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Inter-Comparison and Validation of the
FY-3A/MERSI LAI Product Over Mainland China

Lin Zhu, Jing M. Chen, Shihao Tang, Guicai Li, and Zhaodi Guo

Abstract—Leaf area index (LAI) is a key surface parameter
that describes the structure of vegetation and plays an impor-
tant role in Earth system process modeling. In this paper, a
new set of LAI products (MERSI GLOBCARBON LAI) has
been developed based on the GLOBCARBON LAI algorithm
and one year of FY-3A/MERSI land surface reflectance data.
MERSI GLOBCARBON LAI has been inter-compared and
validated over mainland China against MODIS land surface
reflectance (LSR) derived LAI (using the same algorithm) and
field LAI measurements. MERSI GLOBCARBON LAI and
MODIS GLOBCARBON LAI show continuous and smooth
LAI distributions at the start and end of the growing season.
For most areas in China, the two LAI products agree well. The
temporal variation in MERSI GLOBCARBON LAI and MODIS
GLOBCARBON LAI consistently follows the growing season. The
largest LAI difference occurs during July, when MERSI shows a
much higher frequency of retrievals than does MODIS. Through
validation of LAI retrievals with field measurements, our study
demonstrates that LAI derived from MERSI and MODIS land
surface reflectance products have comparable accuracy. MODIS
top-of-atmosphere simple ratio (MODIS TOA SR) is related
to MERSI TOA SR with linear correlation coefficients greater
than 0.6. After atmospheric correction, the correlation coefficient
increases from 0.69 to 0.75 over cropland and from 0.82 to 0.93
over grassland. However, atmospheric correction can still give rise
to substantial differences in the reflectance data between the two
sensors. Furthermore, different land cover types and different
terrain relief have contrasting influences on the atmospheric
correction, and these influences reduce the agreement between
the two LAI products. This study shows the great potential of
FY-3A/MERSI data for global LAI retrieval.

Index Terms—FY-3A/MERSI, GLOBCARBON, leaf area index,
TERRA/MODIS.

I. INTRODUCTION

R EGIONAL and global water and carbon exchange
between the land surface and the atmosphere depend

greatly on the functioning of plant leaves [1]–[5]. Leaf area
index (LAI), defined as half the total leaf area per unit ground
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surface area [6], is a key vegetation structural parameter of
the Earth system used to quantify photosynthesis, respiration,
evapotranspiration, canopy interception, energy exchange, and
other ecohydrological processes [7]–[9].
Remote sensors with moderate resolution (pixel sizes from

250 m to several kilometers) provide daily and seasonal
data at regional and global scales, and these may currently
be the best tool to monitor spatial and temporal variations
in LAI [10], [11]. Global LAI products have been derived
from many remote sensing data sets such as NOAA/AVHRR,
TERRA-AQUA/MODIS and SPOT/VEGETATION [12]–[15].
These data sets have provided unprecedented opportunities for
studying the Earth’s climate [3]. The development of China’s
new generation of polar-orbiting meteorological satellite series
(FY-3) has greatly enhanced surface monitoring [16]. MERSI
(Medium Resolution Spectral Imager) is a key multispectral
instrument onboard FY-3 satellite [18]. The first two satellites
in the series, the morning FY-3A (launched on 27 May 2008)
and the afternoon FY-3B (launched on 5 November 2010)
provide a 6-hourly revisit capability. This offers the prospect
of new, more detailed global LAI products based on this data
source. Recently, FY-3A/MERSI LAI Version 1 (MERSI
GLOBCARBON LAI), an FY-3A test product from the Na-
tional Satellite Meteorological Center of China (NSMC), was
developed using the GLOBCARBON LAI algorithm [10], [14],
[3] and one year of FY-3A/MERSI data. As many other global
LAI maps are regularly produced, the accuracy assessment and
validation of FY-3A/MERSI LAI are of key importance for
potential users.
The overall quality of LAI products depends on several key

factors that influence the accuracy of the final retrievals [4]. Un-
certainty in input surface reflectance is one of the most impor-
tant error sources [19], [4], [20]. Surface reflectance time series
measured from spaceborne instruments, such as MOderate Res-
olution Imaging Spectroradiometer (MODIS), show apparent
high-frequency noise that limits their information content [21].
The accuracy of surface reflectance products is most affected by
the retrieval accuracy of aerosol optical thickness, the Lamber-
tian surface approximation, topography, and viewing-illumina-
tion geometry effects [20], [11], [22], [21]. Although different
land surface reflectance (LSR) products, such as MODIS sur-
face reflectance collection C5 [23], VGT [24], andMERSI [17],
all reduce the uncertainty in the atmospheric correction process
using different approaches, the remaining uncertainty may still
be considerable. Therefore, as the first step in validating and
assessing the FY-3A/MERSI global product, it is desirable to
compare the spatial performance of MERSI LSR and MODIS
LSR products for LAI retrieval and to evaluate the consistency
of LAI time series from different LSR products.

1939-1404 © 2013 IEEE
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The second source of uncertainty arises from misclassifica-
tions in the land cover map. Mixed pixel effects can further con-
tribute to errors in land cover classification and introduce extra
scaling bias, particularly in moderate-resolution remote sensing
data [25], [26]. Pisek andChen [4] demonstrated that differences
in land cover classification for low-resolution images can lead to
a difference of (38%) over the Bigfoot site (Northern
Old Black Spruce, Manitoba, Canada) in the middle of boreal
summer. Myneni et al. [13] estimated that classification errors
in land cover maps can generate an LAI estimation error of up
to 50%.
The third source of uncertainty is related to the different

LAI algorithms used in LAI retrieval. Generally, two kinds
of methods are applied to estimate LAI using remote sensing
data; i.e., statistical methods [27]–[29], and inversion of
physical models [13], [14]. Differences in vegetation struc-
ture, land cover, background reflectance, and local topography
representation in the LAI algorithms will lead to substantial dis-
crepancies in the final LAI retrievals [11], [30]–[32]. Previous
inter-comparisons have shown that GLOBCARBON gives
reliable and consistent seasonal and interannual variations [11],
and agrees well with Landsat/ LAI maps at most test
sites [4], [33]–[35]. Pisek and Chen [4] reported that the median
relative absolute error of GLOBCARBON retrievals varied
from 24% to 75% at the 1-km scale, compared with 34%–88%
for MODIS standard LAI. However, GLOBCARBON tends to
underestimate LAI over cropland and grassland, and can exhibit
temporal instability during the growing season over evergreen
forest sites [36], [11]. The first version of the GLOBCARBON
LAI product has also been shown to perform poorly in moun-
tainous areas; the second version includes improvements based
on pixel-by-pixel consideration of local topography, clumping
index, and background reflectance variations [32].
As the GLOBCARBON LAI algorithm has been validated

and evaluated in several comprehensive studies in Canada,
China, and other regions, we focus on its use with the new
reflectance dataset from FY-3A/MERSI. We perform further
inter-comparison, validation, and analysis of the uncertainties
in MERSI GLOBCARBON LAI retrieval using both MODIS
LSR-derived LAI using the same algorithm (MODIS GLOB-
CARBON LAI) and field LAI measurements. A case study
was conducted over mainland China with the following objec-
tives: (1) to compare the spatial and temporal performance of
LAI retrievals from MERSI and MODIS LSR products using
GLOBCARBON, (2) to validate and inter-compare MERSI
GLOBCARBON LAI with field LAI measurements and other
LAI products, and (3) to compare the two LSR data sets and
the corresponding level 1 data (TOA reflectance) and further
discuss the effect of the uncertainty in MERSI LSR data on
LAI estimation.

