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Algorithm for Global Leaf Area Index Retrieval
Using Satellite Imagery
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Abstract—Leaf area index (LAI) is one of the most important4
Earth surface parameters in modeling ecosystems and their inter-5
action with climate. Based on a geometrical optical model (Four-6
Scale) and LAI algorithms previously derived for Canada-wide7
applications, this paper presents a new algorithm for the global8
retrieval of LAI where the bidirectional reflectance distribution9
function (BRDF) is considered explicitly in the algorithm and10
hence removing the need of doing BRDF corrections and nor-11
malizations to the input images. The core problem of integrating12
BRDF into the LAI algorithm is that nonlinear BRDF kernels13
that are used to relate spectral reflectances to LAI are also LAI14
dependent, and no analytical solution is found to derive directly15
LAI from reflectance data. This problem is solved through de-16
veloping a simple iteration procedure. The relationships between17
LAI and reflectances of various spectral bands (red, near infrared,18
and short-wave infrared) are simulated with Four-Scale with a19
multiple scattering scheme. Based on the model simulations, the20
key coefficients in the BRDF kernels are fitted with Chebyshev21
polynomials of the second kind. Spectral indices, the Simple Ratio22
and the Reduced Simple Ratio, are used to effectively combine23
the spectral bands for LAI retrieval. Example regional and global24
LAI maps are produced. Accuracy assessment on a Canada-wide25
LAI map is made in comparison with a previously validated26
1998 LAI map and ground measurements made in seven Landsat27
scenes.28

Index Terms—Bidirectional reflectance distribution function29
(BRDF), Chebyshev polynomials, geometrical optical (GO) model,30
leaf area index (LAI), look-up table (LUT).31

I. INTRODUCTION32

SATELLITE earth observation is a powerful tool to measure33

and characterize the state of the biosphere at regional and34

global scales. However, for quantitative applications of Earth35

observation data, we need to relate satellite spectral measure-36

ments to surface biophysical parameters, such as the leaf area37

index (LAI), and the fraction of absorbed photosynthetically38

active radiation (fAPAR). LAI is one of the key vegetation39

structural variables for quantitative analysis of many physical40

and biological processes related to vegetation dynamics and its41

effects on global carbon cycle and climate [1].42
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Following the Advanced Very High Resolution Radiometer 43

(AVHRR) series onboard National Oceanic and Atmospheric 44

Administration (NOAA) satellites, VEGETATION onboard 45

SPOT 4, the second Along-Track Scanning Radiometer (ATSR- 46

2) on ERS-2, the Advanced ATSR (AATSR) and Medium Reso- 47

lution Imaging Spectrometer (MERIS) onboard ENVISAT, and AQ148

MODerate Resolution Imaging Spectroradiometer (MODIS) 49

onboard Terra and Aqua satellites have been able to monitor 50

the photosynthetic activity of the biosphere at regional and 51

global scales at daily time intervals. However, with the available 52

spectral measurements from these satellite sensors, two kinds of 53

methods are often applied to estimating LAI. The first kind is 54

based on vegetation indices (VIs), i.e., various combinations of 55

reflectances in different spectral bands. Besides the most often 56

used VIs, namely, Normalized Difference Vegetation Index 57

(NDVI) [2], and Simple Ratio (SR) [3], a large number of 58

other indices (e.g., [4]–[6]) have been used to relate LAI to 59

surface reflectances. Based on VIs, algorithms were developed 60

to estimate LAI from the reflectance of near-infrared (NIR), 61

visible, and other spectral bands and regional and global maps 62

[7]–[12] of LAI, and related products have been produced 63

with various degrees of accuracy, although the problem of 64

saturations of reflectances in the various spectral bands at high 65

LAI values [13], [14] is always a major cause for concern using 66

these data. 67

The alternative approaches are based on the inversion of 68

canopy radiation models [13]. Because these models simu- 69

late physical processes, their derived parameters have physical 70

meanings; thus, theoretically, these kinds of methods are prefer- 71

able for our accuracy requirements. However, these methods 72

require significant computational resources, and although they 73

have become an interesting subject of current studies (e.g., [14], 74

[15]), they are often too slow for global applications. This prob- 75

lem results not only from the complexity of canopy–radiation 76

interaction processes but also from inversion methods them- 77

selves, which often require a large number of iterations to 78

converge toward appropriate solutions. Besides the traditional 79

iterative optimization approach, alternative methods such as 80

look-up tables (LUTs) have been proposed for large dataset 81

processing [16], [17]. The accuracy, however, depends on the 82

dimension of the LUTs because very large LUTs will also 83

slow down the search process. Therefore, a preferred inversion 84

method for large-area applications would be LUTs with small 85

or moderate dimensions requiring only few iterations. 86

As one of the main products of the MODIS sensor, the 87

MODIS LAI product (MOD15A2) has been routinely produced 88

and increasingly used for various global and regional studies 89

[18], [19]. In the meantime, there are still issues related to the 90
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existing various datasets and algorithms, such as different def-91

