacing residual atmosphere-contaminated data points.

In applying these methods for image analysis, the input data
include a time series of LAI, land cover, and the image acquisi-
tion date. Additional parameters such as the global smoothing
parameter λ and the number of total LAI scenes should also be
defined. In a large geographical area such as China, there are
often pixels with only a small number of cloud-free dates for
which the trajectory analysis is not effective and a preprocess-
ing procedure is needed. This procedure includes: 1) identifying
pixels to be excluded from the trajectory analysis. These pixels
include nonvegetated pixels and those with the total number
of cloudless scenes fewer than 20 and 2) treatments for these
excluded pixels. The nonvegetated pixels, which are labeled as
urban and built-up, snow and ice, barren/sparsely, and water
bodies, are assigned a zero LAI value. For any vegetated pixel
with cloud-free dates fewer than 20, its LAI values are replaced
with LAI values of a nearest pixel with same land cover type.

IV. RESULTS

The large geographical area of China covers a wide range of
ecosystems including subtropical forests in the south, temperate
forests and grassland at midlatitudes, and boreal ecosystems
in the north, with cropland interspersed within a large latitu-
dinal range. These ecosystems have different seasonal variation
patterns. Six pixels of different cover types across China are
selected to demonstrate the effectiveness of the GUCC and

Fig. 1. Test pixel distribution in China in a MODIS land cover map. ENF,
evergreen needleleaf forest; EBF, evergreen broadleaf forests; DNF, deciduous
needleleaf forests; DBF, deciduous broadleaf forests; MXF, mixed forests;
CSH, closed shrublands; OSH, open shrublands; WSA, woody savannas; SAV,
savannas; GRL, grasslands; PWL, permanent wetlands; CRL, croplands;
URB, urban and built-up lands; CRM, cropland/natural vegetation mosaics;
SNI, snow and ice; BSV, barren/sparse; WAT, water bodies.

TABLE I
ATTRIBUTES OF PIXELS IN 2001 SELECTED FOR TESTING LACC

AND GUCC METHODS. THE SPATIAL DISTRIBUTION OF

THESE PIXELS IS SHOWN IN FIG. 1

LACC methods. The spatial distribution of these pixels is
shown in Fig. 1 with a land cover map derived using MODIS
data (EOS Data Gateway), and the attributes of these pixels are
given in Table I.

The original MODIS “cloud-free” LAI time series of these
pixels in 2001 are shown in Fig. 2(a)–(f). Also shown are a
smooth capping curve fitted with the LACC method and those
with the GUCC method using different global smoothing coeffi-
cients (λ). From these examples, it is obvious that many cloud-
free dates in MOD15A2 during the growing season produce
erratic LAI values. These erratic variations in a short time were
generally caused by the atmospheric effect or other artifacts
rather than by the surface changes and can be detected with
almost all λ values smaller than 1. As in GUCC and LACC
methods, these atmospherically contaminated data points are
replaced with fitted data through an iteration procedure, the
purpose of using these methods is to produce a seasonal tra-
jectory that is the upper outline (capping) of all data points in
the growing season. Large λ values allow the fitted curves to
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Fig. 2. Seasonal capping curves derived with GUCC with different values of the global smoothing parameter and with LACC. Test LAI data are from MOD15A2
labeled as cloud-free for different ecosystems in China (locations shown in Fig. 1). (a) Deciduous broadleaf forest. (b) Evergreen needleleaf forest. (c) Grassland.
(d) Mixed forest. (e) Permanent wetland. (f) Cropland.

follow data points closely, but they are sometimes too flexible
to be useful for detecting erratic data points. Smaller λ values
make it easier to find these erratic LAI values, but the fitted
curves are generally too smooth to follow the rapid changes at
the beginning and end of the growing season. For the broadleaf
deciduous pixel [Fig. 2(a)], the curve with λ = 0.9 captures the
detailed variation patterns at the beginning and end of the grow-

