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Leaf area index (LAI) is a commonly required parameter when modelling land surface fluxes. Satellite based
imagers, such as the 300 m full resolution (FR) Medium Spectral Resolution Imaging Spectrometer (MERIS),
offer the potential for timely LAI mapping. The availability of multiple MERIS LAI algorithms prompts the
need for an evaluation of their performance, especially over a range of land use conditions. Four current
methods for deriving LAI from MERIS FR data were compared to estimates from in-situ measurements over a
3km×3 km region near Ottawa, Canada. The LAI of deciduous dominant forest stands and corn, soybean and
pasture fields was measured in-situ using digital hemispherical photography and processed using the
CANEYE software. MERIS LAI estimates were derived using the MERIS Top of Atmosphere (TOA) algorithm,
MERIS Top of Canopy (TOC) algorithm, the Canada Centre for Remote Sensing (CCRS) Empirical algorithm
and the University of Toronto (UofT) GLOBCARBON algorithm. Results show that TOA and TOC LAI estimates
were nearly identical (R2N0.98) with underestimation of LAI when it is larger than 4 and overestimation
when smaller than 2 over the study region. The UofT and CCRS LAI estimates had root mean square errors
over 1.4 units with large (∼25%) relative residuals over forests and consistent underestimates over corn
fields. Both algorithms were correlated (R2N0.8) possibly due to their use of the same spectral bands derived
vegetation index for retrieving LAI. LAI time series from TOA, TOC and CCRS algorithms showed smooth
growth trajectories however similar errors were found when the values were compared with the in-situ LAI.
In summary, none of the MERIS LAI algorithms currently meet performance requirements from the Global
Climate Observing System.

Crown Copyright © 2010 Published by Elsevier Inc. All rights reserved.

1. Introduction

Leaf Area Index (LAI) is defined as one half the total green leaf
(more generally foliage) area per unit horizontal ground surface area
(Chen & Black, 1992). The Global Climate Observing System (GCOS)
has identified LAI as an essential climate variable given its role in
regional and global carbon, energy and water cycle models (GCOS,
2006). GCOS has specified a requirement for global daily ∼250 m
resolution LAI estimates with a total error of less than 10%.

A number of regional and global studies have assessed the
accuracy of LAI estimates frommoderate (N250 m) resolution satellite
sensors (Morisette et al., 2006; Weiss et al., 2007; Garrigues et al.,
2008a). Garrigues et al. (2008a) documented sources of uncertainty
including: (1) acquisition noise due to detector quality, point spread
function (PSF) corresponding to the reference, calibration errors,
atmospheric and cloud contamination, background, topography,
view-illumination geometry and saturation; (2) canopy related
parameters such as clumping, mixed pixel, variations in understory,

woody matter and leaf structure; and (3) accuracy of secondary data
input (e.g., aerosol optical depth, land cover). A common finding in
many of the LAI validation studies is the variability in accuracy as a
function of land cover (e.g. Bacour et al., 2006; Abuelgasim et al.,
2006; Yang et al., 2006; Houborg et al., 2007). The variability can be
caused by uncertainties of land cover specification in the case of
algorithms that directly require land cover as an input (Cohen et al.,
2003) or biases in priori assumptions regarding controls on
reflectance for a given land cover class during algorithm calibration
(Yang et al., 2006). Fernandes et al. (2004) found that one third of the
error in their LAI estimate was due to mixing of land cover classes
within a 1 km pixel. In comparison, MERIS offers a nearly 10 fold
reduction in pixel footprint that mayminimize the land cover mixture
effect. However, MERIS spectral sampling is restricted to visible and
near infrared wavelengths where sensitivity of top of canopy
reflectance to leaf biochemistry and understory conditions may be
substantial (Delegido et al., 2008; Canisius & Chen, 2007) and
atmospheric correction relative uncertainties may be large for dark
targets (Fernandes et al., 2004). It is therefore critical to determine
howwell existingMERIS LAI algorithms perform over a variety of land
cover types typically found in a single global biome.
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LAI estimates are now available based on various operational
algorithms (Baret et al., 2006a,c; Deng et al., 2006; and in this study
using the approach of Fernandes et al., 2003) originally designed for
application to a range of multi-spectral moderate resolution imagers
and applied to 300 m resolution data from the Medium Resolution
Imaging Spectrometer (MERIS FR) on board the ENVISAT satellite. The
goal of this paper is to assess the agreement of LAI products generated
from four operational algorithms using the same input MERIS FR data
to in-situ based estimates over a region where coincident in-situ LAI
estimates are available. Intercomparison of MERIS LAI products from
all four algorithms is also performed. Further, this study analyzed the
seasonal temporal consistency of LAI for different land use types
derived using selected algorithms frommulti temporal MERIS FR data
sets.

2. Methods

2.1. Study area and field data collection

The study area was located in Nepean (45:18 N, 75:45 W), Ottawa,
Canada (Fig. 1). Corn, soybean, wheat and pasture were the main
agriculture practices in the study area. The agriculture fields were
uniformly planted within each field using a fixed spacing by crop type
and a standard site preparation. Most of the agriculture fields were
rectangular in shape with an average size of 20 ha. Low density
deciduous dominant mixed forest tracts were also present in isolated

patches as well as a larger tract in the South East of the study area
shown in Fig. 1. Intensive field campaigns for in-situ LAI estimation
were performed three times in summer 2006 but a clear sky MERIS
image was only available close to the second visit (04–05 July 2006)
so we will only discuss about the in-situ data collected during that
visit. For the 04–05 July 2006 field campaign 35 elementary sampling
units (ESUs) from 19 agriculture fields were selected a priori to
include replicate land cover samples. Eight ∼1 ha forest ESUs were
selected a priori to span the expected range in forest LAI based on a
nominal forest LAI estimate derived from a summer 2006 Landsat 5
Thematic Mapper image following the approach of Butson &
Fernandes (2004). A limited evaluation of temporal consistency of
MERIS LAI estimates within the growing season was performed with
repeated DHP based LAI estimates over a corn (CFIA_05) field and a
soybean (CFIA_16) field during 2008 growing season following the
methodology for in-situ survey used with the 2006 in-situ estimates
described below.