II. DATA

A. Data for LAI Retrieval

1) MERSI Land Surface Reflectance Data: FY-3A/MERSI
LSR data for 2010 were downloaded from the National Satel-
lite Meteorological center of China (NSMC) for FY-3A/MERSI
LAI retrieval. It has 5 channels with 250 m spatial resolution

and 15 channels with 1-km resolution. MERSI LSR is obtained
from channels 1–4 of theMERSI 1B product after correction for
gaseous absorption, Rayleigh and aerosol scattering, as well as
interactions between these processes. Radiative transfer model
simulations are used to establish look-up tables (LUTs). Param-
eters used in the atmospheric correction are interpolated from
the pre-established LUTs [17] to achieve a pixel-by-pixel at-
mospheric correction. Ten-day composites were generated from
daily MERSI LSR data for LAI retrieval.
2) MODIS Land Surface Reflectance Data: As the MODIS

is one of the most frequently used sensors for LAI retrieval
[37], [19], [11], we have chosen MODIS 8-day synthesis sur-
face reflectance products (MOD09) for comparison with and
evaluation of the FY-3A/MERSI LAI product. MOD09 corrects
for the effects of atmospheric gases, aerosols, and thin cirrus
clouds, and is an estimate of the land surface spectral reflectance
[23]. MOD09A1 data with 500 m spatial resolution downloaded
from NASA’s Earth Observing System Data and Information
System (EOSDIS) for 2010 were re-projected to geographic lat-
itude/longitude and re-sampled to 1-km resolution for LAI re-
trieval.
3) Land Cover Data: A land cover map downloaded from

the Global Land Cover 2000 database (GLC-2000) is used as
an input for LAI retrieval. The GLC-2000 map uses 22 classes
based on the Food and Agriculture Organization of the United
Nations’ hierarchical Land Cover Classification System [38].
This land cover product was adapted for use in the GLOB-
CARBON LAI algorithm. Some of the cover types with similar
structural characteristics were combined, and snow and water
body classes were ignored [14].
The spatial agreement of MERSI and MODIS GLOB-

CARBON LAI was investigated over mainland China and four
test sites were selected with different land cover types to further
compare the temporal variations of LAI (Fig. 1(a)). These
sites are DBF (deciduous broadleaf forest area in the northeast
of China, centered at 51.79 , 121.06 ), DNF (deciduous
needleleaf forest area in the northeast of China, centered at
51.78 , 121.08 ), GLX (grassland in the Xilin Gol prairie
of China, centered at 44.14 , 116.29 ), and CLS (cropland
in Yucheng, Shandong province of China, centered at 39.13 ,
115.67 ).

B. Data for Validation

Field LAI measurements were collected in a typical meadow
grassland in the Hulunbeier prairie in China (centered at
49.41 , 119.99 ) during June 21–26, 2010 [40]. Fifty-two
50 50 m sample plots, which have LAI values of 0.46 to
3.08, with a mean value of 1.74 and a standard deviation of
0.61, were set up (Fig. 1(b)). These sample plots are located
in homogeneous locations with areas larger than 100 100 m
so as to reduce the impact of topography and inhomogeneous
land surface. In the center of each sample plot, two observation
lines, parallel to the sun line and 25 m apart, were defined, and
LAI data were collected using the LAI 2000 instrument along
these lines (Fig. 1(c)). This sampling method resulted in 12 LAI
measurements for each sample plot, which were then averaged
to give the final LAI value for the specified sample plot.



IE
EE

 P
ro

of

W
eb

 V
er

sio
n

ZHU et al.: INTER-COMPARISON AND VALIDATION OF THE FY-3A/MERSI LAI PRODUCT OVER MAINLAND CHINA 3

Fig. 1. (a) Map of the relief amplitude over the study area and locations of subarea and test sites for reflectance and temporal comparisons. (b) Locations of field
LAI sample plots in a 30-m resolution false color composite map based on TM data. (c) Arrangement of LAI point measurements in a sample plot [40].

TABLE I
DATA SOURCES FOR FIELD VALIDATION AND INTER-COMPARISON OF DIFFERENT LAI PRODUCTS

A satellite overpass scene (Landsat-5 TM) from 21 June
2010 was selected as the temporally closest cloud-free match
to the field measurements (21–26 June 2010). The Landsat-5
TM image was downloaded from the United States Geological
Survey (USGS) and converted to TOA radiance using the
metadata provided in the TM data header. An atmospheric
correction code (6S) [39] was used to convert TOA radiance to
land surface reflectance. A vegetation index, Simple Ratio (SR;
calculated from Landsat-5 TM data after atmospheric correc-
tion) was then correlated with field LAI measurements using an
empirical linear function ( , ) [40].
To broaden the evaluation of FY-3A/MERSI LAI products,

two other LAI products derived from MODIS 8-day synthesis
data (MOD09A1 & MOD15A2) were also evaluated. Table I

lists the data sources and algorithms for FY-3A/MERSI LAI
validation and inter-comparison. All LAI products are re-sam-
pled to 3-km resolution so as to further reduce the influence
of image geolocation errors. There are 282 points in total,
randomly selected around the LAI field measurement site, and
scatter plots were generated to demonstrate the correlation
between each pair of LAI products.

C. Data for Uncertainty Analysis

1) Reflectance Data: Four types of remote sensing data were
used for the inter-comparison of spectral reflectance between
sensors: (a) the MODIS level 1B TOA reflectance product, (b)
the corresponding daily LSR products (MYD09GA) down-
loaded from EOSDIS, (c) the contemporaneous MERSI level
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TABLE II
DATA USED FOR REFLECTANCE COMPARISON

1B TOA reflectance, and (d) the corresponding daily LSR
products with 1-km resolution distributed by NSMC. MERSI
and MODIS TOA and LSR products were all co-registered and
aggregated to 1-km resolution.
MERSI and MODIS 1B and LSR products were chosen over

three typical areas with adjacent overpass times, small zenith
view angles, and cloud-free conditions. The acquisition dates,
position, land cover types, and observation geometry for the se-
lected MERSI and MODIS TOA reflectance and LSR images
are given in Table II.

D. Topographic Data

A relief amplitude map (Fig. 1(a)) of the study area is used to
describe quantitatively the influence of topographic character-
istics on LAI retrieval. The map was generated using a digital
elevation model (DEM; SRTM 4.1, Shuttle Radar Topography
Mission) and the neighborhood statistics function of ArcGIS
[41]. Relief amplitude is defined as the vertical difference in
elevation between the highest and lowest points for a particular
area (3 3 pixels, with 1-km resolution), and is used to quantify
the localized changes in terrain across the landscape. As shown
in Fig. 1(a), the relief amplitude in most of the study area is less
than 400 m. However, in southwest China, the relief amplitude
increases up to 1000 m, indicating large slopes in this area.

III. METHOD

A. GLOBCARBON LAI Algorithm

The European Space Agency funded GLOBCARBON, an
initiative to producemulti-year global Level 3 land products that
include LAI [42], for the purpose of global carbon cycle mod-
eling [3]. Products derived from data from the VEGETATION

instrument, the Along Track Scanning Radiometers (AATSR
and ATSR-2), and the Medium Resolution Imaging Spectrom-
eter (MERIS) are available for the period 1998–2007. GLOB-
CARBON uses a geometric optical model (Four-Scale model)
[30] with a multiple scattering scheme [43] and LAI algorithms
previously derived for Canada-wide applications [10] to estab-
lish angle-specific relationships between Simple Ratio (SR) and
LAI, and between Reduced SR (RSR) and LAI for various land
cover types [14].
SR and RSR are the starting points for LAI retrieval and can

be expressed as

(1)

where and are the reflectances in the near infrared
and red bands, respectively.
RSR is defined as

(2)

where is the reflectance in the SWIR band and
and are the maximum and minimum

SWIR reflectances for specific land covers, respectively [44],
[14].
Bidirectional reflectance distribution function (BRDF), land

cover, foliage clumping, and soil background effects are all ex-
plicitly considered in GLOBCARBON algorithm through Four-
Scale model simulations. Relationships between SR and LAI
over large ranges of viewing and illumination angles and land
cover types can be expressed as

(3)
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Fig. 2. Comparison of LAI value distribution over China for (a) March, (b) May, (c) July, and (d) October of 2010.

where is the solar zenith angle (SZA), is the view zenith
angle (VZA), is the relative azimuth angle, is the
BRDF modification function for SR, and is a func-
tion describing the relationship between BRDF-modified SR
and LAI.
Similarly, LAI–RSR relationships have been established as

follows [14]

(4)

where is a function describing the relationship be-
tween BRDF-modified RSR and LAI, and is a
BRDF modification function for SWIR reflectance. The use of
the SWIR band in RSR gives LAI-RSR relationships that mini-
mize the variable background effect on LAI retrieval over forest
[14].
To further minimize residual atmospheric effects, GLOB-

CARBON uses a procedure known as Locally Adjusted
Cubic-spline Capping (LACC) [3] to reconstruct the seasonal
trajectory of LAI. In LACC, a variable local smoothing pa-
rameter is automatically determined according to the local
curvature of the original seasonal variation pattern. The final
optimal solution is obtained from an iteration procedure by
progressively replacing anomalously low values with fitted
values [3].