initions of LAI, different measurement instruments and proto-92

cols, different consideration of nonrandom canopy architecture,93

different cover type separations, different seasonal trajectory94

smoothing methods, etc. [9], [20]. Unfortunately, such LAI95

products can vary significantly depending on the algorithms96

(often developed based on specific radiative transfer models)97

and the input datasets used; thus, it is desirable to have alterna-98

tive products for global and regional applications. One example99

of a regional alternative to MODIS is the Canada-wide LAI100

estimate [9]. However, this product is based on an algorithm101

that requires atmospherically corrected and bidirectional re-102

flectance distribution function (BRDF)-normalized reflectance103

images, i.e., the atmospherically corrected reflectance images104

are normalized to a common geometry: nadir view and 45◦ solar105

zenith angle (SZA) [21]. For global applications, this BRDF106

normalization is not the ideal way to consider the angular107

effects because the SZA varies significantly globally for any108

given date and large normalization errors can therefore occur109

when we force the reflectance to a common SZA. This is par-110

ticularly of concern as kernel-based simple BRDF models are111

often used for such normalization. For this reason and for global112

application, we change the approach by incorporating directly113

the effects of the BRDF and hence remove the requirement of114

BRDF normalization to the input images. The new algorithm115

is developed based on the Four-Scale bidirectional reflectance116

model [22]. For every land cover type, a large number of Four-117

Scale simulations are made to determine all the parameters118

of the algorithm, including BRDF kernel coefficients. Besides119

the conventional red and NIR bands, the short-wave infrared120

(SWIR) band is also used in the algorithm to replicate better121

the behavior of the vegetation reflectance in satellite images.122

A small LUT and a method that requires only two iterations123

are then compiled to accelerate the LAI inversion and make the124

algorithm applicable for processing global datasets.125

The objectives of this article are 1) to document the principles126

of this new algorithm and 2) to validate the algorithm by com-127

paring with a previously validated Canada-wide LAI image and128

ground measurements of different biomes in Canada. We will129

also show example global LAI products generated using this130

algorithm from the 10-day synthesis VEGETATION reflectance131

images at 1-km resolution.132

II. THEORETICAL BASIS133

A. LAI Definition and Selection of a Spectral Index134

LAI is defined as one-half the total green leaf area (all sided)135

per unit ground surface area [23]. This definition is the same as136

the traditional definition [24] based on the largest projected area137

(i.e., one sided) for broad leaves, but it makes a large difference138

for conifer needles.139

As in most studies (see [27]), the LAI in this algorithm is140

estimated from remote sensing data using relationships between141

LAI and VIs. In our algorithm, we generally use the SR,142

defined as143

SR =
ρNIR

ρRED
(1)

where ρNIR and ρRED are the reflectances in NIR and red 144

bands, respectively. The relationship is developed based on 145

Four-Scale simulations and can be expressed as 146

L = fL_SR(SR · fBRDF(θv, θs, φ)) (2)

where L is the LAI, SR is the simple ratio, θs is the SZA, 147

θv is the view zenith angle (VZA), φ is the relative azimuth 148

angle between the sun and the viewer (PHI), fL_SR() is a 149

function describing the relationship between BRDF-modified 150

SR and LAI, and fBRDF() is the BRDF modification function 151

for SR. 152

A new vegetation index, the Reduced Simple Ratio (RSR) 153

[25], which is less sensitive to vegetation type and background, 154

was also used for specific vegetation types. It is defined as 155

follows: 156

RSR =
ρNIR

ρRED

(
1 − ρSWIR − ρSWIRmin

ρSWIRmax − ρSWIRmin

)
(3)

where ρSWIR is the reflectance in the SWIR band and 157

ρSWIRmax and ρSWIRmin are respectively the maximum and 158

minimum SWIR reflectances selected for specific land covers. 159

Similarly, we establish a relationship between RSR and LAI 160

based on the Four-Scale model 161

L = fL_RSR

(
SR · fBRDF(θv, θs, φ)