For agricultural fields, ESU were surveyed using digital hemi-
spherical photographs (DHP) on two parallel 60 m transects along
planted rows, separated by 50 m to allow for an estimate of within
field variability. Line transects have been long advocated and tested
for indirect LAI estimation over row crops (LI-COR, 1992.; Welles &
Cohen, 1996) and have been successfully used at our study area in the
past based on comparison to destructive sampling (Strachan et al.,
2005). For each transect 13 DHPs were taken (Fig. 2a). Seven DHPs
were acquired 10 m apart, starting at the transect origin, with azimuth

Fig. 1. Study site located in Nepean area (45:18 N, 75:45 W) Ottawa, Canada (sharpened false color image of July 30, 2006 Landsat TM scene).
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oriented randomly in the quadrant aligned with the transect. A
further 6 DHPs, 10 m apart, were acquired returning to the transect
origin oriented in azimuth randomly in the quadrant perpendicular to
the transect. The DHPs were acquired using Nikon CoolPix 8800
cameras with Nikon FC-E9 Fisheye adapter at full 8 Mb pixels Nikon
Exchange Format to preserve radiometric data without scaling (Nikon
Co., 2006). Upward looking images were acquired when non-woody
vegetation was at least 50 cm above ground level. Otherwise
downward looking images were acquired with a minimum distance
between lens and target of twice the maximum foliage element
dimension as recommended in LI-COR (1992). Digital DHPs were
acquired on June 4th and 5th, 2006 under clear sky conditions with
manual adjustment of exposure and f-stop settings to avoid signal
saturation. DHPs were also acquired over the forest ESUs using the
VALERI nested box (Fig. 2b) sampling method (Morisette et al., 2006)
that includes 13 upward (canopy) and downward (understory)
samples forming nested boxes around each plot centre. Manual
exposure and aperture settings were used for upward looking images
following Chen et al. (2006) while automatic settings were used for
downward images after Garrigues et al. (2008b).

In-situ LAI estimates were derived from the 13 DHPs of each
transect (or nested box) in an ESU using the CAN_EYE version 3.6
software (http://www.avignon.inra.fr/can_eye, Garrigues et al.,
2008b; and Demarez et al., 2008). Manual masking of the solar disk,
dark shadows, trunks or broad woody stalks and areas of specular
reflection was performed in all DHPs. Gap fraction is calculated from
the RGB images through a supervised classification using 5° zenith
and 5° azimuth discretization restricted to a zenith range of 0° to 60°

as in Garrigues et al., 2008b and Demarez et al., 2008. CANEYE
estimates effective LAI (Le) by model inversion based on a Poisson
model, where the foliage is assumed randomly distributed (Weiss
et al., 2004). The LAI is related to Le through the clumping index (Chen
& Black, 1992), which depends on canopy structure, foliage distribu-
tion and size and shape of leaves (Chen et al., 2005). CAN_EYE uses
Lang's logarithm gap fraction averaging method (Lang & Xiang, 1986)
to estimate clumping. The 5° discretization allows for capturing
changes in clumping with zenith angle but may also result in a bias
compared to other methods for estimating clumping from DHP
images (Leblanc et al., 2005). Recent work suggests that this bias may
not be as significant (b10%) for crops (Demarez et al., 2008) and
broadleaf forests (Leblanc et al., 2005) in comparison to orchards
(López-Lozano et al., 2009).

LAI estimates were quality controlled by examining diagnostics
including the modeled versus observed gap fraction, the estimated
clumping index as a function of zenith angle, and the deviation
between effective LAI estimated by the multiple zenith angle estimate
ofWeiss et al. (2004) and from 5° zenith angle range centered at 57.5°
zenith angle. The latter is a necessary condition that the observed gap
fractions are generated by statistical arrangements of vegetation that
meet the modified Poisson distribution required by the Nilson (1971)
theory that forms the basis of CANEYE Le estimation.

Image based reference LAImapwas produced by assigning average
of ESU estimates to the polygon area of each agriculture field and by
developing and applying a simple ratio (near infrared/red hemi-
spherical directional reflectance) versus LAI transfer function over
30 m forest pixels using a Landsat 5 Thematic Mapper (TM5) image
acquired on 30th July 2006. The linear transfer function was
developed by using the average 3×3 TOA reflectances at each of the
eight forest ESUs and applying a robust to measurement error
regression (Butson & Fernandes, 2004). The goal of the transfer
function design for the forested regions was to provide an unbiased
rather than precise LAI estimate since upscaling the 30 m Landsat
scale LAI fields to 300 m MERIS pixels should minimize most random
errors. The 30 m reference LAI map was upscaled by overlaying with
the nominal MERIS pixel grid.

2.2. MERIS LAI estimation

A single MERIS FR Level 1P top-of-atmosphere radiance product
(Table 1), corresponding to a nominal local acquisition time of 10:35,
July 3, 2006, was used for the spatial comparison of LAI in our study.
The lack of additional images during our 2006 growing season was
primarily due to the limited capacity for systematic archiving of
MERIS FR imagery over North America prior to April, 2008. Twelve

Fig. 2. DHP elementary sampling units (ESUs), (a) crop field transects, (b) forest nested
box.