B. Spatial Agreement Analysis Method

The spatial agreement of MERSI GLOBCARBON LAI and
MODIS GLOBCARBON LAI is evaluated using an agreement
index [45] defined as

(5)

where and , are observations,
are model predictions, represents the observed mean, and is
the number of matching pairs over the study period. The agree-
ment index ( ) ranges from 0 to 1; i.e., from no agreement
to perfect agreement between observation and prediction. In the
present study, represents MERSI GLOBCARBON LAI and

represents MODIS GLOBCARBONLAI at the same location
and same time, and in 2010 (8-day syn-
thesis LAI retrievals: 9–10 January, 22–30 March, 17–24 May,
20–27 July, and 24–31 October).

IV. RESULTS AND DISCUSSION

A. Comparison of MERSI and MODIS GLOBCARBON LAI

1) Spatial Frequency: Fig. 2(a)–(d) displays the LAI his-
tograms for MERSI GLOBCARBON LAI and MODIS GLOB-
CARBON LAI in four specific months (March, May, July, and
October 2010) that cover the main vegetation growing period.
Frequency is given as a percentage of the total number of pixels
over mainland China.
Both MERSI GLOBCARBON LAI and MODIS GLOB-

CARBON LAI show continuous and smooth frequency
distributions in March (as shown in Fig. 2(a)). MODIS has a
higher frequency of retrievals at low LAI values (LAI less than
0.04). During May and October, these two LAI products also
show continuous smooth frequency patterns except for several
small peaks at LAI values 5, 6, and 8, which are artifacts asso-
ciated with the maximum LAI limits in the GLOBCARBON
LAI algorithm for different land cover types. The largest LAI
differences between these two products occur at the peak of the
growing season during July (Fig. 2(c)), when MERSI shows a
much higher frequency of retrievals with LAI greater than 0.75
than does MODIS. For both LAI products, the frequency of
low LAI values is very high at the start and end of the growing
season, and decreases during the peak growing season, which
is consistent with other LAI products and is in agreement with
vegetation growth over northern latitudes [11].
2) Spatial Agreement: The spatial performance of the

MERSI and MODIS retrievals using the GLOBCARBON
algorithm over mainland China from January to October 2010
is shown in Fig. 3. The agreement index is larger than 0.8 (0.6)
for 38.85% (63.17%) of the land area in mainland China, sug-
gesting that in most locations, LAI retrievals from MERSI and
MODIS agree well. However, some low values of agreement
index are found in southeast China due to frequent cloud cover
that influences MERSI and MODIS reflectance differently.
3) Temporal Variations: The temporal variations of MERSI

GLOBCARBON LAI and MODIS GLOBCARBON LAI over
four test sites (Fig. 1) with different land cover types were com-
pared for a full year in 2010. As shown in Fig. 4(a), over DBF,
MERSI GLOBCARBON LAI and MODIS GLOBCARBON
LAI have similar trends, especially during the growing season,
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Fig. 3. Agreement index between MERSI GLOBCARBON LAI and MODIS GLOBCARBON LAI using 5 matching pairs of 8-day synthesis LAI retrievals in
2010 (9–10 January, 22–30 March, 17–24 May, 20–27 July and 24–31 October).

but their magnitudes differ during the peak growing season.
At the end of the growing season, MERSI GLOBCARBON
LAI decreases earlier than MODIS GLOBCARBON LAI. It
is also obvious that there are several anomalously low LAI
values in MODIS and MERSI LAI trajectories due to the
remaining effects of cloud and aerosol on multi-day composite
reflectance data. We can also see the improvement in MERSI
GLOBCARBON LAI after applying LACC smoothing. Erratic
LAI values in MERSI GLOBCARBON LAI trajectories were
corrected, giving a smoother seasonal variation of LAI that
better resembles the expected variation in vegetation growth.
At the peak of the growing season, there are distinct differences
between MERSI GLOBCARBON LAI and MODIS GLOB-
CARBON LAI. An earlier study has shown that the maximum
LAI for broadleaf forest is 4–6 in northeast China [46]. For
broadleaf forests, MERSI GLOBCARBON LAI is larger than
MODIS GLOBCARBON LAI.
Over DNF (Fig. 4(b)), MODIS and MERSI GLOBCARBON

LAI retrievals are similar but both seem to overestimate LAI.
Considering that the same LAI algorithm was used for MERSI
and MODIS, the biases of these LAI products may be caused
by uncertainties in the atmospheric correction process and the
difference in spectral response functions between the two sen-
sors. For dense canopies in particular, near infrared reflectance
saturates at moderate LAI values (2–4), and a very small bias in
the red band reflectance due to error in atmospheric correction
will lead to a significant bias in vegetation index, which tends
to destabilize the LAI retrieval [11].
Over GLX (Fig. 4(c)), MERSI GLOBCARBON LAI and

MODIS GLOBCARBON LAI follow the beginning and the
end of the season reasonably well, but from day of year 120,
MODIS GLOBCARBON LAI begins to diverge from MERSI
GLOBCARBON LAI. During the peak growing season,

MODIS GLOBCARBON LAI is lower than MERSI GLOB-
CARBON LAI. The typical LAI value for GLX in the same
area is 1–3 from ecosystem model simulation and field LAI
observations [36]. Considering the mixed pixel effect from field
scale to regional scale, the actual LAI retrieved from moderate
resolution remote sensing data is expected to be lower.
Over CLS (Fig. 4(d)), both MERSI GLOBCARBON LAI

and MODIS GLOBCARBON LAI display a two-peak pattern,
which is a fair representation of the succession between winter
wheat and summer corn. During the peak of winter wheat
growth, MERSI GLOBCARBON LAI is a little higher than
MODIS GLOBCARBON LAI, whereas during the peak of
summer corn growth, MODIS GLOBCARBON LAI attains
an anomalously high value, which is possibly related to the
erratic land surface reflectance due to the remaining atmo-
spheric effects. The start and end of the growing season for
MODIS GLOBCARBON LAI do not coincide with those
for MERSI GLOBCARBON LAI. This is possibly due to
different composite periods for the two LAI products. MERSI
GLOBCARBON LAI is computed from 10-day composites
of MERSI LSR images using the maximum normalized dif-
ference vegetation index (NDVI) criterion, whereas MODIS
GLOBCARBON LAI was calculated from 8-day cloud-free
composites of MODIS LSR images.

B. Validation

Fig. 5(a)–(c) compares LAI derived frommoderate resolution
sensors including MERSI and MODIS with measured LAI ag-
gregated to 3-km resolution using TM data ( ). Although
the different LAI data generally vary in a similar fashion, the
scatter of data points is considerable (SD ranges from 0.36 to
0.51). In Fig. 5(a) and (b), even though the same LAI algorithm
was used for and , uncertainties in the
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Fig. 4. Seasonal variations in MERSI GLOBCARBON LAI and MODIS GLOBCARBON LAI for (a) deciduous broadleaf forest, (b) deciduous needleleaf forest,
(c) grassland, and (d) cropland. (A) Red dots represent MODIS GLOBCARBON LAI without LACC smoothing, (B) black dots represent MERSI GLOBCARBON
LAI without LACC smoothing, and (C) green dots represent MERSI GLOBCARBON LAI with LACC smoothing.