·
(

1 − ρSWIR · fSWIR_BRDF(θv, θs, φ) − ρSWIRmin

ρSWIRmax − ρSWIRmin

))
(4)

where fL_RSR() is a function describing the relationship be- 162

tween BRDF-modified RSR and LAI and fSWIR_BRDF() is a 163

BRDF modification function for SWIR reflectance. 164

B. Canopy Reflectance Model Used 165

A physically based geometrical optical (GO) model is used 166

here to simulate the interaction between incoming solar radi- 167

ation and the vegetated surface and thus to generate parame- 168

ters required for the LAI algorithm. The advantages of GO 169

models relative to more sophisticated radiative transfer models 170

(see review by Qin and Liang [26]) include their computation 171

efficiency, easiness in investigating BRDFs for a large set of 172

input parameters, and satisfactory accuracies for general appli- 173

cations [27]. The Four-Scale model developed by Chen and 174

Leblanc [28] describes canopy reflectance considering four 175

scales of canopy architecture including the distribution of tree 176

crowns, crown geometry, crown internal structure (branches, 177

shoots), and leaf distriubtion. The model used here also in- 178

cludes a multiple scattering scheme developed by Chen and 179

Leblanc, and thus, it is also accurate for spectral bands (such 180

as NIR and SWIR) with large multiple scattering effects in the 181

canopy. In Four-Scale, the following theoretical expression for 182



IE
EE

Pr
oo

f

DENG et al.: ALGORITHM FOR GLOBAL LEAF AREA INDEX RETRIEVAL USING SATELLITE IMAGERY 3

the hotspot shape is unique in utilizing the canopy gap size183

distribution information:184

F (ξ) =

∫ ∞
λmin

[
1 − ξ

tan−1( λ
Hθ

)

]
N(λ)dλ

∫ ∞
λmin

N(λ)dλ
(5)

where ξ is the angle between the sun and the viewer relative to185

the target, defined as186

cos ξ = cos θs cos θv + sin θs sin θv cos φ (6)

where F (ξ) is a hot spot function, being unity when ξ = 0 and187

zero when ξ exceeds the largest tan−1(λ/Hθ) possible, Hθ is188

the gap depth in the direction of θs, λmin is the smallest gap189

to be included in the integration and depends on the value of190

ξ, and N(λ) is the number density for canopy gaps of size λ.191

N(λ) is defined by192

N(λ) =
Lp

Wp
exp

[
−Lp

(
1 + λ

Wp

)]
(7)

where Lp is the projected area index of the objects responsible193

for the canopy gaps and Wp is the characteristic dimension of194

the objects.195

The input parameters of Four-Scale can be separated in three196

categories, as follows:197

1) site parameters (model domain size, LAI, tree density,198

tree grouping index, and SZA);199

2) tree architectural parameters (crown radius and height,200

apex angle, needle-to-shoot ratio, and typical leaf or shoot201

size);202

3) spectral reflectivities of the foliage and the background in203

the various bands.204

Four-Scale is used to simulate BRDF shapes and relation-205

ships between BRDF and LAI for each of the major cover206

types using a large combination of these parameters. For LAI207

algorithm development, these simulated results are fitted with a208

kernel-based BRDF model as outlined below.209

III. LAI ALGORITHM AND210

IMPLEMENTATION PROCEDURES211

A. Algorithm Development212

The Four-scale model is, however, too complex to be in-213

verted directly on remote sensing images. Simplifications into214

combinations of four [29], [30] and two [31] kernels have215

been developed for various applications. In our LAI algorithm216

development, the two-kernel version, a modified Roujean’s217

model [31], [32], is used as a base to fit the behavior of Four-218

Scale, i.e.,219

ρ(θv, θs, φ) = ρ0(0, 0, φ) (1 + a1f1(θv, θs, φ)

+a2f2(θv, θs, φ)) ·
(

1 + c1 exp
[
−

(
ξ

π

)
c2

])
. (8)

The last term involving c1 and c2 is the modification made by220

Chen and Cihlar to consider pronounced hotspot effects, based221

on the hotspot function as used by Four-Scale (5), although it 222

introduces two additional parameters and makes the equation 223

nonlinear. Functions f1 and f2 in (8) are defined as 224

f1(θv, θs, φ)

=
1
2π

[(π − φ) cos φ + sinφ] tan θs tan θv − 1
π

·
(

tan θs + tan θv

+
√

tan2 θs + tan2 θv − 2 tan θs tan θv cos φ
)

(9)

and 225

f2(θv, θs, φ)=
4
3π

1
cos θs+cos θv

·
[(π

2
−ξ

)
cos ξ+sin ξ

]
− 1

3
.

