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Foliar chlorophyll content in forested ecosystems plays a fundamental role in plant photosynthesis and can
indicate vegetation stress and disturbance. However, leaf chlorophyll retrieval is complicated as canopy
reflectance in the visible and near-infrared wavelengths is affected by confounding effects not only from
leaf pigment concentration but also leaf area index (LAI), canopy architecture, illumination and viewing
geometry and understory vegetation. Unlike empirical indices, which are often developed at leaf-level and
can be species, site and time specific, a process modelling approach can account for the variation of other
variables affecting canopy reflectance; therefore providing a more accurate estimate of chlorophyll content
over multiple vegetation species, time-frames and across broader spatial extents. This study used a linked
canopy (4-Scale) and leaf (PROSPECT) modelling approach to investigate the ability of radiative transfer
models to estimate foliar chemistry for different vegetation types (broadleaf and needle leaf) from optical re-
mote sensing data. Coniferous and deciduous sites were selected in Ontario, Canada, representing different
dominant vegetation species, including black spruce (Picea mariana), sugar maple (Acer saccharum) and
trembling aspen (Populus tremuloides), and a variety of canopy closures and structures. These sites were sam-
pled over multiple time-frames to collect ground data including leaf area index, leaf reflectance spectra
(400–2500 nm) and laboratory leaf chlorophyll content. Canopy reflectance data were acquired from the
Compact Airborne Spectrographic Imager (CASI), Landsat 5 TM and Medium Resolution Imaging Spectrome-
ter (MERIS). The model results show that leaf chlorophyll content derived from satellite images demonstrates
a good relationship with measured leaf chlorophyll content, with validation results of R2=0.62; pb0.001
(MERIS) and R2=0.65; pb0.001 (Landsat 5 TM), and a strong linearity with negligible systematic bias.
CASI data gave a regression coefficient of R2=0.41 (pb0.05) on a reduced dataset. This research provides
theoretical and operational bases for the future retrieval of leaf chlorophyll content across different vegeta-
tion species, canopy structures and over broad spatial extents; crucial characteristics for inclusion in photo-
synthesis and carbon cycle models.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Foliar pigments such as chlorophyll a and b play a crucial role
in plant photosynthesis through the conversion of solar radiation into
stored chemical energy and can provide important information on
gross primary productivity (Curran et al., 1990; Gitelson et al., 2006).
The amount of solar radiation absorbed by a leaf is largely a function
of foliar concentrations of photosynthetic pigments, therefore low con-
centrations of chlorophyll can directly limit photosynthetic potential
and hence primary production (Richardson et al., 2002). Chlorophyll
distribution in vegetation is also strongly related to leaf nitrogen con-
tent (Daughtry et al., 2000) and highlights areas of plant disturbance
and stress, thus acting as a bio-indicator of plant physiological condition
rights reserved.
(Gitelson et al., 2003; Sampson et al., 2003; Zarco-Tejada et al., 2002).
Research shows that chlorophyll content declines more rapidly than
carotenoid content when plants are experiencing stress or during leaf
senescence (Merzlyak&Gitelson, 1995; Sims&Gamon, 2002), resulting
in changes in green peak reflectance (~550 nm) and along the red edge
(690 to 750 nm) (Zarco-Tejada et al., 2001). Physiologically, the varia-
tion in leaf chlorophyll between andwithin species and how it responds
to changing biotic and abiotic factors is of ecological importance
(Richardson et al., 2002). Chlorophyll content is also linked to carbon
and nitrogen cycles and its role in photosynthesis and net primary pro-
ductivity is importantwithin regional and global carbonmodels (Inoue,
2003). The accurate monitoring of canopy chlorophyll content across a
range of temporal and spatial scales is therefore paramount for moni-
toring and understanding a number of ecosystem responses.