Fig. 5. Inter-comparison and validation of MERSI LAI and other LAI products: (a) MERSI GLOBCARBON LAI vs. TM LAI, (b) MODIS GLOBCARBON
LAI vs. TM LAI, and (c) MODIS standard LAI product vs. TM LAI.

atmospheric correction process for MERSI and MODIS images
possibly contribute to the large differences between the final
LAI retrievals. The slight difference between and

performance compared with , however,
can be attributed to the different LAI algorithms used in LAI
retrieval. The correlation coefficient varies slightly from 0.50
to 0.53 in Fig. 5(a) to (c), suggesting that the three LAI products
(i.e., , and ), which use
two different LAI algorithms and data from two different sen-
sors, have comparable accuracy relative to the high resolution
aggregated LAI ( ) over grassland.

C. Uncertainty Analysis

1) Influence of Input Reflectance: Vegetation indices (SR or
RSR) derived from red, near infrared, and shortwave infrared
reflectance are the starting point for LAI calculation with the
GLOBCARBON LAI algorithm. SR is more sensitive to at-
mospheric conditions than is RSR. The influence of the atmo-
spheric correction procedure on the final accuracy of LAI was
investigated further using scatter plots between MODIS and
MERSI TOA-reflectance-derived SR and LSR-derived SR for
three typical areas of China with different land cover types.
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Fig. 6. Scatter plot between MERSI and MODIS data over broadleaf forest
area for (a) TOA reflectance and (b) LSR.

Fig. 7. Scatter plot between MERSI and MODIS data over cropland for
(a) TOA reflectance and (b) LSR.

It is encouraging that MODIS TOA SR and MERSI TOA SR
are well correlated for all three land cover types, with linear
correlation coefficients higher than 0.6 (as shown in Figs. 6–8).
The lowest correlation coefficient ( ) of up to 0.69 is found over
cropland and the maximum of up to 0.82 is found over grass-
land, showing the comparable capability and quality of MERSI
and MODIS for vegetation monitoring. The regression slope
mainly shows differences between MERSI and MODIS due to
the spectral response and point spread functions. After atmo-
spheric correction, the relationship between MODIS LSR SR
andMERSI LSR SR is slightly better than that betweenMODIS
TOA SR and MERSI TOA SR for grassland and cropland, al-
though by different degrees ( increases from 0.82 to 0.93 over
grassland and from 0.69 to 0.75 over cropland), suggesting that
using the ratio of the red and NIR spectral bands can effectively
reduce the influence of atmospheric contamination.
However, atmospheric correction is still one of the main

causes of scatter between data from the two sensors. As shown
in Figs. 6–8, for different land cover types, the SD values are
all higher after atmospheric correction. The highest SD value
is observed over forest (Fig. 6(b)). According to the Four-scale
simulations, the shadow effect of forest will reduce the red
band reflectance, while strengthening multiple scattering of
the NIR band radiation, shifting the saturation of SR signals
to higher LAI values [10]. Therefore, while the forest shadow
effect makes the final MERSI LAI higher than MODIS LAI

Fig. 8. Scatter plot between MERSI and MODIS data over grassland for
(a) TOA reflectance and (b) LSR.

during the peak growing season for broadleaf forests (as shown
in Fig. 6(a)–(c)), it also tends to introduce large uncertainty
in the red band during atmospheric correction and greatly
influences the SR value, increasing the scatter among the data
points (Fig. 6(b)).
Apart from atmospheric contamination and land cover, the

mixed pixel effect, acquisition time difference, and geo-location
are all potential factors causing large scatter around the regres-
sion line. As shown in Fig. 6(a), over forest, the data scatter is
greatest in the center of the plot, indicating mixed pixels. Over
grassland, MODIS SR is generally higher than MERSI. This
disagrees with the result of Fig. 4(c) whereMERSI LAI is higher
than MODIS LAI during the growing season. In Fig. 4, 10-day
MERSI LSR composite images and 8-day MODIS LSR com-
posite images are used for comparing the temporal variation,
whereas in Fig. 6 only one scene is used. This result reinforces
the view that differences in image acquisition date are another
major reason for discrepancies betweenMODIS SR andMERSI
SR, as shown in previous studies (e.g., [4]).
2) Influence of Land Cover Type and Topography: The fre-

quency of pixels with agreement index greater than 0.5 for dif-
ferent land cover types and relief amplitude index values are
shown in Figs. 9 and 10, respectively. For most land cover types,
more than 72% of pixels have an agreement index greater than
0.5, suggesting that MERSI GLOBCARBON LAI and MODIS
GLOBCARBON LAI agree well in space and time. Compared
with other land cover types, grassland has the highest frequency
of high values ( ). This result is consistent with the fact that
MERSI SR and MODIS SR have the highest linear correlation
coefficient (R) over grassland, as shown in Section IV.C.1. In
the case of broadleaf and mixed forest, the greatest disagree-
ment arises from the significant overestimate of SR by MERSI
LSR (as shown in Fig. 6(b)), which results in large numbers of
upper bound LAI values in the MERSI GLOBCARBON LAI.
The spatial variation of is better correlated with the relief am-

plitude index (Fig. 10) than with land cover type. As the relief
amplitude index increases, the frequency of decreases.
Uncertainty in the estimation of surface reflectance is a major
contributor to this variation. MODIS and MERSI LSR products
all use a Lambertian surface approximation for atmospheric cor-
rection instead of a BRDF correction process [23], [17], which
will reduce the accuracy of the LSR product, especially in hilly
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Fig. 9. Frequency of agreement index greater than 0.5 for different land cover
types.

Fig. 10. Frequency of agreement index greater than 0.5 for different relief am-
plitude indexes.

areas [11]. The complex terrain effect may introduce uncertain-
ties into the atmospheric correction process, and therefore in-
creases the discrepancy between the two LAI products.

V. SUMMARY AND CONCLUSION

In this study, the spatial and temporal performance of the
FY-3A/MERSI LSR product for LAI retrieval using the GLOB-
CARBONLAI algorithm are inter-compared and validated with
MODIS LSR derived LAI and field LAI measurements over
mainland China. The influence of input reflectance, land cover
type, and topography on the final accuracy of LAI are further
explored and discussed. The following conclusions are drawn.
a) MERSI GLOBCARBON LAI and MODIS GLOB-
CARBON LAI show a continuous and smooth LAI
distribution at the start and end of the growing season.
These two LAI products agree well, with an agreement
index greater than 0.5, over 72.08% of mainland China.
The largest LAI difference occurs during July, MERSI
shows a much higher frequency of retrievals than does
MODIS. The overestimate of MERIS GLOBCARBON
LAI in the peak growing season is mainly due to the
overestimate of SR derived from MERSI-LSR in dense
canopies, causing a mismatch between the reflectance

modeled by the LAI algorithm and the MERSI derived
land surface reflectance.

b) Our study demonstrates that LAI values derived from
MERSI LSR and MODIS LSR have comparable accu-
racy relative to an independent LAI map derived using a
Landsat TM image (LAITM) in combination with ground
LAI data. Of all the LAI values derived from MERSI
and MODIS, MODIS GLOBCARBON LAI has the best
correlation with LAITM ( ). This result indi-
cates that the GLOBCARBON LAI algorithm performs
slightly better than the standard MODIS LAI algorithm,
which is based mainly on a radiative transfer model.

c) There are good relationships between MODIS TOA SR
and MERSI TOA SR for all three land cover types, with
linear correlation coefficients greater than 0.6. By taking
the ratio between the red and NIR spectral bands, SR can
effectively reduce the influence of atmospheric contami-
nation. However, atmospheric correction is still a cause of
scatter among data from the two sensors.

d) Different land cover types and different terrain relief
index values have contrasting influences on the atmo-
spheric correction, and these influences reduce the agree-
ment between MODIS and MERSI GLOBCARBON
LAI.