Table 1
Data used for the evaluation.

Date MERIS data MODIS aerosol products

2006
07-03-2006 MER_FR__1PNUPA20060703_153356_000000982049_00097_22696_0052.N1 MOD04_L2.A2006184.1535.005.2006205174129.hdf

2008
06-12-2008 MER_FRS_1PNPDK20080612_151928_000004582069_00240_32859_3210.N1 MOD04_L2.A2008164.1635.005.2008165152331.hdf
06-15-2008 MER_FRS_1PNPDK20080615_151841_000005352069_00283_32902_3827.N1 MOD04_L2.A2008167.1530.005.2008168163550.hdf
06-21-2008 MER_FRS_1PNPDK20080621_153106_000004502069_00369_32988_5756.N1 MOD04_L2.A2008173.1630.005.2008174163508.hdf
06-25-2008 MER_FRS_1PNPDK20080625_150922_000004332069_00426_33045_6687.N1 MOD04_L2.A2008177.1605.005.2008178175407.hdf
07-01-2008 MER_FRS_1PNPDK20080701_151650_000005352070_00011_33131_8924.N1 MOD04_L2.A2008183.1530.005.2008184190522.hdf
07-07-2008 MER_FRS_1PNPDK20080707_152812_000005372070_00097_33217_0763.N1 MOD04_L2.A2008189.1630.005.2008190063333.hdf
07-17-2008 MER_FRS_1PNPDK20080717_151405_000005352070_00240_33360_3458.N1 MOD04_L2.A2008199.1530.005.2008200104632.hdf
08-14-2008 MER_FRS_1PNPDK20080814_153355_000005352071_00140_33761_0439.N1 MOD04_L2.A2008227.1555.005.2008233100534.hdf
08-18-2008 MER_FRS_1PNPDK20080818_150821_000005352071_00197_33818_2074.N1 MOD04_L2.A2008231.1530.005.2008235232856.hdf
08-20-2008 MER_FRS_1PNPDK20080820_154517_000005352071_00226_33847_2672.N1 MOD04_L2.A2008233.1515.005.2008236104352.hdf
08-21-2008 MER_FRS_1PNPDK20080821_151403_000005352071_00240_33861_2854.N1 MOD04_L2.A2008234.1600.005.2008237001228.hdf
08-27-2008 MER_FRS_1PNPDK20080827_152522_000005352071_00326_33947_4317.N1 MOD04_L2.A2008239.1620.005.2008240140416.hdf
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cloud free MERIS FRS images (Table 1) were acquired by direct
reception over Canada during the growing season of 2008 to evaluate
the temporal consistency of MERIS LAI estimates. MERIS images were
processed from Level 0 to Level 1P by the European Space Agency
using their MERIS instrument processing facility (IPF) processor. Level
1P images were subsequently processed to top of canopy reflectance
at Canada Centre for Remote Sensing using standard tools in the BEAM

Toolbox (http://www.brockmann-consult.de/beam/downloads.
html). The outline (Fig. 3) presented here shows the steps of MERIS
Level 1P data processing to estimate LAI and the comparison and
evaluation of estimated LAI with in-situ measurements.

MERIS Level 1P images were reprojected to the same projection
(WGS 84) and coordinate system (UTM 18) as the LAI reference image
(in-situ LAI) and resampled using nearest neighbor interpolation. The
geometric accuracy of the MERIS Level 1P images were evaluated
manually, using the river network of an orthorectified Landsat 5 TM
image (root mean square error for July 3, 2006 image was 103 m
Easting and 87 m Northing). Level 1P TOA radiance images were
converted to TOC reflectance images using the Simplified Method for
Atmospheric Correction (SMAC) model (Rahman & Dedieu, 1994)
within BEAM (http://www.brockmann-consult.de/beam/doc/help/).
Ozone, water vapor and atmospheric pressure were derived from the
MERIS Level 1P data. Aerosol optical thickness of each imagewas taken
from the MODIS aerosol product (Table 4) derived fromMODIS swath
(Kaufman et al., 1997) acquired within a few minutes difference from
MERIS acquisition (1min difference for July 3, 2006 image). In addition
to the collected in-situ land use information used for field specific LAI
estimates, a land cover map of Canada 2005 (Latifovic et al., 2005),
derived from 250 m MODIS data was used as input when producing
regional LAI maps for two of the four algorithms.

Four operational LAI algorithms, described below, were applied to
the TOA radiance or TOC reflectance image. Main characteristics and
processing requirements of each LAI estimation algorithm is given in
Table 2.

Fig. 3. Steps of MERIS LAI comparison and evaluation.

Table 2
Main characteristics and processing requirements of each LAI algorithm.

