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Abstracts In this study, we explore the feasibility of

optimizing ecosystem photosynthetic and respiratory

parameters from the seasonal variation of the net carbon

flux. An optimization scheme is proposed to estimate two

key parameters (Vmax
25 and Q10) by exploiting the seasonal

variation in the net ecosystem carbon flux retrieved by an

atmospheric inversion system. This scheme is implemented

to estimate Vmax
25 and Q10 of the boreal ecosystem produc-

tivity simulator (BEPS) to improve its NEP simulation in

the boreal North American region. Then, in situ NEE

observations at six eddy covariance sites are used to

evaluate the NEE simulations from BEPS with initial and

optimized parameters. The results show that the perfor-

mance of the optimized BEPS is superior to that of the

BEPS with the default parameter values. These results

implicate that it is possible to optimize ecosystem model

parameters by different sensitivities of Vmax
25 and Q10 during

growing and non-growing seasons through atmospheric

inversion or data assimilation techniques.

Keywords Parameter optimization � Land surface

model � CO2 concentration measurements � NEP

1 Introduction

Ecological models integrate principal processes and

mechanisms that relate to energy partitioning and carbon

uptake. They have been extensively used in ecological

research for simulating ecosystem productivity, greenhouse

gas emission, and water consumption. Since the develop-

ments of ecological models in the 1960s [1, 2], they have

been continuously improved to match with new observa-

tions [3]. Uncertainties of parameters in these models are

identified as a major source of model errors [4, 5]. Various

methods and eddy covariance (EC) measurements have

been used for parameter estimation in these models [6–12].

However, due to different spatial scales and environment

factors, parameters best fit to EC measurements at sites

may not best represent the average conditions of a region.

It is, therefore, often necessary to recalibrate these

parameters for different sites and different times. For

regional applications, it is highly desirable to derive

parameters of ecological models that represent the regional

average conditions.

Atmospheric inversion (AI) techniques were widely

used to estimate land and ocean carbon fluxes based on

atmospheric CO2 measurements [13–19]. Since atmo-

spheric CO2 measurements are intrinsically influenced by

regional ecosystem carbon fluxes, carbon fluxes derived

from AI systems can allow us to obtain parameters of

ecological models applicable at the regional scale [20–24].

Because photosynthetic and respiratory processes simulta-

neously contribute to the net ecosystem carbon flux [25], it

is generally perceived to be difficult to separate the net flux
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into photosynthesis and respiration components without any

additional information [26, 27]. However, this perception

may be challenged by utilizing a data assimilation tech-

nique. Addressing this challenge has profound implications

on the feasibility of using atmospheric CO2 concentration

measurements for optimizing ecosystem parameters, which

has been done by CCDAS [20–24]. In this study, we try to

optimize ecosystem model parameters by exploring differ-

ent sensitivities of Vmax
25 and Q10 during growing and non-

growing seasons through data assimilation techniques.

The objectives of this study are (1) to explore ways to

use ecosystem carbon fluxes derived from an AI system for

estimating parameters of an ecological model for regional

applications and (2) to investigate the possibility of esti-

mating photosynthetic and respiratory parameters from the

seasonal variation pattern of ecosystem carbon fluxes.

2 Data and method

2.1 Data sources

Ecosystem carbon fluxes for boreal North America boreal

(BNA) region obtained from an atmospheric inversion (AI)

system [16] are used to optimize parameters in the BEPS

model from 2003 to 2008. Measurements of net ecosystem

exchange (NEE), which is opposite in sign to net ecosystem

productivity (NEP), from 6 EC sites, are used to evaluate

the success of our optimization scheme through comparing

NEP simulations from BEPS with initial and optimized

parameters. The EC sites are CA-Gro [28], CA-Mer [29],

CA-Oas [30], CA-Obs [31], CA-TP4 [32], and CA-WP1

[33]. All these 6 sites are selected to evaluate terrestrial

biosphere models in North American Carbon Program [34].

2.2 Model description

The boreal ecosystem productivity simulator model

(BEPS) [35, 36] is used for simulating NEP of terrestrial

ecosystems at 1� resolution. Each grid cell can be made up

of any mixture of seven plant functional types (PFT) [37].