This study focused solely on mainland China, and limited
field measurement data were used for LAI product evaluation.
Global use of MERSI GLOBCARBON LAI products will re-
quire additional validation in other areas. Furthermore, in the
Results and Discussion sections, we made a special effort to dis-
cuss the uncertainty in the LAI–SR relationship of the GLOB-
CARBON algorithm. It is also important to show how MERSI
and MODIS SWIR reflectance relate to each other since the
GLOBCARBON algorithm also relies on SWIR reflectance.We
will investigate these considerations in future work. This study
shows the great potential of FY-3A/MERSI LAI for global veg-
etation monitoring and for further effective use in ecosystem
modeling.
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Inter-Comparison and Validation of the
FY-3A/MERSI LAI Product Over Mainland China

Lin Zhu, Jing M. Chen, Shihao Tang, Guicai Li, and Zhaodi Guo

Abstract—Leaf area index (LAI) is a key surface parameter
that describes the structure of vegetation and plays an impor-
tant role in Earth system process modeling. In this paper, a
new set of LAI products (MERSI GLOBCARBON LAI) has
been developed based on the GLOBCARBON LAI algorithm
and one year of FY-3A/MERSI land surface reflectance data.
MERSI GLOBCARBON LAI has been inter-compared and
validated over mainland China against MODIS land surface
reflectance (LSR) derived LAI (using the same algorithm) and
field LAI measurements. MERSI GLOBCARBON LAI and
MODIS GLOBCARBON LAI show continuous and smooth
LAI distributions at the start and end of the growing season.
For most areas in China, the two LAI products agree well. The
temporal variation in MERSI GLOBCARBON LAI and MODIS
GLOBCARBON LAI consistently follows the growing season. The
largest LAI difference occurs during July, when MERSI shows a
much higher frequency of retrievals than does MODIS. Through
validation of LAI retrievals with field measurements, our study
demonstrates that LAI derived from MERSI and MODIS land
surface reflectance products have comparable accuracy. MODIS
top-of-atmosphere simple ratio (MODIS TOA SR) is related
to MERSI TOA SR with linear correlation coefficients greater
than 0.6. After atmospheric correction, the correlation coefficient
increases from 0.69 to 0.75 over cropland and from 0.82 to 0.93
over grassland. However, atmospheric correction can still give rise
to substantial differences in the reflectance data between the two
sensors. Furthermore, different land cover types and different
terrain relief have contrasting influences on the atmospheric
correction, and these influences reduce the agreement between
the two LAI products. This study shows the great potential of
FY-3A/MERSI data for global LAI retrieval.

Index Terms—FY-3A/MERSI, GLOBCARBON, leaf area index,
TERRA/MODIS.

I. INTRODUCTION

R EGIONAL and global water and carbon exchange
between the land surface and the atmosphere depend

greatly on the functioning of plant leaves [1]–[5]. Leaf area
index (LAI), defined as half the total leaf area per unit ground
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surface area [6], is a key vegetation structural parameter of
the Earth system used to quantify photosynthesis, respiration,
evapotranspiration, canopy interception, energy exchange, and
other ecohydrological processes [7]–[9].
Remote sensors with moderate resolution (pixel sizes from

250 m to several kilometers) provide daily and seasonal
data at regional and global scales, and these may currently
be the best tool to monitor spatial and temporal variations
in LAI [10], [11]. Global LAI products have been derived
from many remote sensing data sets such as NOAA/AVHRR,
TERRA-AQUA/MODIS and SPOT/VEGETATION [12]–[15].
These data sets have provided unprecedented opportunities for
studying the Earth’s climate [3]. The development of China’s
new generation of polar-orbiting meteorological satellite series
(FY-3) has greatly enhanced surface monitoring [16]. MERSI
(Medium Resolution Spectral Imager) is a key multispectral
instrument onboard FY-3 satellite [18]. The first two satellites
in the series, the morning FY-3A (launched on 27 May 2008)
and the afternoon FY-3B (launched on 5 November 2010)
provide a 6-hourly revisit capability. This offers the prospect
of new, more detailed global LAI products based on this data
source. Recently, FY-3A/MERSI LAI Version 1 (MERSI
GLOBCARBON LAI), an FY-3A test product from the Na-
tional Satellite Meteorological Center of China (NSMC), was
developed using the GLOBCARBON LAI algorithm [10], [14],
[3] and one year of FY-3A/MERSI data. As many other global
LAI maps are regularly produced, the accuracy assessment and
validation of FY-3A/MERSI LAI are of key importance for
potential users.
The overall quality of LAI products depends on several key

factors that influence the accuracy of the final retrievals [4]. Un-
certainty in input surface reflectance is one of the most impor-
tant error sources [19], [4], [20]. Surface reflectance time series
measured from spaceborne instruments, such as MOderate Res-
olution Imaging Spectroradiometer (MODIS), show apparent
high-frequency noise that limits their information content [21].
The accuracy of surface reflectance products is most affected by
the retrieval accuracy of aerosol optical thickness, the Lamber-
tian surface approximation, topography, and viewing-illumina-
tion geometry effects [20], [11], [22], [21]. Although different
land surface reflectance (LSR) products, such as MODIS sur-
face reflectance collection C5 [23], VGT [24], and MERSI [17],
all reduce the uncertainty in the atmospheric correction process
using different approaches, the remaining uncertainty may still
be considerable. Therefore, as the first step in validating and
assessing the FY-3A/MERSI global product, it is desirable to
compare the spatial performance of MERSI LSR and MODIS
LSR products for LAI retrieval and to evaluate the consistency
of LAI time series from different LSR products.

1939-1404 © 2013 IEEE
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The second source of uncertainty arises from misclassifica-
tions in the land cover map. Mixed pixel effects can further con-
tribute to errors in land cover classification and introduce extra
scaling bias, particularly in moderate-resolution remote sensing
data [25], [26]. Pisek and Chen [4] demonstrated that differences
in land cover classification for low-resolution images can lead to
a difference of (38%) over the Bigfoot site (Northern
Old Black Spruce, Manitoba, Canada) in the middle of boreal
summer. Myneni et al. [13] estimated that classification errors
in land cover maps can generate an LAI estimation error of up
to 50%.
The third source of uncertainty is related to the different

LAI algorithms used in LAI retrieval. Generally, two kinds
of methods are applied to estimate LAI using remote sensing
data; i.e., statistical methods [27]–[29], and inversion of
physical models [13], [14]. Differences in vegetation struc-
ture, land cover, background reflectance, and local topography
representation in the LAI algorithms will lead to substantial dis-
crepancies in the final LAI retrievals [11], [30]–[32]. Previous
inter-comparisons have shown that GLOBCARBON gives
reliable and consistent seasonal and interannual variations [11],
and agrees well with Landsat/ LAI maps at most test
sites [4], [33]–[35]. Pisek and Chen [4] reported that the median
relative absolute error of GLOBCARBON retrievals varied
from 24% to 75% at the 1-km scale, compared with 34%–88%
for MODIS standard LAI. However, GLOBCARBON tends to
underestimate LAI over cropland and grassland, and can exhibit
temporal instability during the growing season over evergreen
forest sites [36], [11]. The first version of the GLOBCARBON
LAI product has also been shown to perform poorly in moun-
tainous areas; the second version includes improvements based
on pixel-by-pixel consideration of local topography, clumping
index, and background reflectance variations [32].
As the GLOBCARBON LAI algorithm has been validated

and evaluated in several comprehensive studies in Canada,
China, and other regions, we focus on its use with the new
reflectance dataset from FY-3A/MERSI. We perform further
inter-comparison, validation, and analysis of the uncertainties
in MERSI GLOBCARBON LAI retrieval using both MODIS
LSR-derived LAI using the same algorithm (MODIS GLOB-
CARBON LAI) and field LAI measurements. A case study
was conducted over mainland China with the following objec-
tives: (1) to compare the spatial and temporal performance of
LAI retrievals from MERSI and MODIS LSR products using
GLOBCARBON, (2) to validate and inter-compare MERSI
GLOBCARBON LAI with field LAI measurements and other
LAI products, and (3) to compare the two LSR data sets and
the corresponding level 1 data (TOA reflectance) and further
discuss the effect of the uncertainty in MERSI LSR data on
LAI estimation.