(10)

In processing reflectance images, for any selected pixel in the 226

image, the reflectance ρi and the angle combination (θvi, θsi, 227

φi) can be obtained, and with given values of a1, a2, c1, and c2, 228

ρ0(0, 0, φ) can be calculated from the aforementioned formulas. 229

Conversely, from ρ0(0, 0, φ), the reflectance ρ at any angle 230

combination (θv, θs, φ) can also be estimated from (8). All of 231

the BRDF kernel coefficients a1, a2, c1, and c2 are based on 232

Four-Scale model results for different land cover types. 233

Given these relations, it is possible to write the functions 234

fBRDF and fSWIR_BRDF [(11) and (12), respectively, shown 235

at the bottom of the next page] that can be used to cast the 236

SR and SWIR bands of a pixel at any angle combination 237

(θvi, θsi, φi) to a new angle combination (θvn, θsn, φn): where 238

subscript i represents an image pixel, subscript n represents the 239

new angle combination from which we intend to calculate the 240

LAI value given the LAI–SR or RSR relationship at that angle 241

combination, and subscripts RED, NIR, and SWIR represent 242

corresponding spectral bands. 243

In principle, based on (11) and (12), the LAI value can 244

be calculated straightforwardly from (2) or (4). However, a 245

complication exists because the kernel coefficients (a1 and a2) 246

depend on the LAI to be retrieved. Thus, the core problem 247

of integrating BRDF into LAI algorithm is that the equations 248

describing the BRDF–LAI interdependence are functional rela- 249

tionships. Mathematically, this can be expressed, for SR- and 250

RSR-based methods, respectively, as: 251

L = fL_SR (SR · fBRDF (θv, θs, φ, a1(L), a2(L))) (13)

and (14) (see equation at bottom of the next page). 252

Although this problem can be solved numerically, such 253

methods are, however, not practical for large-area applications, 254

which require computation efficiency. To make LAI retrieval 255

feasible globally, we have developed a computational method- 256

ology to solve this problem through a simple iteration proce- 257

dure. An alternative to this approach, the Secant method [33], 258

in finding the proper L value was about seven times longer in 259

computation time than the method we propose. 260

In our method, a precursor LAI value for a pixel is 261

first produced from a general cover type-dependent SR–LAI 262



IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

relationship (2) assuming fBRDF(θvi, θsi, φi) = 1, then BRDF263

kernels parameters are calculated with this precursor LAI value,264

BRDF modification functions for SR and SWIR are calculated265

using (11) and (12), and finally, LAI is recalculated from the266

BRDF kernels and SR or RSR from (2) and (4). In practice,267

functions a1(L) and a2(L) and parameters c1 and c2 are268

prerequisites to using (13) and (14) for converting reflectances269

and SR from one angle combination to another. In our case,270

the functions a1(L) and a2(L) are expressed as Chebyshev271

polynomials of the second kind.272

B. Chebyshev Polynomials Used in the Algorithm273

In the process of algorithm development, a mathematical274

form is needed to express the relationships used in the algorithm275

that are both accurate and easily implemented. Chebyshev276

polynomials of the second kind [34] are chosen for this purpose.277

First, several Chebyshev polynomials Ui(x) of the second kind278

for x ∈ [−1, 1] and i = 1, 2, 3, . . . are defined as279

U0 = 1
U1 = 2x
U2 = 4x2 − 1
U3 = 8x2 − 4x (15)

These can be expressed in a general recursive form, i.e.,280

Ui+1 = 2x.Ui − Ui−1. (16)

In our LAI algorithm, the functions fL_SR, fL_RSR, a1(L), and281

a2(L) are represented in the recursive form282

f =
i=n∑
i=0

kiUi(x), for n < 10 (17)