In this model, canopy photosynthesis is estimated using the

biochemical Farquhar’s model [38] coupled with a stom-

atal conductance model [39, 40]. The canopy-level mean

maximum carboxylation rate at 25 �C (Vmax,j
25 , j is a specific

PFT type) is a key parameter for canopy photosynthesis.

Since there are seven PFTs in every 1� grid cell, it is hard

to trace the variation of Vmax,j
25 for every PFT. Therefore, as

an alternative, it is assumed that the Vmax,j
25 of all PFTs

change with the same proportion. Vmax,j
25 can be expressed

as follows:

V25
max;j ¼ b� V25

max; ð1Þ

where Vmax
25 is a base maximum carboxylation rate for all

PFTs, which is equal to 50 lmol m-2 s-1. b is a multiplier

and kept constant in optimization process. In this study, we

optimize the base maximum carboxylation rate (Vmax
25 ) for

all PFTs.

Soil respiration is modeled as a function of temperature

with the widely used Q10 function (Eq. 2).

SR ¼ rb � Q
Ts�10
10

10 ; ð2Þ

where SR is soil respiration, rb is base respiration rate

related to carbon pools at the reference temperature, and Ts
is soil temperature. Q10 is another key parameter for soil

respiration. Default value for Q10 is 2.3.

2.3 Basis of optimization scheme

It is difficult to estimate parameter values for respiration and

photosynthesis together by using NEP measurements at a

given time without additional information. However, the

seasonal variation pattern of NEP data may be utilized for

providing additional information to estimate parameter val-

ues for respiration and photosynthesis together. A sensitivity

analysis of parameters (Fig. 1a) in BEPS indicates that

changes in Vmax
25 contribute more to changes in NEP in the

growing season (fromMay toAugust),whileQ10 affectsNEP

in the non-growing/transition season (from September

to April) at CA-Obs site. Gross primary productivity (GPP) is

close to zero during the non-growing season (from Novem-

ber to March, Fig. 1b), while soil respiration dominates the

ecosystem carbonflux during this period. During the growing

season, changes in soil respiration induced by changes inQ10

are small (Fig. 1c) since the average soil temperature ranges

from 8 to 12 �C during this season. Photosynthesis therefore

contributes more to ecosystem carbon fluxes than soil respi-

ration during this period. The seasonal variation pattern of

NEP contains, to a large extent, separate information for

photosynthetic and respiratory parameters.

Since photosynthesis is weak during non-growing and

transition seasons, soil respiration and Q10 values can be

estimated from NEP. Because of seasonal variations in Q10

[41], Q10 values estimated during the non-growing season

cannot be used for the growing season. Therefore, annual

cumulative NEP measurements are used to determine Vmax
25 ,

while seasonal variations in NEP are used to optimize Q10.

2.4 Optimization scheme

For the BNA region, we assume the period from May to

August to be the growing season. Other months are in non-

growing/transition seasons.Q10 is estimated every 4 months

(January–April, May–August, and September–December),

and Vmax
25 is estimated once a year. Based on the Bayesian
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theory, the cost function (Eq. 3) is used to find the maximum

likelihood solution of the variables x as a balance between

observations and prior knowledge given by the model.

JðxÞ ¼ 1

2
ðx� xbÞTB�1ðx� xbÞ þ

1

2
ðBEPSðxÞ

� NEPAIÞTðOþ PÞ�1ðBEPSðxÞ � NEPAIÞ; ð3Þ

where x and xb are scalars containing optimized and

default parameters in BEPS, respectively. BEPS(x) is

regarded as a nonlinear operator which is used to estimate

ecosystem carbon fluxes with corresponding parameter

x. NEPAI is ecosystem carbon fluxes from measurements

or derived from an AI system. O is a posterior error

covariance of NEPAI from the AI system. B is the error

covariance matrix of default parameters. We assume that

errors of Q10 and Vmax
25 are statistically independent. P is

the error covariance matrix of BEPS. We estimate P by

using a perturbed ensemble of model parameters x. An

inflation approach [42] on the error covariance matrix is

used to estimate B and P. We follow the Ensemble Kal-

man filter (EnKF) framework [43] to estimate model

parameters. Since BEPS(x) is nonlinear and complicated,

linearized approximation in EnKF may not find the best

parameters. Therefore, a global optimization method

called SCE-UA [44] is employed to minimize the cost

function.