II. DATA

A. Data for LAI Retrieval

1) MERSI Land Surface Reflectance Data: FY-3A/MERSI
LSR data for 2010 were downloaded from the National Satel-
liteMeteorological center of China (NSMC) for FY-3A/MERSI
LAI retrieval. It has 5 channels with 250 m spatial resolution

and 15 channels with 1-km resolution. MERSI LSR is obtained
from channels 1–4 of theMERSI 1B product after correction for
gaseous absorption, Rayleigh and aerosol scattering, as well as
interactions between these processes. Radiative transfer model
simulations are used to establish look-up tables (LUTs). Param-
eters used in the atmospheric correction are interpolated from
the pre-established LUTs [17] to achieve a pixel-by-pixel at-
mospheric correction. Ten-day composites were generated from
daily MERSI LSR data for LAI retrieval.
2) MODIS Land Surface Reflectance Data: As the MODIS

is one of the most frequently used sensors for LAI retrieval
[37], [19], [11], we have chosen MODIS 8-day synthesis sur-
face reflectance products (MOD09) for comparison with and
evaluation of the FY-3A/MERSI LAI product. MOD09 corrects
for the effects of atmospheric gases, aerosols, and thin cirrus
clouds, and is an estimate of the land surface spectral reflectance
[23]. MOD09A1 data with 500 m spatial resolution downloaded
from NASA’s Earth Observing System Data and Information
System (EOSDIS) for 2010 were re-projected to geographic lat-
itude/longitude and re-sampled to 1-km resolution for LAI re-
trieval.
3) Land Cover Data: A land cover map downloaded from

the Global Land Cover 2000 database (GLC-2000) is used as
an input for LAI retrieval. The GLC-2000 map uses 22 classes
based on the Food and Agriculture Organization of the United
Nations’ hierarchical Land Cover Classification System [38].
This land cover product was adapted for use in the GLOB-
CARBON LAI algorithm. Some of the cover types with similar
structural characteristics were combined, and snow and water
body classes were ignored [14].
The spatial agreement of MERSI and MODIS GLOB-

CARBON LAI was investigated over mainland China and four
test sites were selected with different land cover types to further
compare the temporal variations of LAI (Fig. 1(a)). These
sites are DBF (deciduous broadleaf forest area in the northeast
of China, centered at 51.79 , 121.06 ), DNF (deciduous
needleleaf forest area in the northeast of China, centered at
51.78 , 121.08 ), GLX (grassland in the Xilin Gol prairie
of China, centered at 44.14 , 116.29 ), and CLS (cropland
in Yucheng, Shandong province of China, centered at 39.13 ,
115.67 ).

B. Data for Validation

Field LAI measurements were collected in a typical meadow
grassland in the Hulunbeier prairie in China (centered at
49.41 , 119.99 ) during June 21–26, 2010 [40]. Fifty-two
50 50 m sample plots, which have LAI values of 0.46 to
3.08, with a mean value of 1.74 and a standard deviation of
0.61, were set up (Fig. 1(b)). These sample plots are located
in homogeneous locations with areas larger than 100 100 m
so as to reduce the impact of topography and inhomogeneous
land surface. In the center of each sample plot, two observation
lines, parallel to the sun line and 25 m apart, were defined, and
LAI data were collected using the LAI 2000 instrument along
these lines (Fig. 1(c)). This sampling method resulted in 12 LAI
measurements for each sample plot, which were then averaged
to give the final LAI value for the specified sample plot.
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Fig. 1. (a) Map of the relief amplitude over the study area and locations of subarea and test sites for reflectance and temporal comparisons. (b) Locations of field
LAI sample plots in a 30-m resolution false color composite map based on TM data. (c) Arrangement of LAI point measurements in a sample plot [40].

TABLE I
DATA SOURCES FOR FIELD VALIDATION AND INTER-COMPARISON OF DIFFERENT LAI PRODUCTS

A satellite overpass scene (Landsat-5 TM) from 21 June
2010 was selected as the temporally closest cloud-free match
to the field measurements (21–26 June 2010). The Landsat-5
TM image was downloaded from the United States Geological
Survey (USGS) and converted to TOA radiance using the
metadata provided in the TM data header. An atmospheric
correction code (6S) [39] was used to convert TOA radiance to
land surface reflectance. A vegetation index, Simple Ratio (SR;
calculated from Landsat-5 TM data after atmospheric correc-
tion) was then correlated with field LAI measurements using an
empirical linear function ( , ) [40].
To broaden the evaluation of FY-3A/MERSI LAI products,

two other LAI products derived from MODIS 8-day synthesis
data (MOD09A1 & MOD15A2) were also evaluated. Table I

lists the data sources and algorithms for FY-3A/MERSI LAI
validation and inter-comparison. All LAI products are re-sam-
pled to 3-km resolution so as to further reduce the influence
of image geolocation errors. There are 282 points in total,
randomly selected around the LAI field measurement site, and
scatter plots were generated to demonstrate the correlation
between each pair of LAI products.

C. Data for Uncertainty Analysis

1) Reflectance Data: Four types of remote sensing data were
used for the inter-comparison of spectral reflectance between
sensors: (a) the MODIS level 1B TOA reflectance product, (b)
the corresponding daily LSR products (MYD09GA) down-
loaded from EOSDIS, (c) the contemporaneous MERSI level
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TABLE II
DATA USED FOR REFLECTANCE COMPARISON

1B TOA reflectance, and (d) the corresponding daily LSR
products with 1-km resolution distributed by NSMC. MERSI
and MODIS TOA and LSR products were all co-registered and
aggregated to 1-km resolution.
MERSI and MODIS 1B and LSR products were chosen over

three typical areas with adjacent overpass times, small zenith
view angles, and cloud-free conditions. The acquisition dates,
position, land cover types, and observation geometry for the se-
lected MERSI and MODIS TOA reflectance and LSR images
are given in Table II.

D. Topographic Data

A relief amplitude map (Fig. 1(a)) of the study area is used to
describe quantitatively the influence of topographic character-
istics on LAI retrieval. The map was generated using a digital
elevation model (DEM; SRTM 4.1, Shuttle Radar Topography
Mission) and the neighborhood statistics function of ArcGIS
[41]. Relief amplitude is defined as the vertical difference in
elevation between the highest and lowest points for a particular
area (3 3 pixels, with 1-km resolution), and is used to quantify
the localized changes in terrain across the landscape. As shown
in Fig. 1(a), the relief amplitude in most of the study area is less
than 400 m. However, in southwest China, the relief amplitude
increases up to 1000 m, indicating large slopes in this area.

III. METHOD

A. GLOBCARBON LAI Algorithm

The European Space Agency funded GLOBCARBON, an
initiative to producemulti-year global Level 3 land products that
include LAI [42], for the purpose of global carbon cycle mod-
eling [3]. Products derived from data from the VEGETATION

instrument, the Along Track Scanning Radiometers (AATSR
and ATSR-2), and the Medium Resolution Imaging Spectrom-
eter (MERIS) are available for the period 1998–2007. GLOB-
CARBON uses a geometric optical model (Four-Scale model)
[30] with a multiple scattering scheme [43] and LAI algorithms
previously derived for Canada-wide applications [10] to estab-
lish angle-specific relationships between Simple Ratio (SR) and
LAI, and between Reduced SR (RSR) and LAI for various land
cover types [14].
SR and RSR are the starting points for LAI retrieval and can

be expressed as

(1)

where and are the reflectances in the near infrared
and red bands, respectively.
RSR is defined as

(2)

where is the reflectance in the SWIR band and
and are the maximum and minimum

SWIR reflectances for specific land covers, respectively [44],
[14].
Bidirectional reflectance distribution function (BRDF), land

cover, foliage clumping, and soil background effects are all ex-
plicitly considered in GLOBCARBON algorithm through Four-
Scale model simulations. Relationships between SR and LAI
over large ranges of viewing and illumination angles and land
cover types can be expressed as

(3)
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Fig. 2. Comparison of LAI value distribution over China for (a) March, (b) May, (c) July, and (d) October of 2010.

where is the solar zenith angle (SZA), is the view zenith
angle (VZA), is the relative azimuth angle, is the
BRDF modification function for SR, and is a func-
tion describing the relationship between BRDF-modified SR
and LAI.
Similarly, LAI–RSR relationships have been established as

follows [14]

(4)

where is a function describing the relationship be-
tween BRDF-modified RSR and LAI, and is a
BRDF modification function for SWIR reflectance. The use of
the SWIR band in RSR gives LAI-RSR relationships that mini-
mize the variable background effect on LAI retrieval over forest
[14].
To further minimize residual atmospheric effects, GLOB-

CARBON uses a procedure known as Locally Adjusted
Cubic-spline Capping (LACC) [3] to reconstruct the seasonal
trajectory of LAI. In LACC, a variable local smoothing pa-
rameter is automatically determined according to the local
curvature of the original seasonal variation pattern. The final
optimal solution is obtained from an iteration procedure by
progressively replacing anomalously low values with fitted
values [3].