Characteristics and processing
requirements

MERIS TOA LAI algorithm MERIS TOC LAI algorithm CCRS Empirical LAI algorithm UofT GLOBCARBON LAI algorithm

Geometric correction BEAM BEAM BEAM BEAM
Datum WGS 84 WGS 84 WGS 84 WGS 84
Projection UTM 18 UTM 18 UTM 18 UTM 18
Resample NN NN NN NN
Pixel size 300 m 300 m 300 m 300 m

Smile Correction MERIS TOA LAI algorithm BEAM–Smile BEAM–Smile BEAM–Smile
Atmospheric correction and
MERIS TOA radiance
to TOC reflectance

MERIS TOA LAI algorithm BEAM–SMAC BEAM–SMAC BEAM–SMAC

Ozone, water vapor and
atmospheric pressure

Derived from MERIS data Derived from MERIS data Derived from MERIS data Derived from MERIS data

Aerosol optical thickness Derived from
MERIS data

From MODIS
aerosol product

From MODIS
aerosol product

From MODIS
aerosol product

Band normalization N/A N/A Samain method Samain method
From MERIS bands to
SPOT VGT bands

665 nm to 657 nm
865 nm to 830 nm

665 nm to 657 nm
865 nm to 830 nm

Algorithms data Input 13 bands of MERIS
TOA radiance,

Solar and view angles

11 bands of MERIS TOC
reflectance,

Solar and view angles

Red (657 nm) and NIR
(865 nm) TOC
reflectance

Red (657 nm) and
NIR (865 nm) TOC
reflectance,

Solar and view angles
Algorithm specifications

Models Coupled SMAC, SAIL and PROSPECT
models

SAIL and PROSPECT
models

Empirical NDVI, SR – LAI relationship 4_scale model derived SR – LAI
relationship

Inversion Neural network inversion Neural network inversion Empirical equations
corn LAI =0.1505 e3.9703 NDVI

soybean LAI=0.0189 e6.7273 NDVI

pasture LAI=−0.2075+0.2288 SR
forest LAI=−0.021 SR2+0.9857 SR
−1.6788

LUT inversion based on land
cover 2005 map

Clumping representation
Plant/shoot scale N/A N/A Empirical samples Clumping index map
Canopy scale N/A N/A Empirical samples Clumping index map
Landscape scale Mixed pixels as

fraction of pure
vegetation or soil

Mixed pixels as
fraction of pure
vegetation or soil

Large sample size N/A

Comments Land cover
independent,

Easy to use

Land cover
independent,

MERIS image pre
processing is required

Detailed land cover
dependent,

MERIS image pre
processing is required

Land cover
dependent,

MERIS image pre
processing is required

Reference Baret et al. (2006c) Bacour et al. (2006) Fernandes et al. (2003) Deng et al. (2006)
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2.2.1. MERIS Top of Atmosphere (TOA) LAI algorithm
The TOA algorithm (Baret et al., 2006c) is based on inversion of

coupled atmosphere (SMAC), canopy (SAIL, Verhoef, 1984) and leaf
(PROSPECT, Jacquemoud & Baret, 1990) radiative transfer models
given input MERIS TOA radiances. A neural network, trained with
simulated TOA radiances in the 13MERIS bands other than the oxygen
(band 11) and water absorption (band 15) bands for a variety of land
surface conditions, is used for inversion. The neural network once
trained can be run in operational mode. BEAM software, MERIS TOA
LAI algorithm (“TOA_VEG”), was used to estimate LAI from level 1P FR
MERIS data (http://www.brockmann-consult.de/beam-wiki/display/
BEAM/Plug-ins).

2.2.2. MERIS Top of Canopy (TOC) LAI algorithm
The TOC algorithm (Baret et al., 2006a; Bacour et al., 2006) relies

only on the canopy-leaf (SAIL+PROSPECT) reflectance model simu-
lated spectro-directional variation of the reflectance when training the
neural network to estimate LAI from 11 bands of given MERIS TOC
reflectance estimates. The first two shortest wavelength bands and the
oxygen and water absorption bands have not been used in this
approach assuming they would convey significant uncertainties
associated while providing only marginal information on the surface
(Baret et al., 2006a). The BEAM,MERIS TOC LAI algorithm (“TOC_VEG”),
was used to estimate LAI from TOC reflectance data (http://www.
brockmann-consult.de/beam-wiki/display/BEAM/Plug-ins).

2.2.3. The Canada Centre for Remote Sensing (CCRS) Empirical LAI
algorithm

The CCRS algorithm allows estimation of LAI from vegetation
indices (basically derived from SPOT VGT data) with land use/cover
information and the appropriate empirical regression models (Fer-
nandes et al., 2003). Thus, MERIS red (665 nm) and NIR (865 nm)
bands were used to approximate SPOT VGT red (657 nm) and NIR
(830 nm) bands respectively using the coefficients given in Samain
(2006). Regression models (Fernandes et al., 2003) listed in Table 2
were used to estimate LAI for corn and soybean from NDVI and for
grass and forest from simple ratio (SR). Normalization to the nominal
40° solar zenith angle and nadir view angle of the regression model
was not applied since the solar and view angles of selected MERIS
images are within the acceptable ranges (e.g. the July 3, 2006 MERIS
overpass corresponded to a 29° solar zenith angle and the range of
view zenith angles over our study site was between 3° and 5°).

2.2.4. The University of Toronto (UofT) GLOBCARBON LAI Algorithm
The 4Scale physically based geometrical optical model (Chen &

Leblanc, 2001) is used to simulate the interaction between incoming
solar radiation and the vegetated surface and thus to generate
simulations relating LAI over an a priori range of ancillary parameters
(e.g. soil and leaf optical properties, canopy shape and height)
required to calibrate the UofT algorithm (Deng et al., 2006). LAI was
derived based on the relationships between BRDF of Red and NIR
bands and LAI for each of the major cover types using a large
combination of these parameters with the use of LUT. Normalized
MERIS red and NIR bands to SPOT VGT were used as input TOC
reflectance. Required angular information about MERIS data for this
algorithm was obtained from MERIS Level 1P data product. The
algorithm also accounts for vegetation clumping at the plant and
canopy scales by using the land cover dependent clumping index
derived by Chen et al. (2005).