In order to save time spent on minimizing the cost

function, we design a optimization scheme, called multi-

timescale scheme, to estimate Vmax
25 and Q10 values step by

step. There are four steps in the optimization scheme. In the

first step, the initial soil carbon pools are obtained through

a long-term spin-up process [45]. As the size of carbon

pools in the soil changes little over a short period of time,

they are kept constant in the following optimization. The

optimization steps use the same cost function (Eq. 3) but

with different x, xb, B, and P. In the second step, Vmax
25 is

estimated once a year. In the cost function, x is Vmax
25 . Q10 is

kept at the prior value in the BEPS model. In the third step,

Q10 is determined every four months. In the cost function,

x is Q10. Vmax
25 is the estimated value from previous step. In

the last step, optimized Vmax
25 and Q10 are compared to the

prior parameters in the model. If the difference between

prior and optimized parameter values is less than 1 for Vmax
25

and 0.1 for Q10, the process of optimization is completed. If

not, steps 2 and 3 will be repeated using optimized

parameters as prior parameters.

3 Results and discussion

The multi-timescale optimization scheme described above

is first applied to flux data at the CA-Obs site to demon-

strate the methodology for optimizing Vmax
25 and Q10 at the

site level. The scheme is then used for optimizing Vmax
25 and

Q10 to the regional NEP obtained from AI for the purpose

of exploring the feasibility of using atmospheric CO2

concentration measurements for optimizing ecosystem

parameters.

At the CA-Obs site, NEP simulated by BEPS with

default parameters is larger in the non-growing/transition

season and smaller in the growing season than in obser-

vations (Fig. 2a). To show the effectiveness of the multi-

timescale optimization scheme, three optimization schemes

are designed to compare with each other. The same cost

function (Eq. 3) is used in all schemes. Only Vmax
25 (Q10) is

estimated in Scheme I (Scheme II). These two schemes do

not use the information hidden in multi-timescale NEP

data. Both Vmax
25 and Q10 are estimated in Scheme III

(multi-timescale optimization scheme). NEP simulated by

BEPS with optimized Vmax
25 or Q10 through Schemes I and II

Fig. 1 Sensitivity analyses of respiratory and photosynthesis parameters in the BEPS model at the CA-Obs site. a NEP simulated by BEPS with

different Vmax
25 and Q10, b GPP simulated by BEPS with different Vmax

25 , c Soil respiration simulated by BEPS with different Q10 and soil

temperature (Ts)
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(Fig. 2a, b) is closer to observations than NEP simulated by

BEPS with default parameters. NEP simulated by BEPS

with optimized Vmax
25 (Q10) follows observations well in the

growing season (non-growing/transition season). But NEP

simulations are little improved in the non-growing/transi-

tion season (growing season). These results suggest that

both photosynthetic and respiratory parameters are

responsible for the discrepancy between the prior and

observed NEP.

The multi-timescale optimization scheme is used to

estimate Vmax
25 and Q10. NEP simulations by BEPS with

optimized Vmax
25 and Q10 through Scheme III follow NEP

measurements well throughout the year (Fig. 2c). Estimated

parameters for every step are listed in Table 1. Vmax
25 is

firstly estimated to be 58 lmol m-2 s-1, which is a little

higher than the default value. NEP simulations by BEPS

with optimized Vmax
25 , which is similar to that used in

Scheme I (Fig. 1a), are close to measurements in the

growing season and the measured total annual accumulative

NEP. However, the performance of BEPS with new Vmax
25 is

not improved during the non-growing/transition season. In

the next step, Q10 is estimated to be in the range from 1.4 to

1.2 in non-growing/transition season and from 2.3 to 2.2 in

the growing season. NEP simulations by BEPS with opti-

mized Q10, which is similar to that used in Scheme II

(Fig. 2b), are close to measurements in the non-grow-

ing/transition season. Since NEP simulations are reduced

with the optimized Q10 in the non-growing/transition sea-

son, the simulated annual total NEP would deviate from

measurements again after this step. Then Vmax
25 is optimized

for the second time. These two steps iterate until Vmax
25 and

Q10 are both convergent (invariant). It takes 4 iterations to

achieve the convergence. Optimized Vmax
25 is 63 lmol m-2

s-1, and optimized Q10 is 1.3 (1.2) and 2.3 in the non-

growing/transition and the growing season, respectively.