TABLE I
IGBP LAND COVER CLASSES AND COMBINED CLASSES

FOR LAI RETRIEVAL

where ki are constants to be found from model results through 283

regression analysis, and we found that 11 terms is sufficient to 284

mimic any curve shapes from our simulations (n < 10). For 285

example, x can be LAI, and f can be a2(L). 286

C. Cover Type-Dependent Algorithms 287

As vegetation structure is distinctly different among land 288

cover types, Four-Scale simulations are made separately for 289

different cover types. The functions fL_SR and fL_RSR and 290

coefficients a1(L) and a2(L) are derived based on the simu- 291

lations for each distinct cover type. In the implementation of 292

the algorithm, any land cover map can be used, but in our 293

case, we adopted the IGBP land cover map [35] and GLC2000 294

[36] although combining some of the cover types with similar 295

structural characteristics as in Table I. Snow/ice and water body 296

classes are not considered in LAI retrieval. 297

fBRDF =
(1 + a1REDf1(θvi, θsi, φi) + a2REDf2(θvi, θsi, φi)) ·

(
1 + c1RED exp

[
−

(
ξi

π

)
c2RED

])

(1 + a1NIRf1(θvi, θsi, φi) + a2NIRf2(θvi, θsi, φi)) ·
(
1 + c1NIR exp

[
−

(
ξi

π

)
c2NIR

])

·
(1 + a1NIRf1(θvn, θsn, φsn) + a2NIRf2(θvn, θsn, φsn)) ·

(
1 + c1NIR exp

[
−

(
ξi

π

)
c2NIR

])

(1 + a1REDf1(θvn, θsn, φsn) + a2REDf2(θvn, θsn, φsn)) ·
(
1 + c1RED exp

[
−

(
ξn

π

)
c2RED

]) (11)

fSWIR_BRDF =
(1 + a1SWIRf1(θvn, θsn, φsn) + a2SWIRf2(θvn, θsn, φsn)) ·

(
1 + c1SWIR exp

[
−

(
xin

π

)
c2SWIR

])
(1 + a1SWIRf1(θvi, θsi, φi) + a2SWIRf2(θvi, θsi, φi)) ·

(
1 + c1SWIR exp

[(
ξi

π

)
c2SWIR

]) (12)

L = fL_RSR

(
SR · fBRDF(θv, θs, φ, a1(L), a2(L)) ·

(
1 − ρSWIR · fSWIR_BRDF(θv, θs, φ, a1(L), a2(L)) − ρSWIRmin

ρSWIRmax − ρSWIRmin

))

(14)
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Fig. 1. L–SR and L–RSR relationships for the coniferous and deciduous types at a fixed view angle (nadir) but at different SZAs.

The modified Roujean’s model is used as a base to fit the298

results of each of the calculated reflectances to determine c1299

and c2 and, at the same time, to apply Chebyshev polynomials300

of the second kind to fit to the simulated coefficients a1 and301

a2 as functions of LAI. The relationship of LAI with SR or302

RSR is also fitted using the same polynomials. Relationships303

between L and SR (fL_SR) and between L and RSR (fL_RSR)304

at selected angle combinations for coniferous and deciduous305

forests are shown in Fig. 1 as examples. These four figures306

demonstrate the following points: 1) Changes in the SZA307

have large effects on the L–SR and L–RSR relationships for308

both coniferous and deciduous cover types, suggesting that309

considering SZA in LAI algorithms is very important; 2) the310

relationships for the coniferous forest type are more linear than311

those for deciduous forest types, in agreement with experimen-312

tal findings of Chen et al. [9]; 3) L–RSR curves are further313

apart than L–SR curves at different SZAs, indicating that after314

considering SWIR in RSR, the influence of SZA is enhanced. 315

This may be due to a large angle dependence of the reflectance 316

in the SWIR band; and 4) at larger SZAs, the saturations of 317

SR and RSR at LAI > 6 are more apparent for the decidu- 318

ous forest type, also in agreement with empirical evidence of 319

Chen et al. [9]. Relationships between L and SR (fL_SR) and 320

between L and RSR (fL_RSR) for different cover types at 321

specific angle combinations are shown in Fig. 2. From these 322

figures, we see that although the LAI of the coniferous type 323

increases quickly with increasing SR, it is relatively slow for 324

crops and grass. The other cover types are the intermedi- 325

ate cases. These differences reflect the effects of the canopy 326

structure (such as foliage clumping) and the optical character- 327

istics of leaves in each cover type. Comparing Fig. 2(a) and (b), 328

we can see that the differences in L–RSR relationships for the 329

various cover types are much smaller than those in L–SR re- 330

lationships, suggesting a smaller cover type dependence of the 331
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Fig. 2. L–SR and L–RSR relationships for different cover types at nadir and at SZA of 35◦.