2.3. Selection of MERIS pixels for the evaluation

Evaluating LAI estimates from moderate resolution imagery is
complicated by mixed pixels including sensitivity to adjacent regions
due to the sensor projected instantaneous field of view (PIFOV),
geolocation errors, and resampling (Fernandes et al., 2004; Weiss

et al., 2007). Previous studies (Fernandes et al., 2004; Morisette et al.,
2006) have simply aggregated satellite measurements over 3×3 pix-
els (or more) to minimize the PIFOV surface uncertainty when
comparing to in-situ based reference estimates. This approach would
prevent us from assessing LAI retrieval performance over individual
land uses in our study area as none of the agriculture fields contained
a 3×3 pixel region. Discarding fields not containing at least oneMERIS
FR pixel centered in the field would result in less than 10 MERIS FR
pixels from the July 3, 2006 acquisition and thus substantially limit the
precision of our intercomparison. As a practical compromise we
selected MERIS pixels with reasonable overlap with a given field or
within a forested region. Theminimum permissible overlap for a pixel
and a field to be used in LAI intercomparison was identified based on
the maximum agreement rate between in-situ based and MERIS LAI
estimates using all algorithms. This was typically encountered at a
minimum overlap of ∼75% since, as the minimum overlap level
reached 100% outlier fields in terms of accuracy tended to positively
bias the root mean square error (RMSE) LAI statistics while as the
minimum overlap fall much below 75% the influence of adjacent fields
on the MERIS LAI estimate reduced the overall LAI retrieval RMSE.
Thirty six MERIS FR pixels that show more than 75% overlap during
July 3, 2006 were selected for LAI intercomparison in this study. Four
pixels corresponding to almost 100% overlap were used for the
temporal assessment during 2008.

Blurring of the signatures due to the MERIS Point Spread Function
(PSF) that consists of various components (listed in Zurita-Milla et al.,
2007) may only slightly influence the actual reflectance of the

Table 3a
Reference in-situ average LAI values of agriculture fields (July 4–5, 2006).

Land use Field name Area
(ha)

LAI LAI range Effective LAI Effective
LAI range

Soybean Field CFIA_05 27.17 0.91 0.7–1.1 0.80 0.6–1.0
Soybean Field GBF_13 21.38 1.03 0.9–1.1 0.80 0.8–0.8
Soybean Field GBF_25E 28.11 0.85 0.4–1.0 0.66 0.4–0.9
Corn Field CFIA_02 21.31 4.20 3.5–4.9 1.85 1.5–2.1
Corn Field CFIA_03 22.45 2.95 2.5–3.4 1.70 1.6–1.8
Corn Field CFIA_04 11.96 3.45 2.9–3.7 2.08 1.7–2.3
Corn Field CFIA_06 28.16 4.27 3.6–5.2 2.08 1.9–2.3
Corn Field CFIA_08 13.76 0.48 0.3–0.6 0.43 0.3–0.5
Corn Field CFIA_09S 20.96 4.10 3.6–4.6 2.10 2.1–2.1
Corn Field CFIA_11 24.06 3.97 3.6–4.4 2.20 2.0–2.5
Corn Field CFIA_13 11.35 1.34 0.8–2.0 1.05 0.6–1.5
Corn Field CFIA_14NE 14.73 5.55 4.5–6.9 3.55 3.2–3.8
Corn Field CFIA_14 21.74 6.00 5.7–6.6 3.62 3.1–4.0
Corn Field CFIA_15 17.44 4.55 4.4–4.7 2.70 2.6–2.8
Corn Field CFIA_16 21.99 4.75 3.8–5.4 2.92 2.6–3.2
Pasture Field CFIA_01 28.23 2.52 2.4–2.6 2.37 2.2–2.6
Pasture Field CFIA_07 35.09 2.85 2.3–3.6 2.60 2.1–3.2
Pasture Field CFIA_12 35.85 3.12 2.3–4.3 2.78 2.1–4.3
Pasture Field CFIA_17 8.25 4.25 3.8–4.8 3.87 3.6–4.1

Table 3b
Reference in-situ LAI values of forest sampling units (July 4–5, 2006).

Forest type Plot name Area
(ha)

LAI LAI residual Effective
LAI

Effective LAI
residual

Maple Forest ESU_01 1 4.37 0.73 3.8 0.89
Alder/Maple Forest ESU_03 1 4.02 0.45 3.6 0.75
Alder Forest ESU_04 1 4.44 0.37 3.5 0.35
Maple/Pine Forest ESU_05 1 5.42 0.01 3.5 0.83
Maple Forest ESU_06 1 3.5 0.60 2.9 0.38
Alder Forest ESU_07 1 4.26 0.72 3.0 0.17
Alder/Maple Forest ESU_08 1 2.26 0.57 1.5 0.76
Alder/Maple Forest ESU_09 1 2.3 0.37 2.0 0.13
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selected MERIS FR pixels as the PIFOV of selected MERIS FR pixels are
mostly centered within the homogenous spectral signature of the
corresponding agriculture fields. Fields selected at the 75% overlap
threshold typically included adjacent pixels within the same field on
three of four sides so adjacency effects should also be minimized.
Further, the sensitivity of residuals (RMSE) between MERIS and in-
situ LAI to different resampling methods was less than 2% (relative).