In order to accurately model variations in leaf biochemical proper-
ties over large spatial extents and at fine temporal scales, a remote
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sensing approach is essential. There has been considerable research
devoted to investigating leaf optical properties, through the derivation
of statistical relationships with biochemical constituents, in order to re-
trieve chlorophyll content (le Maire et al., 2004; Sims & Gamon, 2002).
At the leaf level, reflectance is controlled by the presence of foliar con-
stituents such as chlorophyll, carotenoids, and water (Asner & Martin,
2008; Ustin et al., 2004).Whilst many empirical indices show strong re-
lationships with chlorophyll content, they have often been developed
and tested using a few closely related species, at the leaf scale and
under controlled laboratory conditions (Blackburn, 1998; Gamon &
Surfus, 1999; Gitelson et al., 2003; le Maire et al., 2004). When scaling
up from a leaf to a branch or canopy, and in field conditions, additional
variables affect themeasured reflectance signal. At the canopy level, re-
flectance is also governed by leaf architecture, leaf area index (LAI),
clumping, canopy height, density, non-photosynthetic canopy elements
(Demarez & Gastellu-Etchegorry, 2000; Simic et al., 2011), along
with solar/viewing geometry, ground cover and understory vegetation
(Broge & Leblanc, 2001). It is therefore possible that reflectance factors
from two forest canopies may be different even if the reflectance
spectra of the constituent leaves are the same (Blackburn, 1998). Conse-
quently, applying empirical indices over larger spatial extents is prob-
lematic and often results in weaker relationships with ground data
(Jacquemoud et al., 2000).

In order to relate leaf biophysical processes to reflectance factors
at the forest stand scale, a physically basedmodelling approach is need-
ed to account for variations in canopy architecture, image acquisition
conditions and background vegetation. Research has demonstrated
the potential of using linked canopy and leaf radiative transfer models
for deriving leaf biochemical constituents (Demarez & Gastellu-
Etchegorry, 2000; Moorthy et al., 2008; Simic et al., 2011; Zarco-
Tejada et al., 2001; Zhang, 2011; Zhang et al., 2008a). However, previ-
ous studies have often focused on one vegetation type (and leaf and
canopy structure) and used reflectance data collected from airborne
platforms. It is crucial therefore, to assess the accuracy of such model-
ling approaches across different vegetation species and across open
and closed canopies. A key question is how well variations in leaf
and canopy structure can be accounted for in efforts to model leaf
chlorophyll content over broader spatial extents and multiple
time-frames.

This study assesses the potential for deriving leaf chlorophyll using a
modelling approach from satellite-derived data, in order to estimate
leaf chlorophyll content over regional spatial extents and finer temporal
scales, afforded by the higher temporal revisit capabilities of satellite
mounted sensors. In particular, the MEdium Resolution Imaging Spec-
trometer (MERIS) was selected due to its very short revisit time
(2–3 days), narrow-band wavelengths covering wavelengths applica-
ble to vegetation studies (15 bands ranging from 390 nm to 1040 nm)
and its high radiometric accuracy (Curran & Steele, 2005). However,
the coarse spatial resolution (MERIS; 1200 m) of such satellite mea-
surements render ground validation difficult, often resulting in a weak
relationship between ground- and satellite-based observations, in part
due to spatial heterogeneity in vegetation properties that can exist
with a coarse pixel (>1 km) (Fisher & Mustard, 2007; Jenkins et al.,
2002). Consequently, an intermediary and independent source of data
is needed to understand the implications of spatial scale on variable
measurement and validate the algorithm at multiple spatial scales
(Chen et al., 2002; Fisher & Mustard, 2007).

In this paper, we detail a methodology for deriving leaf chloro-
phyll content from satellite observations, compare leaf chlorophyll
estimates derived from airborne and two independent satellite sen-
sors, and validate the estimates against ground measurements from
two study sites in Ontario, Canada. The objectives of this research
are to:

- evaluate the retrieval of leaf chlorophyll content from MERIS
satellite data using a physical modelling approach;
- validate modelled leaf chlorophyll estimates using an indepen-
dent satellite data source and measured ground data;

- investigate the impacts of spatial resolution and spatial scale on
leaf chlorophyll estimates.
2. Methods

2.1. Field sites and ground data collection

2.1.1. Haliburton forest
Field sampling was conducted out in a mature sugar maple (Acer

saccharum M.) stand located in Haliburton Forest, Ontario, Canada
(45° 14′ 15.5″N, 78° 32′ 18.0″W; Fig. 1). Haliburton forest falls within
the Great-Lakes–St.-Lawrence region (Rowe, 1972), with an average
annual precipitation of approximately 1050 mm and mean annual
temperature of 5 °C (Gradowski & Thomas, 2006). The site is under-
lain by shallow brunisols or juvenile podzols (pH 4.2–5.1); mainly
silty sands from Precambrian Shield granite or granite-gneiss deposits
(Gradowski & Thomas, 2006). The upland hardwood forests of
Haliburton Forest are dominated by sugar maple but also contain
beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis
(L.) Carr.), and yellow birch (Betula alleghaniensis Britt.) (Caspersen
& Saprunoff, 2005). Ground-based sampling in the sugar maple
(SM) stand was carried out 7 times during 2004 growing season
from 10th June to 30th September (Zhang et al., 2007).