B. Spatial Agreement Analysis Method

The spatial agreement of MERSI GLOBCARBON LAI and
MODIS GLOBCARBON LAI is evaluated using an agreement
index [45] defined as

(5)

where and , are observations,
are model predictions, represents the observed mean, and is
the number of matching pairs over the study period. The agree-
ment index ( ) ranges from 0 to 1; i.e., from no agreement
to perfect agreement between observation and prediction. In the
present study, represents MERSI GLOBCARBON LAI and

representsMODIS GLOBCARBONLAI at the same location
and same time, and in 2010 (8-day syn-
thesis LAI retrievals: 9–10 January, 22–30 March, 17–24 May,
20–27 July, and 24–31 October).

IV. RESULTS AND DISCUSSION

A. Comparison of MERSI and MODIS GLOBCARBON LAI

1) Spatial Frequency: Fig. 2(a)–(d) displays the LAI his-
tograms for MERSI GLOBCARBON LAI and MODIS GLOB-
CARBON LAI in four specific months (March, May, July, and
October 2010) that cover the main vegetation growing period.
Frequency is given as a percentage of the total number of pixels
over mainland China.
Both MERSI GLOBCARBON LAI and MODIS GLOB-

CARBON LAI show continuous and smooth frequency
distributions in March (as shown in Fig. 2(a)). MODIS has a
higher frequency of retrievals at low LAI values (LAI less than
0.04). During May and October, these two LAI products also
show continuous smooth frequency patterns except for several
small peaks at LAI values 5, 6, and 8, which are artifacts asso-
ciated with the maximum LAI limits in the GLOBCARBON
LAI algorithm for different land cover types. The largest LAI
differences between these two products occur at the peak of the
growing season during July (Fig. 2(c)), when MERSI shows a
much higher frequency of retrievals with LAI greater than 0.75
than does MODIS. For both LAI products, the frequency of
low LAI values is very high at the start and end of the growing
season, and decreases during the peak growing season, which
is consistent with other LAI products and is in agreement with
vegetation growth over northern latitudes [11].
2) Spatial Agreement: The spatial performance of the

MERSI and MODIS retrievals using the GLOBCARBON
algorithm over mainland China from January to October 2010
is shown in Fig. 3. The agreement index is larger than 0.8 (0.6)
for 38.85% (63.17%) of the land area in mainland China, sug-
gesting that in most locations, LAI retrievals from MERSI and
MODIS agree well. However, some low values of agreement
index are found in southeast China due to frequent cloud cover
that influences MERSI and MODIS reflectance differently.
3) Temporal Variations: The temporal variations of MERSI

GLOBCARBON LAI and MODIS GLOBCARBON LAI over
four test sites (Fig. 1) with different land cover types were com-
pared for a full year in 2010. As shown in Fig. 4(a), over DBF,
MERSI GLOBCARBON LAI and MODIS GLOBCARBON
LAI have similar trends, especially during the growing season,
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Fig. 3. Agreement index between MERSI GLOBCARBON LAI and MODIS GLOBCARBON LAI using 5 matching pairs of 8-day synthesis LAI retrievals in
2010 (9–10 January, 22–30 March, 17–24 May, 20–27 July and 24–31 October).

but their magnitudes differ during the peak growing season.
At the end of the growing season, MERSI GLOBCARBON
LAI decreases earlier than MODIS GLOBCARBON LAI. It
is also obvious that there are several anomalously low LAI
values in MODIS and MERSI LAI trajectories due to the
remaining effects of cloud and aerosol on multi-day composite
reflectance data. We can also see the improvement in MERSI
GLOBCARBON LAI after applying LACC smoothing. Erratic
LAI values in MERSI GLOBCARBON LAI trajectories were
corrected, giving a smoother seasonal variation of LAI that
better resembles the expected variation in vegetation growth.
At the peak of the growing season, there are distinct differences
between MERSI GLOBCARBON LAI and MODIS GLOB-
CARBON LAI. An earlier study has shown that the maximum
LAI for broadleaf forest is 4–6 in northeast China [46]. For
broadleaf forests, MERSI GLOBCARBON LAI is larger than
MODIS GLOBCARBON LAI.
Over DNF (Fig. 4(b)), MODIS andMERSI GLOBCARBON

LAI retrievals are similar but both seem to overestimate LAI.
Considering that the same LAI algorithm was used for MERSI
and MODIS, the biases of these LAI products may be caused
by uncertainties in the atmospheric correction process and the
difference in spectral response functions between the two sen-
sors. For dense canopies in particular, near infrared reflectance
saturates at moderate LAI values (2–4), and a very small bias in
the red band reflectance due to error in atmospheric correction
will lead to a significant bias in vegetation index, which tends
to destabilize the LAI retrieval [11].
Over GLX (Fig. 4(c)), MERSI GLOBCARBON LAI and

MODIS GLOBCARBON LAI follow the beginning and the
end of the season reasonably well, but from day of year 120,
MODIS GLOBCARBON LAI begins to diverge from MERSI
GLOBCARBON LAI. During the peak growing season,

MODIS GLOBCARBON LAI is lower than MERSI GLOB-
CARBON LAI. The typical LAI value for GLX in the same
area is 1–3 from ecosystem model simulation and field LAI
observations [36]. Considering the mixed pixel effect from field
scale to regional scale, the actual LAI retrieved from moderate
resolution remote sensing data is expected to be lower.
Over CLS (Fig. 4(d)), both MERSI GLOBCARBON LAI

and MODIS GLOBCARBON LAI display a two-peak pattern,
which is a fair representation of the succession between winter
wheat and summer corn. During the peak of winter wheat
growth, MERSI GLOBCARBON LAI is a little higher than
MODIS GLOBCARBON LAI, whereas during the peak of
summer corn growth, MODIS GLOBCARBON LAI attains
an anomalously high value, which is possibly related to the
erratic land surface reflectance due to the remaining atmo-
spheric effects. The start and end of the growing season for
MODIS GLOBCARBON LAI do not coincide with those
for MERSI GLOBCARBON LAI. This is possibly due to
different composite periods for the two LAI products. MERSI
GLOBCARBON LAI is computed from 10-day composites
of MERSI LSR images using the maximum normalized dif-
ference vegetation index (NDVI) criterion, whereas MODIS
GLOBCARBON LAI was calculated from 8-day cloud-free
composites of MODIS LSR images.

B. Validation

Fig. 5(a)–(c) compares LAI derived frommoderate resolution
sensors including MERSI and MODIS with measured LAI ag-
gregated to 3-km resolution using TM data ( ). Although
the different LAI data generally vary in a similar fashion, the
scatter of data points is considerable (SD ranges from 0.36 to
0.51). In Fig. 5(a) and (b), even though the same LAI algorithm
was used for and , uncertainties in the
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Fig. 4. Seasonal variations in MERSI GLOBCARBON LAI and MODIS GLOBCARBON LAI for (a) deciduous broadleaf forest, (b) deciduous needleleaf forest,
(c) grassland, and (d) cropland. (A) Red dots represent MODIS GLOBCARBON LAI without LACC smoothing, (B) black dots represent MERSI GLOBCARBON
LAI without LACC smoothing, and (C) green dots represent MERSI GLOBCARBON LAI with LACC smoothing.