3. Results and discussion

3.1. Reference field LAI

The in-situ LAI estimate of each agriculture field, for July 4–5, 2006,
is given in Table 3a. In general the LAI range for an agriculture field

was within 0.5 units indicating, as expected, that the fields were
relatively uniform in LAI. For all crop ESUs except pasture, the Weiss
et al. (2004) and 57.5° LAI estimates for each transect differed by less
than the 0.5 units supporting the CANEYE theoretical assumptions
and the adequacy of the spatial sampling within a sampling unit. The
lower agreement over pasture wasmost likely due to insufficient gaps
at 57.5º (the CANEYE software frequently reported annular segments
with no gaps), even with b30 cm distance between lens and target,
leading to noisy estimates of LAI from this zenith angle.

LAI estimation using CANEYE processed DHP's has been evaluated
extensively elsewhere (Iiames et al., 2008; Garrigues 2008b; Chen
et al., 2006; Demarez et al., 2008). Our in-situ measurements fall
within the range of values cited in the literature from destructive
sampling at this study area (Pattey et al., 2001) and other similar sites
in North America (Wilhelm et al., 2000, Wiegand et al., 1990).
Garrigues et al. (2008b) also found that the CANEYE/DHP approach
provided robust and reasonable LAI estimates over soybean, corn and
pasture land in Argentina using similar field sampling methods.

The forest LAI linear transfer function with 0.73 R2 and 0.53 RMSE
(based on leave-one-out cross validation) indicates the accuracy of
the transfer function and its relevance for upscaling ESUs over the
small forest tract in our study region. Table 3b shows the residual
between the regression prediction and the LAI value of forest
sampling unit (range 0.01 to 0.73) as an indicator of the prediction
error of the spatial reference LAI estimates at 30 m resolution.
Aggregation of the 30 m resolution forest LAI estimates to 300 m
MERIS pixel footprints will reduce random components in this
transfer function. As such, the 300 m scale in-situ forest LAI estimates

Table 3c
Reference in-situ continues LAI values of corn and soybean fields (2008).

Date Corn (CFIA_05) Soybean (CFIA_16)

LAI Effective LAI LAI Effective LAI

06-12-2008 Not surveyed Not surveyed 0.16 0.20
06-20-2008 0.83 0.60 0.29 0.25
06-26-2008 2.05 1.15 0.64 0.49
07-03-2008 5.00 2.60 1.55 1.09
07-10-2008 5.85 3.95 3.30 2.35
07-17-2008 5.45 3.95 4.50 3.40
07-29-2008 5.80 3.95 6.85 4.30
08-18-2008 5.70 3.80 6.30 4.65
09-02-2008 4.05 2.75 Not surveyed Not surveyed

Fig. 4. (a) Main land covers of the study area (black polygon) and surrounding (July 2006 Landsat TM classification). (b) MERIS LAI image derived using TOA algorithm, (c) TOC
algorithm, (d) CCRS algorithm and (e) UofT Algorithm.
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may be substantially more precise than the 0.53 RMSE over the
sampling unit.

Table 3c summarizes the temporal LAI estimates for the corn and
soybean field surveyed during the 2008. The LAI values agree with
published LAI trends over similar crops in North America (Wiegand
et al., 1990; Pedersen & Lauer, 2004).

3.2. Evaluation of MERIS LAI products

3.2.1. Visual comparison
Fig. 4 shows the land cover of the study area and surrounding region,

including Ottawa, Canada, together with the four differentMERIS based
LAI maps of that area for July 03, 2006. TOA and TOC LAI maps are very
similar both in patterns and magnitudes of LAI. The CCRS LAI map has a
similar pattern to the TOA and TOC LAImaps but shows larger values for
forested regions to the south west of the study area. The UofT LAI map
shows substantially lower values in the vicinity of regions already
mapped as low LAI, typically urbanized regions rather than agriculture
fields or forest, in the other three maps.

3.2.2. Comparison with in-situ LAI and Le
Fig. 5 compares the in-situ (July 4–5, 2006) and MERIS (July 3,

2006) LAI estimates of 36 selected pixels over agriculture fields and
the forest sites within the study area. Summary statistics regarding
residuals between these two LAI values are given in Table 4. The RMSE
values characterize the agreement between in-situ LAI and the MERIS
LAI estimates. The observed RMSE values are larger than typical
absolute uncertainties in the DHP based in-situ LAI estimates over

agriculture fields (Demarez et al., 2008) and forest stands (Chen et al.,
2006).

TOA and TOC LAI estimates show residuals within 1 LAI unit (RMSE
of ∼1 unit) and relatively small biases at low LAI levels. However, the
larger (66%) TOA LAI and (42%) TOC LAI relative bias for open soybean
fields suggests the influence of background on LAI estimation. Overall,
both TOA and TOC algorithms clearly show saturation around in-situ
LAI levels at or over four (see Fig. 5a and b) as reported in Bacour et al.
(2006) and this saturation effect can also be seen in Fig. 4b and c. In
comparison, the CCRS and the UofT LAI estimates show better
agreement at low LAI levels but substantially larger land cover
specific residuals (see Fig. 5c and d) at mid to high LAI levels (RMSE
∼1.5). There is less evidence of saturation over high (N4) LAI forests
with the CCRS and UofT LAI estimates in comparison to the TOA and
TOC estimates. However residuals for forest pixels (see Fig. 5c and d)
exhibit large variability for the CCRS and UofT algorithms. The CCRS
LAI estimates also show a linear bias corresponding to an underes-
timate of ∼40% for corn and pasture while the UofT LAI estimates
exhibit large (N50%) outliers over 5 corn pixels.