ing season, whereas curves with λ = 0.1 and λ = 0.5 are too
smooth to show these patterns. The curve produced with LACC
performs similarly to GUCC with λ = 0.9. The LACC curve
is smoother than that of GUCC in the middle of the growing
season as it is less affected by the outstandingly large value
at DOY = 55, indicating some ability of the LACC method
in suppressing isolated abnormally large LAI values. For an
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evergreen needleleaf pixel [Fig. 2(b)] with gentle variations
throughout the year, GUCC with λ = 0.1 and λ = 0.5 produced
similar results, and the resulting curves follow the general
wavy features closely. The LACC method, which is based
on λ = 0.5, shows similar behaviors to GUCC with λ = 0.5,
whereas GUCC with λ = 0.9 tracks almost every wiggle in
the measured data except for a few small dips, defeating the
purpose of finding a seasonal cap. In another similar case (not
shown), GUCC with λ = 0.1 generates uncharacteristic varia-
tion patterns, suggesting that this extreme value should not be
used in general applications. The case of grassland [Fig. 2(c)]
is similar to that of deciduous forest [Fig. 2(a)], where curves
produced by LACC and GUCC with λ = 0.9 follow the rapid
changes at the beginning and end of the growing season. In this
case, the GUCC curve at λ = 0.9 is also unnecessarily more
variable than the LACC curve in the middle of the growing
season. GUCC curves with λ = 0.1 and λ = 0.5 are also too
smooth to generate the near square-wave shape. For a mixed
forest pixel with moderate seasonal variations but large erratic
changes [Fig. 2(d)], the advantage of LACC over GUCC at
λ = 0.9 is clearly demonstrated: the former produces an ideal
capping, whereas the latter is affine to several erratic changes,
which are unnatural for forest ecosystems. In this case, GUCC
with λ = 0.1 is again too smooth, and GUCC with λ = 0.5
produced similar results as LACC. In the case of a permanent
wetland pixel [Fig. 2(e)], there is an uncharacteristically high
LAI value at DOY = 80. It could be induced by a green flush
or an unknown error. If this is an erroneous data point, GUCC
and LACC are incapable of removing it, as the basic assumption
used in these methods is that the atmospheric effect only causes
negative biases in LAI. Under this circumstance, GUCC with
λ = 0.9 mimics the rapid changes, whereas LACC shows some
inertia. Otherwise, LACC produces an effective capping curve.
For a cropland pixel [Fig. 2(f)], several unusually large LAI
values occurred before the peak growth, GUCC with λ = 0.9
is again too variable, and GUCC with λ = 0.1 is too smooth.
LACC and GUCC with λ = 0.5 behave similarly. They also
effectively dampen several uncharacteristically large LAI val-
ues. This case also demonstrates that LACC is capable of
simulating bimodal or multimodal seasonal variation patterns.
From the above examples, we conclude that the GUCC method,
which uses only a global smoothing parameter, is incapable of
simulating all seasonal variation patterns, whereas the LACC
method performs well under all circumstances tested. This is
because LACC can automatically adjust the local smoothing
parameter according to the local curvature of the curve first
fitted with λ = 0.5.

To assess quantitatively the ability of the LACC method in
reconstructing an atmospherically contaminated time series of
a surface parameter, we conducted a set of controlled numerical
experiments. Fig. 3 shows an example of the experiments
where an originally smooth LAI time series was artificially
contaminated by randomly reducing 55% of the data points in
the range from 0 to 100%, and the contaminated series was
then reconstructed using the LACC method. The reconstructed
series resemble closely the originally smooth curve but differ by
a small extent because of the large fraction of data contaminated
and the limited three iterations. The reconstructed curve can be

Fig. 3. Example of reconstruction of a LAI time series using the LACC
method. Fifty-five percent of the data points in an original LAI series were
randomly reduced (“Disturbed”) by 0–100%, and the disturbed curve was then
reconstructed using the LACC method.

made closer to the original data points if the number of iter-
ations increases. Based on ten similar numerical experiments,
we conclude that 92% of the artificial reduction in LAI can
be recovered by the LACC method with three iterations. The
recovery rate increased to 94% with ten iterations, suggesting
that the LACC method may be used with more than three itera-
tions for the best results when the speed of image processing is
not a concern.