Optimized Q10 is equal to the default value in BEPS in the

growing season. This result indicates that the discrepancy

between simulations and measurements is only used to

Fig. 2 Result of NEP simulations by BEPS with parameters estimated by different optimization schemes at CA-Obs site in 2004. a Result of

NEP simulations by BEPS with optimized Vmax
25 (Scheme I), b Result of NEP simulations by BEPS with optimized Q10 (Scheme II), c Result of

NEP simulations by BEPS with optimized Vmax
25 and Q10 (multi-timescale Scheme), d Comparisons between NEP simulations by BEPS with

parameters estimated by different schemes
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optimize Vmax
25 in the growing season. As shown in Fig. 2d,

optimized Vmax
25 tends to make NEP simulations increase in

the growing season. In contrast, decreased Q10 tends to

make NEP simulations decrease in the non-growing /tran-

sition season. We design an alternative scheme to estimate

Vmax
25 and Q10 again. In this scheme, we change the opti-

mization order of Vmax
25 and Q10, i.e., Q10 is estimated first

and then Vmax
25 . The results of the alternative scheme are the

same as Scheme III (Table 1). All these results indicate that

the multi-timescale NEP data can be used to estimate two

key parameters (Vmax
25 and Q10) for ecological models.

The same multi-timescale scheme is subsequently used

to estimate Vmax
25 and Q10 using NEP derived from an AI

system [16] as measurements in BNA region. Estimated

Vmax
25 ranges from 49 to 57 lmol m-2 s-1 (Table 2). Based

on results of Kattge et al. [46], BEPS assigns Vmax
25 for each

plant functional types (PFT) [37]. Broadleaf deciduous and

coniferous deciduous forests are the most dominant PFTs

in BNA. The Vmax
25 for these two PFTs are 57.7 ± 21.2 and

39.1 ± 11.7 lmol m-2 s-1, respectively. The optimized

Vmax
25 falls between these values. Conventional estimates

based on observation data suggest that Q10 ranged from 1

to 4.2 [47, 48]. Estimated Q10 ranges from 1.6 to 2.2 during

both the growing season and the non-growing/transition

season (Table 2). As shown in Fig. 3, NEP derived from

the AI system is larger (lower) than that from BEPS with

default parameters (BEPS-P) in the growing (non-grow-

ing/transition) season. Optimized NEP falls between AI

and BEPS models’ output at most times. Annual accumu-

lative NEP from the AI system, BEPS-P, and BEPS with

optimized parameters (BEPS-O) is 0.28, 0.02 and 0.11

PgC/yr, respectively, during 2003–2008 in BNA. The

North American Carbon Program indicated that NEP

simulations from several ecological models varied between

-0.2 and 0.7 PgC/yr in the BNA [49]. NEP from AI,

BEPS-P, and BEPS-O are all in this range. But NEP from

BEPS-O is closer to the mean value of all ecological

models, which is 0.1 PgC/yr, than the other estimates. NEE

based on EC measurements from six flux sites are used to

evaluate outputs of BEPS-P and BEPS-O. These EC sites

spanned 4 PFTs and were uniformly distributed in BNA.

The regional Vmax
25 is not suited to simulate NEP for a

specific PFT. Vmax
25 for each FT is calculated by using

estimated regional Vmax
25 and the ratios between regional

Vmax
25 and Vmax

25 for each PFT (described in Sect. 2.2). Then

BEPS model can be used to simulate NEP with new

parameters at these EC sites. As shown in Fig. 4, BEPS-O

outperforms BEPS-P at all sites. It is noted that the R2

values for some sites are low for BEPS-O because

regionally optimized Vmax
25 and Q10 are used, which are only

a first approximation.

We proposed a scheme to estimate parameters in BEPS

by using CO2 flux from an atmospheric inversion system.