The assumptions within the LAI algorithms regarding the clump-
ing of vegetation as well as the ratio of woody to green area can
impact LAI estimates (Garrigues et al., 2008a) and hence agreement
with in-situ LAI. To diagnose some of this variabilitywe also compared
the MERIS LAI estimates with in-situ based Le estimates for each
algorithm (Fig. 6). The TOA and TOC LAI estimates have slightly lower
RMSE (∼0.9 vs ∼1.0) but slightly large relative RMSE (∼0.5 vs ∼0.35)
when compared against in-situ Le versus in-situ LAI. Both algorithms
do not show an obvious saturation level in the relationship between
their LAI estimates and in-situ based Le. The CCRS LAI algorithm shows

Fig. 5. Comparison between the in-situ LAI values to the corresponding LAI estimates from (a) TOA algorithm, (b) TOC algorithm, (c) CCRS algorithm and (d) UofT algorithm. Linear
regression (solid line) and 1:1 line with ±1 unit range (dashed lines) are added.
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better agreement with Le versus in-situ LAI for corn (RMSE drops from
∼2 to ∼0.5 for a reduction in relative RMSE over 50%) and no
substantial change for pasture. The UofT LAI estimate shows strong
agreement with Le for all classes except forests where the scatter is
similar to the LAI intercomparison reported in the previous paragraph.
The TOA LAI algorithm agrees with in-situ based Le (RMSE=0.87) in
comparison with the other algorithms.

3.2.3. MERIS LAI product intercomparison
We intercompared the spatial LAI estimates of each product to

determine if the observed residuals over the limited reference targets
were consistent with between product differences. Fig. 7a shows that
the TOA and TOC LAI estimates were very strongly correlated
(R2=0.99) with the TOC estimates having a slight positive offset

(0.3 units) and slope (1.1) in comparison to the TOA estimates. The
offset could not be explained by reasonable (+/−0.1) adjustments in
aerosol optical depth values which were estimated from 13 bands of
MERIS image for MERIS TOA LAI algorithm and from MODIS aerosol
product for MERIS TOC LAI algorithm.

CCRS LAI estimates and the UofT LAI estimates are correlated
(R2=0.8) over all cover classes except pasture (Fig. 7b). The strong
correlations are due to the fact that both algorithms use indices
derived from Red and NIR as their primary input. Differences over
pasture are possibly due to the fact that the CCRS algorithm for this
class is based on data from prairie grasslands rather than temperate
short-grass pastures while the UofT algorithm relies on a radiative
transfer model training data set with generic spectral and structural
pasture characteristics.

Table 4
Root mean square error (RMSE) and relative RMSE (RRMSE) between MERIS LAI estimates and field LAI or effective LAI (Le) estimates.

Landuse Number of
sample pixels

LAI TOA LAI estimates TOC LAI estimates CCRS LAI estimates UofT LAI estimates

RMSE RRMSE RMSE RRMSE RMSE RRMSE RMSE RRMSE

All 36 LAI 0.96 0.34 1.00 0.33 1.47 0.43 1.51 0.37
LAIe 0.87 0.49 0.97 0.48 1.18 0.47 0.92 0.35

Corn 9 LAI 1.51 0.33 1.49 0.34 2.16 0.48 2.48 0.56
LAIe 0.88 0.43 0.99 0.46 0.49 0.22 0.57 0.23

Soybean 5 LAI 0.60 0.66 0.45 0.50 0.36 0.40 0.17 0.19
LAIe 0.73 0.93 0.57 0.72 0.23 0.31 0.23 0.29

Pasture 6 LAI 0.74 0.27 0.95 0.35 1.71 0.59 0.47 0.18
LAIe 0.85 0.33 1.07 0.42 1.46 0.55 0.35 0.15

Forest 16 LAI 0.77 0.22 0.84 0.24 1.09 0.33 1.20 0.32
LAIe 0.91 0.37 1.01 0.40 1.48 0.56 1.26 0.46

Fig. 6. Comparison between the effective LAI values derived from DHP ground measurements to the corresponding LAI estimates from each algorithm. Effective LAI vs (a) TOA
LAI (b) TOC LAI (c) CCRS LAI and (d) UofT LAI. Linear regression (solid line) and 1:1 line with ±1 unit range (dashed lines) are added.
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3.2.4. Evaluation of MERIS LAI temporal consistency
Fig. 8 compares trajectories of TOA, TOC, CCRS LAI estimates during

the 2008 growing season for pixels falling within the corn (CFIA_05)
and soybean (CFIA_16) fields that were surveyed that year as well as a
typical forest site (Forest ESU_05) and pasture site (CFIA_07) without
coincident field measurements. In-situ reference estimates of LAI and
Le for pasture and forest sites, the corresponding 2006 survey date, are
included. All three LAI estimates for corn are highly correlated (N98%)
and showing typical growing pattern of corn (Fig. 8a). However all
MERIS algorithms seem to agree with Le rather than LAI when these
in-situ quantities diverge later in the season. For soybean (Fig. 8b)
CCRS LAI estimates shows good agreement with in-situ LAI while TOA
and TOC algorithms overestimate the LAI for early growing stage with
more open field and underestimate the LAI, tracking rather Le, for
peak growing season. Fig. 8c shows the temporal LAI pattern of a
pasture filed and low LAI value in mid July is the harvesting time of
that field. CCRS LAI estimates low value for pasture. Forest temporal
LAI estimated using TOA LAI and TOC LAI algorithms are ∼4
corresponding to the saturation level that we found in single date
spatial evaluation. The CCRS LAI algorithm overestimated the forest
values with larger scatter over time in comparison to the TOA and TOC
retrievals.