The effectiveness of the LACC method is further demon-
strated by processing MODIS LAI images over the entire land-
mass of China. Example pairs of LAI images before and after
the processing are shown in Fig. 4. In the original MODIS LAI
image on DOY 107 [Fig. 4(a)], southern China has large areas
(including part of Taiwan) with LAI = 0, which are cloud-
affected pixels. After LACC processing, these areas exhibit
large LAI values filled mostly through temporal interpolation
[Fig. 4(b)]. On DOY 221, the original image [Fig. 4(c)] has
few cloud-affected pixels, but after LACC processing, there are
obvious increases in LAI in several areas including southwest
and northeast provinces [Fig. 4(d)]. These areas were mostly
labeled as cloud-free, but the residual cloud/atmosphere effects
were considerable. They are largely removed through LACC
processing, i.e., these pixels with considerable negative biases
in the LAI time series are identified and replaced with the values
of the capping curves. On DOY 299, there is a large area in the
southwest with LAI = 0 in the original image [Fig. 4(e)]. After
applying LACC, the LAI in this area increases significantly
[Fig. 4(f)]. This is again mostly achieved through temporal
interpolation with the capping curves. Statistically, the LACC
processing increased the China-wide average LAI from 0.65,
2.39, and 0.79 to 0.97, 2.98, and 1.10 for DOY 107, 211,
and 299, respectively. These examples demonstrate that: 1)
residual atmospheric effects are considerable in the MODIS
LAI time series and 2) these effects can be effectively removed
or minimized by LACC.

In processing the images shown in Fig. 4, the whole year
of data are needed to reconstruct a seasonal trajectory for each
pixel to be used for replacing atmospherically affected dates
through temporal interpolation. At a given date, the curvature
of the trajectory can vary depending on the cover type and stage
of vegetation development, resulting in different values of the
local smoothing parameter in the LACC method. Fig. 5 shows
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Fig. 4. Comparison of the original and LACC-processed LAI images of China on three composite dates (DOY) using the MODIS LAI product (MOD15A2)
in 2001.

Fig. 5. Histogram of the value of the local smoothness scaling parameter γii

[used in (2) and defined in (7)] for May 2001 over China’s landmass, where
γii = 0 and γii = 1 are equivalent to the smoothing parameter λ = 1 and
λ = 0.5, respectively, as the global smoothing parameter is set at 0.5 in LACC.

a histogram of the scalar γii [defined in (7) and used in (2)] of
this smoothing parameter in May, where γii = 0 corresponds
to λ = 1 and γii = 1 corresponds to λ = 0.5. The value of γii

varies in the full range from 0 to 1. For pixels with small LAI
temporal variations (small curvature) in May, the γii value is
large, making the local λ value small, but for pixels with large
LAI changes (such as the beginning of vegetation growth), γii

is small, making the local λ value large. From the histogram,
we see that γii has a peak value at about 0.45, meaning that the
most frequently used value of the local smoothing parameter λ
was 2/3.

V. CONCLUSION

The LACC method developed in this study is shown
to be effective in reconstructing seasonal trajectories of a
surface parameter (LAI) through identifying and replacing
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atmosphercally affected data points by temporal interpolation.
This method can be used as an additional quality control for
temporal series of any surface parameters, which are negatively
affected by inaccuracies in atmospheric corrections or by other
artifacts. Compared with existing methods developed for the
same purpose, LACC has the following characteristics.

1) It is flexible to fit any seasonal variation patterns. This
ability of LACC is demonstrated for several cover types
in China. This flexibility cannot be achieved using meth-
ods based on a small number of harmonics, which are
theoretically inefficient in simulating rapid changes.

2) It fits variable curvatures of a surface parameter in
all seasons through automatic adjustments of the local
smoothing parameter. These adjustments are made based
on the curvature of a preliminary curve fitted with a global
smoothing parameter. This variable local smoothing pa-
rameter provides a smooth capping for seasons with slow
changes in the surface parameter and, in the meantime,
mimics rapid changes at the beginning and end of the
growing season.

3) It produces a mathematically smooth capping curve
throughout the year, which is differentiable and would be
useful for determining growing season parameters.

It is suggested that seasonal trajectories be used as an ad-
ditional quality control on surface parameters derived from
moderate and coarse resolution images before they are used for
further analysis and modeling.
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