Several similar studies have been done in recent years [20–

24]. The main challenge facing these studies is how to

estimate photosynthetic and respiratory parameters by

using only data of NEP which is a balance between pho-

tosynthetic and respiration processes. For instance, if a

Table 1 Parameters estimated in each step at the CA-Obs site

Default V1st Q1st V2nd Q2nd V3rd Q3rd V4th

Estimated Vcmax first

Vcmax 50 58 58 60 60 63 63 63

Q10
(Jan–Apr) 2.3 2.3 1.4 1.4 1.2 1.2 1.3 1.3

Q10
(May–Aug) 2.3 2.3 2.2 2.2 2.2 2.2 2.3 2.3

Q10
(Sep–Dec) 2.3 2.3 1.2 1.2 1.2 1.2 1.2 1.2

Default Q1st V1st Q2nd V2nd Q3rd V3rd Q4th

Estimated Q10 first

Vcmax 50 50 55 55 59 59 63 63

Q10
(Jan–Apr) 2.3 1.5 1.5 1.3 1.3 1.2 1.2 1.3

Q10
(May–Aug) 2.3 2.0 2.0 2.0 2.0 2.2 2.2 2.3

Q10
(Sep–Dec) 2.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Unit of Vmax
25 is lmol m-2 s-1; Q10 is dimensionless. Character ‘‘V’’ means Vmax

25 is estimated in this step. Character ‘‘Q’’ means Q10 is estimated

in this step. Superscripts of character ‘‘V’’ or ‘‘Q’’ stand for iterative times

Table 2 Parameters estimated using atmospherically inverted net

primary productivity for boreal North America

Prior 2003 2004 2005 2006 2007 2008

Vcmax at 25 �C 50 55 50 56 49 57 50

Q10 (Jan–Apr) 2.3 1.9 1.8 1.8 1.8 1.8 1.7

Q10 (May–Aug) 2.3 2.1 2.1 2.2 2.2 2.1 2.2

Q10 (Sep–Dec) 2.3 2.0 2.0 2.0 1.6 1.8 2.0

Unit of Vmax
25 is lmol m-2 s-1; Q10 is dimensionless
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model overestimates NEP, this model error can be cor-

rected via only adjusting photosynthetic or respiration

parameters. In previous studies [20–24], optimized

parameters depend on predefined uncertainties of these

parameters. For example, if uncertainties of respiration

parameters are larger than those of photosynthetic param-

eters, respiration parameters tend to be changed more than

photosynthetic parameters. The difference between our and

other schemes is that our scheme makes use of the different

sensitivities of Vmax
25 and Q10 during growing and non-

growing seasons to optimize photosynthetic and respiratory

parameters simultaneously.

4 Conclusion

In this study, a multi-timescale optimization scheme is

proposed to estimate two key parameters (Vmax
25 and Q10) in

BEPS for regional applications. The following conclusions

are drawn from this study:

Fig. 3 NEP from atmospheric inversion, the BEPS model with default parameters and the BEPS model with optimized parameters in boreal

North America during 2003–2008

Fig. 4 Comparisons between NEE measurements, NEE simulations from BEPS with default parameters values and with optimized parameters

values at six flux sites in boreal North America

Sci. Bull. (2015) 60(22):1954–1961 1959

123



1. For the boreal North America, where photosynthesis

and respiration contribute differently to the net

ecosystem productivity in different seasons, it is

feasible to optimize both photosynthesis (Vmax
25 ) and

respiratory (Q10) parameters. We found that Vmax
25 is

sensitive to NEP in the growing season, while Q10 can

be optimized in the non-growing and transitional

seasons as well as in the growing season.

2. In the growing season, both Vmax
25 and Q10 control NEP,

and both parameters can be optimized. It makes little

difference which parameter is optimized first. This is

probably due to the fact that Vmax
25 determines the

overall magnitude of the NEP, while Q10 influences

more the temporal pattern of NEP with temperature

than the overall magnitude.

3. Regional ecosystem carbon fluxes derived from AI

systems can allow us to obtain parameters of ecolog-

ical models applicable at the regional scale. However,

it is difficult to prove that the performance of BEPS

with optimized parameters is better than that of BEPS

with default parameters at regional scale. Comparing

to measurements from EC sites, NEP simulations from

the optimized BEPS model are better than the simu-

lations from the BEPS model with default parameter

values over four different PFTs.
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