RSR [25]. However, the differences among various cover types332

in Fig. 2(b) are still significant, and therefore, a land cover-333

dependent algorithm is still a necessary even if RSR is used.334

D. Implementation Procedure335

In applying the LAI algorithm, the following steps are336

followed:337

Step 1) The SZA is divided into six ranges, i.e., 1) [0, 10],338

2) [10, 20], 3) [20, 30], 4) [30, 40], 5) [40, 50],339

6) [50, 70], and for each SZA range, a set of rela-340

tionships between L and SR (fL_SR) are provided341

at different VZAs: 0◦—representing a VZA range of342

[0, 10], 20◦—representing a VZA range of [10, 20],343

30◦—representing a VZA range of [30, 45], and344

50◦—representing a VZA range of larger than 45◦,345

at two azimuth angles between the sun and the346

viewer (φ): 0◦ and 180◦. A linear interpolation is347

performed to obtain a final relationship at a given φ348

value for the first approximation of L.349

Step 2) For each SZA range, predefined a1(L) and a2(L)350

functions in the form of Chebyshev polynomials of351

the second kind and parameters c1 and c2 are used352

to calculate the relevant fBRDF and fSWIR_BRDF,353

so we can estimate SR and RSR at any angle354

combinations.355

Step 3) LAI is calculated using the relationships between L356

and SR (fL_SR) and between L and RSR (fL_RSR)357

at specific angles.358

The general flowchart and a detail procedure for calculating359

the LAI are shown in Figs. 3 and 4, respectively.360

E. SR- and RSR-Based Algorithms361

As described in the last two sections, we have developed362

two separate algorithms, i.e., 1) SR based and 2) RSR based,363

Fig. 3. General flowchart for the LAI algorithm.

to retrieve LAI. These algorithms can produce two separate 364

maps of LAI for a given satellite image. As RSR was developed 365

to minimize the variable background effect on LAI retrieval 366

for forest stands and is sensitive to rainfall or irrigation in 367

cropland and grassland [9], the RSR algorithm is used for all 368

forest pixels and the SR algorithm for all other cover types 369

to produce one LAI map for a given input image. These two 370

separate algorithms also give a freedom for their applications 371

to sensors with and without the SWIR band. 372



IE
EE

Pr
oo

f

DENG et al.: ALGORITHM FOR GLOBAL LEAF AREA INDEX RETRIEVAL USING SATELLITE IMAGERY 7

Fig. 4. Procedure to calculate LAI. For a given pixel in the image processing, only one SZA range and one VZA range are selected at a time to complete the
procedure.