4. Discussion

Both TOA and TOC LAI estimates exhibited similar spatial and
temporal patterns and similar levels of agreement with in-situ based
LAI and Le estimates. Their lack of significant bias below 4 (LAI) is
encouraging but this still translates into relative root mean square
errors in excess of 25%. The saturation seen in their retrievals for in-

situ LAIN4 may be related to the use of only landscape clumping
within the simulations used to train both neural network retrieval
algorithms. The landscape clumping is partly taken into account by
considering mixed pixels as a fraction of pure vegetation or bare soil
when simulating the vegetation surface reflectance at the pixel level
(Bacour et al., 2006). Here, all of the targets show minimal landscape
clumping so the retrieval should, and does, seem to correspond to in-
situ based Le rather than LAI for high LAI levels.

We also note that both TOA and TOC LAI estimates are very closely
related (R2N0.95 for linear regression) to MERIS NDVI (based on
620 nm and 754 nm wavebands). Thus, it is not clear how much
additional information the multi-band algorithms are exploiting from
MERIS in comparison to NDVI. As stated in Sridhar et al. (2008), the
high correlation between MERIS NDVI and TOA LAI indicates the
possibility to estimate LAI at early crop growth stages from MERIS
data using simple empirical models. Furthermore, theories and
empirical evidences support a relationship between NDVI and Le
(Leblanc, Chen,White, et al., 2005). It is possible that the TOA and TOC
LAI algorithms therefore show reasonable agreement at lower LAI
levels because LAI and Le were also correlated (R2=0.7) for these
sites.

The lower performance of both the CCRS and UofT algorithms with
MERIS data compared to previously published results with SPOT VGT
products (Abuelgasim et al., 2006; Deng et al., 2006) may partially be
explained by the exclusion of Short Wave Infra Red (SWIR) based
vegetation indices, originally used in the SPOT VGT algorithms, due to
the absence of SWIR bands with MERIS. However, CCRS and UofT
algorithms also exhibited clear land cover specific biases. The
increased agreement between satellite LAI and Le over corn sites
also suggests that these algorithms seem to be sensitive to clumping
in a manner not well documented to date. A clumping correction is
included in UofT algorithm based on the clumping index map. But the
resolution and land cover dependency did not support well for the
clumping correction for detail land use classes such as crop types.

At the same time we noticed that the SR does not exhibit an
obvious saturation with LAI over forests in both CCRS and UofT
algorithms. This has been documented for empirical datasets
elsewhere over Canada (Fernandes et al., 2003) and suggests that
broadleaf dominant forests in some Canadian landscapes tend to
increase clumping with higher LAI so that the SR does not show
saturation. However the estimated values are higher than in-situ LAI
values and the variation is very much higher than other cover types.
The variability may be due to their use of the SR that is known to have
sensitivity to understory variability (Brown et al., 2000).

In this study detailed land cover informationwas used for CCRS LAI
algorithm. However the deviation in the LAI estimates of pasture and
forest indicate its land cover dependency. That is because of each
function that is used to derive LAI is developed using the training data
from a land cover subclass and may not be applicable for generalized
land cover class.

5. Conclusion

MERIS LAI algorithms were evaluated against in-situ based LAI
estimates over a region with varying land cover using MERIS FR data.
TOA and TOC LAI estimates show differences of ∼1 unit or 35% versus
in-situ LAI. Both estimates showed saturation for higher (N4) LAI. The
CCRS and UofT algorithms indicate land cover specific biases in their
estimates that are related to the algorithm rather than the accuracy of
the land cover for each evaluated pixel. Thismay be due to prior biases
keyed to land cover including both conversions of spectral response
functions for vegetation indices as well as retrieval of LAI given the
input VI.

Our study shows limited single mid-growing season comparison
however the evaluation of the temporal consistency of MERIS LAI
estimates over a growing season for selected locations support our

Fig. 7. Relation between (a) TOA and TOC LAI estimates and (b) CCRS and UofT LAI
estimates. Linear regression (solid line) and 1:1 line (dashed line) are added.
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evaluation results. Clearly the significance of LAI both for GCOS
requirements and for regional applications suggest that a standard-
ized in-situ network of repeat measurements suitable for comparison
with ∼300 m resolution pixels be developed if we are also to meet the
spatial representativeness requirement for Stage 3 validation (Mori-
sette et al., 2006; Baret, et al., 2006b).

Our study suggests that, in the absence of regional in-situ LAI data
for calibration, current MERIS TOA and TOC LAI retrieval algorithms
(without clumping correction) are of limited use for widespread
application over mixed land use landscapes similar to our study site. It
seems that even some sort of clumping correction (e.g. using forest
specific algorithms such as in the CCRS and UofT algorithms) resulted
in lower agreements with in-situ based LAI than previously
documented over with coarser resolution (500 m MODIS, 1 km
SPOT VGT) estimates. The full resolution MERIS products enhances
one's ability to relate LAI retrievals to location specific land
management units (e.g. for crop monitoring) but we suggest that it
may be time to explore the performance of MERIS LAI algorithms that
take advantage of the substantial spectral sampling in the red edge
region. Though TOA and TOC LAI algorithms use most of the MERIS
bandswithin the visible and NIR range, they have not been specifically
tuned to take into account mostly on the narrow band sampling of
MERIS near the red edge that may provide robust LAI retrievals
(Canisius & Fernandes, 2008; Mutanga & Skidmore, 2004; Haboudane
et al., 2004; Clevers et al., 1994). In some sense, our current study

therefore serves as a baseline against which LAI algorithms that
exploit the full potential of MERIS' spectral sampling and enhanced
spatial resolution, compared to most low to moderate resolution
imaging spectrometers, can be judged.
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