Fig. 5. Inter-comparison and validation of MERSI LAI and other LAI products: (a) MERSI GLOBCARBON LAI vs. TM LAI, (b) MODIS GLOBCARBON
LAI vs. TM LAI, and (c) MODIS standard LAI product vs. TM LAI.

atmospheric correction process for MERSI and MODIS images
possibly contribute to the large differences between the final
LAI retrievals. The slight difference between and

performance compared with , however,
can be attributed to the different LAI algorithms used in LAI
retrieval. The correlation coefficient varies slightly from 0.50
to 0.53 in Fig. 5(a) to (c), suggesting that the three LAI products
(i.e., , and ), which use
two different LAI algorithms and data from two different sen-
sors, have comparable accuracy relative to the high resolution
aggregated LAI ( ) over grassland.

C. Uncertainty Analysis

1) Influence of Input Reflectance: Vegetation indices (SR or
RSR) derived from red, near infrared, and shortwave infrared
reflectance are the starting point for LAI calculation with the
GLOBCARBON LAI algorithm. SR is more sensitive to at-
mospheric conditions than is RSR. The influence of the atmo-
spheric correction procedure on the final accuracy of LAI was
investigated further using scatter plots between MODIS and
MERSI TOA-reflectance-derived SR and LSR-derived SR for
three typical areas of China with different land cover types.
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Fig. 6. Scatter plot between MERSI and MODIS data over broadleaf forest
area for (a) TOA reflectance and (b) LSR.

Fig. 7. Scatter plot between MERSI and MODIS data over cropland for
(a) TOA reflectance and (b) LSR.

It is encouraging that MODIS TOA SR and MERSI TOA SR
are well correlated for all three land cover types, with linear
correlation coefficients higher than 0.6 (as shown in Figs. 6–8).
The lowest correlation coefficient ( ) of up to 0.69 is found over
cropland and the maximum of up to 0.82 is found over grass-
land, showing the comparable capability and quality of MERSI
and MODIS for vegetation monitoring. The regression slope
mainly shows differences between MERSI and MODIS due to
the spectral response and point spread functions. After atmo-
spheric correction, the relationship between MODIS LSR SR
andMERSI LSR SR is slightly better than that betweenMODIS
TOA SR and MERSI TOA SR for grassland and cropland, al-
though by different degrees ( increases from 0.82 to 0.93 over
grassland and from 0.69 to 0.75 over cropland), suggesting that
using the ratio of the red and NIR spectral bands can effectively
reduce the influence of atmospheric contamination.
However, atmospheric correction is still one of the main

causes of scatter between data from the two sensors. As shown
in Figs. 6–8, for different land cover types, the SD values are
all higher after atmospheric correction. The highest SD value
is observed over forest (Fig. 6(b)). According to the Four-scale
simulations, the shadow effect of forest will reduce the red
band reflectance, while strengthening multiple scattering of
the NIR band radiation, shifting the saturation of SR signals
to higher LAI values [10]. Therefore, while the forest shadow
effect makes the final MERSI LAI higher than MODIS LAI

Fig. 8. Scatter plot between MERSI and MODIS data over grassland for
(a) TOA reflectance and (b) LSR.

during the peak growing season for broadleaf forests (as shown
in Fig. 6(a)–(c)), it also tends to introduce large uncertainty
in the red band during atmospheric correction and greatly
influences the SR value, increasing the scatter among the data
points (Fig. 6(b)).
Apart from atmospheric contamination and land cover, the

mixed pixel effect, acquisition time difference, and geo-location
are all potential factors causing large scatter around the regres-
sion line. As shown in Fig. 6(a), over forest, the data scatter is
greatest in the center of the plot, indicating mixed pixels. Over
grassland, MODIS SR is generally higher than MERSI. This
disagreeswith the result of Fig. 4(c) whereMERSI LAI is higher
than MODIS LAI during the growing season. In Fig. 4, 10-day
MERSI LSR composite images and 8-day MODIS LSR com-
posite images are used for comparing the temporal variation,
whereas in Fig. 6 only one scene is used. This result reinforces
the view that differences in image acquisition date are another
major reason for discrepancies betweenMODIS SR andMERSI
SR, as shown in previous studies (e.g., [4]).
2) Influence of Land Cover Type and Topography: The fre-

quency of pixels with agreement index greater than 0.5 for dif-
ferent land cover types and relief amplitude index values are
shown in Figs. 9 and 10, respectively. Formost land cover types,
more than 72% of pixels have an agreement index greater than
0.5, suggesting that MERSI GLOBCARBON LAI and MODIS
GLOBCARBON LAI agree well in space and time. Compared
with other land cover types, grassland has the highest frequency
of high values ( ). This result is consistent with the fact that
MERSI SR and MODIS SR have the highest linear correlation
coefficient (R) over grassland, as shown in Section IV.C.1. In
the case of broadleaf and mixed forest, the greatest disagree-
ment arises from the significant overestimate of SR by MERSI
LSR (as shown in Fig. 6(b)), which results in large numbers of
upper bound LAI values in the MERSI GLOBCARBON LAI.
The spatial variation of is better correlated with the relief am-

plitude index (Fig. 10) than with land cover type. As the relief
amplitude index increases, the frequency of decreases.
Uncertainty in the estimation of surface reflectance is a major
contributor to this variation. MODIS and MERSI LSR products
all use a Lambertian surface approximation for atmospheric cor-
rection instead of a BRDF correction process [23], [17], which
will reduce the accuracy of the LSR product, especially in hilly
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Fig. 9. Frequency of agreement index greater than 0.5 for different land cover
types.

Fig. 10. Frequency of agreement index greater than 0.5 for different relief am-
plitude indexes.

areas [11]. The complex terrain effect may introduce uncertain-
ties into the atmospheric correction process, and therefore in-
creases the discrepancy between the two LAI products.

V. SUMMARY AND CONCLUSION

In this study, the spatial and temporal performance of the
FY-3A/MERSI LSR product for LAI retrieval using the GLOB-
CARBONLAI algorithm are inter-compared and validatedwith
MODIS LSR derived LAI and field LAI measurements over
mainland China. The influence of input reflectance, land cover
type, and topography on the final accuracy of LAI are further
explored and discussed. The following conclusions are drawn.
a) MERSI GLOBCARBON LAI and MODIS GLOB-
CARBON LAI show a continuous and smooth LAI
distribution at the start and end of the growing season.
These two LAI products agree well, with an agreement
index greater than 0.5, over 72.08% of mainland China.
The largest LAI difference occurs during July, MERSI
shows a much higher frequency of retrievals than does
MODIS. The overestimate of MERIS GLOBCARBON
LAI in the peak growing season is mainly due to the
overestimate of SR derived from MERSI-LSR in dense
canopies, causing a mismatch between the reflectance

modeled by the LAI algorithm and the MERSI derived
land surface reflectance.

b) Our study demonstrates that LAI values derived from
MERSI LSR and MODIS LSR have comparable accu-
racy relative to an independent LAI map derived using a
Landsat TM image (LAITM) in combination with ground
LAI data. Of all the LAI values derived from MERSI
and MODIS, MODIS GLOBCARBON LAI has the best
correlation with LAITM ( ). This result indi-
cates that the GLOBCARBON LAI algorithm performs
slightly better than the standard MODIS LAI algorithm,
which is based mainly on a radiative transfer model.

c) There are good relationships between MODIS TOA SR
and MERSI TOA SR for all three land cover types, with
linear correlation coefficients greater than 0.6. By taking
the ratio between the red and NIR spectral bands, SR can
effectively reduce the influence of atmospheric contami-
nation. However, atmospheric correction is still a cause of
scatter among data from the two sensors.

d) Different land cover types and different terrain relief
index values have contrasting influences on the atmo-
spheric correction, and these influences reduce the agree-
ment between MODIS and MERSI GLOBCARBON
LAI.

This study focused solely on mainland China, and limited
field measurement data were used for LAI product evaluation.
Global use of MERSI GLOBCARBON LAI products will re-
quire additional validation in other areas. Furthermore, in the
Results and Discussion sections, we made a special effort to dis-
cuss the uncertainty in the LAI–SR relationship of the GLOB-
CARBON algorithm. It is also important to show how MERSI
and MODIS SWIR reflectance relate to each other since the
GLOBCARBON algorithm also relies on SWIR reflectance.We
will investigate these considerations in future work. This study
shows the great potential of FY-3A/MERSI LAI for global veg-
etation monitoring and for further effective use in ecosystem
modeling.
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