IV. RESULTS—GLOBAL LAI EXAMPLE MAPS373

Based on this new LAI algorithm, VEGETATION 10-day374

synthesis images have been used to produce global LAI maps.375

As examples, images dated January 21 and July 21, 2003 are376

used to produce the two LAI maps shown in Fig. 5. The spatial377

patterns and general LAI magnitudes are comparable to those378

produced by Myneni et al. [18]. These VEGETATION S10379

images have been adjusted for the atmospheric effect using the380

Simplified Method for Atmospheric Correction (SMAC) [37],381

and clouds were screened using the standard VEGETATION382

formulas. However, despite these approaches and the use of383

maximum NDVI criterion for selecting the best date of mea-384

surements in each pixel to form the 10-day synthesis, it is385

still possible to find considerable residual cloud effects. The386

low LAI areas in part of the Amazon, for example, are caused387

by these effects. To minimize these effects, we have devel-388

oped a procedure named locally adjusted cubic-spline capping389

(LACC) [20] to reconstruct the seasonal trajectory of LAI pixel390

by pixel. The LACC procedure is designed to produce a sea-391

sonal capping curve by progressively replacing abnormally low392

values with fitted values. As the application of this procedure393

requires a full seasonal series of images, it has not been applied394

to these two examples.395

V. ACCURACY ASSESSMENT396

The accuracy assessment was conducted in three parts,397

namely: 1) the accuracy of the two-kernel Chebyshev approx-398

imation is examined to see how well the algorithm reflects the399

forward modeling; 2) the resulting LAI estimates are compared400

against an existing validated product for Canada; and 3) a 401

comparison is made with ground measurements in 1998 in 402

seven Landsat scenes in Canada. 403

A. Model Inversion Accuracy 404

In the complete inversion process, we used a simple two- 405

kernel model to fit results simulated by the complex Four- 406

Scale model, and some of the fitted coefficients are expressed in 407

Chebyshev polynomials. Each step is a simplification of phys- 408

ical processes into mathematical descriptions and can induce 409

errors. We therefore need to assess the size of these errors. 410

Deciduous and coniferous cover types are selected to represent 411

the whole inversion accuracy analysis because we treat every 412

cover type with the same physical and mathematical methods. 413

For deciduous and coniferous cover types, 12 486 and 17 128 414

groups of simulation results, including the angle combinations, 415

background reflectances, and canopy-level reflectances for dif- 416

ferent LAI levels that are obtained from the input and output 417

datasets of Four-Scale simulations, are used as inputs to the 418

LAI algorithm to calculate LAI values, and these LAI values 419

are statistically processed to compare with the input LAI values 420

to the Four-Scale model. Fig. 6 presents the inverted LAI mean 421

values and related standard deviation (SD) from the algorithm 422

as compared with the corresponding LAI inputs to the forward 423

Four-Scale model. 424

As demonstrated in Fig. 6, this new algorithm has extracted 425

most of the information from the complex model. Statistically, 426

this algorithm gives fairly acceptable LAI values compared 427

with the input LAI of the complex model with a maximum 428
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Fig. 5. Global LAI map produced from a cloud-free 10-day synthesis image
of VEGETATION for the period of (a) January 21–31 and (b) July 21–31, 2003.

Fig. 6. Mean values of inverted LAI from the current algorithm versus the
input LAI to the Four-Scale model for (a) deciduous and (b) coniferous cover
types. The bar over each mean value represents the standard deviation of related
LAI sample.

Fig. 7. Canada-wide LAI map produced from a cloud-free 10-day synthesis
image of VEGETATION for the period of June 11–20, 1998.

Fig. 8. Canada-wide LAI map [9] versus a new LAI map (Fig. 8) produced
using the current algorithm. Both images were produced from the same cloud-
free 10-day synthesis image of VEGETATION for the period of June 11–20,
1998.

SD of 15% and 11% for deciduous and coniferous cover types, 429

respectively. Standard errors would be about 120 times smaller. 430

B. Canada-Wide LAI Map Comparison 431

To ensure that our new algorithm are practical and are able 432

to produce LAI maps of desired accuracy, a VEGETATION 433

10-day synthesis image dated June 11, 1998 was used here to 434

produce the Canada-wide LAI map shown in Fig. 7 using the 435

new algorithm. The same image was previously used to produce 436

a Canada-wide LAI map with a different algorithm requiring 437

inputs of BRDF-normalized surface reflectance. This existing 438

LAI map has undergone significant evaluation against ground 439

measurements [9]. A 1:1 scatter plot between the existing and 440

the current LAI maps of all cover types is shown in Fig. 8, 441

indicating a satisfactory agreement between these two maps 442

produced with different algorithms (the correlation coefficient 443

is 0.86). The apparent vertical line at LAI = 3 in Fig. 8 is 444

caused by an artificial limit of LAI = 3 for grassland imposed 445
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Fig. 9. Histogram of the difference in LAI between the new Canada-wide LAI
map (Fig. 8) and the previous map [9].

in the previous algorithm of Chen et al. [9], but no such a limit446

is used in the current algorithm. In the mean time, a histogram447

of the difference between these two LAI maps is presented in448

Fig. 9, where a positive value on the horizontal axis indicates a449

larger value from the previous algorithm than from the current450

algorithm. The mean difference between these two maps is less451

than 0.5 with an SD of 0.4. At high LAI values (LAI > 7,452

Fig. 8), there is a tendency that the values in the new LAI map453

shown in Fig. 7 are smaller than the corresponding values in454

the map of Chen et al. [9]. This discrepancy in LAI is caused455

by a difference between the algorithms for the conifer type. In456

Chen et al. [9], an empirical linear relationship between RSR457

and LAI was used for conifer, whereas in the new algorithm,458

this relationship is slightly curvilinear (Fig. 2), making LAI459

increase slower at larger RSR values. Based on the physics of460

radiation interaction with the canopy, the curvilinear shape is461

expected at high LAI values.462

C. Validation Against Ground LAI Measurements463

The current LAI algorithm was validated indirectly against464

ground-based LAI data using seven fine-resolution (30 m) LAI465

images derived from Landsat TM scenes, covering different466

biomes in Canada. Using high-resolution images was a nec-467

essary step in validating coarse-resolution LAI images against468

the ground data because ground plots were generally smaller469

than 100 m in width or length. Ground measurements were470

made in 1998 in these scenes by a large group using common471

instruments and measurement protocols [9]. These LAI images472

at 30-m resolution were retrieved using empirical relationships473

established based on ground measurements and aggregated to474

1-km resolution, as compared with the VEGETATION LAI475

image (Fig. 7) calculated based on GLC2000 land cover data.476

To minimize the effects of differences in land cover classifica-477

tion between GLC2000 at 1-km resolution and that of Landsat478

images at 30-m resolution, three VEGETATION LAI images479

were retrieved with three different methods in using land cover480

information, namely: 1) the original GLC2000 dataset was used481

without any modifications; 2) the dominant land cover type482

for each 1-km pixel was used based on Landsat land cover483

information [9]; and 3) the fractions of various land cover484

types in the Landsat images were used to weight the individual485

LAI values corresponding to the different cover types. These486

three LAI images were compared with Landsat LAI images,487

TABLE II
AVERAGE (AVG.) AND SD OF LAI FOR EACH LANDSAT TM SCENE AND

COEFFICIENTS OF DETERMINATION (r2), ROOT-MEAN-SQUARE ERROR

(RMSE), AND MEAN BIAS (MB) OF EACH OF THE THREE VEGETATION

(VGT) LAI RESULTS AT 1-km RESOLUTION AGAINST THESE LANDSAT

SCENES. THE THREE VGT RESULTS CORRESPOND TO THREE

DIFFERENT TREATMENTS OF LAND COVER INFORMATION,
NAMELY: 1) USING THE ORIGINAL GLCC LAND COVER

INFORMATION (LCGLCC); 2) USING THE DOMINANT

LAND COVER INFORMATION (LCdominant) BASED

ON LANDSAT IMAGES; AND 3) WEIGHTED LAI
(LCweighted) FOR LAND COVER

FRACTIONS IN THE LANDSAT IMAGES

and statistics of these comparisons are summarized in Table II. 488

The coefficients of determination for the VEGETATION LAI 489

image derived using the first method were quite variable among 490

the scenes (r2 = 0.13−0.75). Significant improvements were 491

achieved (r2 = 0.26−0.82) when the second method was used. 492

The best results were found using the third method (r2 = 493

0.50−0.85). These results suggest that the correct use of land 494

cover information played a vital role in LAI mapping, and when 495

accurate land cover information in the detailed Landsat scenes 496

were used, the algorithm applied to the VEGETATION image 497

produced LAI values in good agreement with Landsat scenes. 498

This reaffirms the finding of Chen [38] that downscaling using 499

subpixel land cover information can considerably increase the 500

LAI mapping accuracy. This is especially true for Ontario and 501

Radisson scenes, where the land covers were more mixed than 502

the other scenes. A significant portion of the remaining errors 503

can be further explained by errors due to other factors (e.g., 504

nonlinearity in the LAI algorithm) and differences in input VIs 505

between these high- and low-resolution images. These valida- 506

tion results suggest that the current LAI algorithm produced 507

reliable results for various cover types including deciduous and 508

conifer forests, crops, and grassland. 509

VI. CONCLUSION 510

The new LAI algorithm presented here features several de- 511

sirable characteristics for global application. 512

1) The two models (Four-Scale and two kernel) used in our 513

algorithm development are based on radiative transfer 514

physics rather than on empirical curve or surface fitting 515

techniques, so that the algorithm provides the fundamen- 516

tal trends of LAI variations with remote sensing signals 517

for various land cover types. 518

2) The procedure of angular normalization to the input re- 519

flectance images is no longer needed as the new algorithm 520

makes direct use of the measurements at all angles. 521

The angular variations of remote sensing signals are no 522

longer treated as sources of noise but rather sources of 523
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information, provided the angular patterns for various524

cover types are modeled accurately. In addition, without525

the need for the angular normalization, which is difficult526

for applications to the globe where the SZA varies greatly527

within a given date, this new algorithm is suitable for both528

regional and global applications.529

3) With the emphasis on large-area applications, small LUTs530

requiring only two iterations are used instead of a time-531

consuming exact numerical method, so that this algorithm532

is computationally highly efficient without sacrificing the533

accuracy of LAI retrieval. It is now feasible to produce534

global LAI images at 1-km resolution on a personal535

computer (for a whole globe image at one date, it requires536

12 h with a Pentium 4 PC at 3.0 GHz).537

The simplified inversion algorithm is shown to be able to538

reproduce the LAI values used as input to the forward model.539

The resulting spatial estimate for Canada compares favorably540

with a previously validated Canada-wide LAI map and ground541

measurements in seven Landsat scenes in Canada. Further542

work is needed to validate the algorithm for other regions of543

the globe.544
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