2.1.2. Sudbury
A total of eleven sites were sampled located northwest of Sudbury,

Ontario (46° 49′ 13″ N to 47° 12′ 9″ N and 81° 22′ 2″ W to 81° 54′ 30″
W; Fig. 1). The sites are situated at an elevation of approximately
350 m above sea level, with a flat topography and underlain by shallow
soils on Canadian Shield bedrock. Temperatures range from −40 °C to
30 °C, with a mean annual temperature of 5 °C and mean annual pre-
cipitation of approximately 800 mm (Leithead et al., 2012), with
snow-covered ground from December to March (Rayfield et al., 2005).
The dominant vegetation includes black spruce (Picea mariana Mill.)
and jack pine (Pinus banksiana), with deciduous forest patches con-
taining aspen (Populus tremuloides Michx). Six black spruce (BS) sites
were sampled in the summer of 2003 and 2004 (Zhang et al., 2008a),
and three black spruce and two trembling aspen (As) sites during
the summer of 2007 (Simic et al., 2011). The sites contain mature
black spruce stands of different ages and crown closures. Understory
species included bog Labrador tea (Ledum groenlandicumOeder), lichen
(Cladonia cristatella), Feathery Bog-moss (Sphagnum cuspidatum), grass
and bog rosemary (Andromeda polifolia) and dense green moss (Zhang
et al., 2008a).

The selected deciduous and coniferous sites represent a range of
canopy structural conditions (LAI and foliage clumping index (Ω)),
leaf types and vegetation health (Table 1).

2.1.3. Leaf reflectance and chlorophyll content
Leaf reflectance factors and chlorophyll content (μg/cm2)weremea-

sured in order to validate modelled results from airborne and satellite-
derived data. Leaves and shoots were sampled from the upper canopy
using a shotgun, sealed in plastic bags and kept at a temperature of
0 °C for further analysis (Zhang et al., 2007). Leaf reflectance and trans-
mittance were measured with an ASD spectroradiometer Fieldspec Pro
FR (Analytical Spectral Devices, Inc. Boulder, USA) attached via a fiber
optic cable to a Li-Cor 1800 integrating sphere (Li-Cor 1800-12S,
Li-COR, Inc., Lincoln, Nebraska, USA). Reflectance and transmittance
spectra were measured using methods described by Harron (2000).
The needle leaves were placed in specially designed black anodized
carriers to take spectral measurements (Harron & Miller, 1995; Zhang
et al., 2008b). For broadleaf samples, leaveswere clamped into the sam-
ple port on the sphere wall (Zhang et al., 2007). Total leaf chlorophyll



Fig. 1. Site locations of Haliburton (orange outline) and Sudbury (grey outline) in Ontario, Canada.
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(Chl a+b) content (μg/cm2) wasmeasured using themethod reported
by Moorthy et al. (2008).

2.1.4. Canopy structural parameters
Leaf area index and forest canopy structure are important param-

eters in retrieving leaf-level reflectance factors from airborne and sat-
ellite platforms using canopy reflectance models. Canopy architecture
can also play a perturbing role in modelling leaf chlorophyll content
from reflectance factors (Blackburn, 1998). Consequently, it is impor-
tant to obtain accurate ground measurements of forest structural pa-
rameters in order to validate satellite-derived measurements of LAI.
Effective LAI (Le) was measured using the LAI-2000 plant canopy
analyser (Li-Cor, Lincoln, NE, USA) (Chen et al., 1997). The element
clumping index and leaf area index were measured using TRAC (Trac-
ing Radiation and Architecture of Canopies) (Chen & Cihlar, 1995).
Structural parameters of trees (density, height and diameter breast
height) were also measured and understory reflectance was measur-
ing using the ASD Fieldspec Pro Spectroradiometer for the dominant
species present at each site (Simic et al., 2011; Zhang et al., 2008a).

2.2. Remote sensing data acquisition and processing

2.2.1. Airborne CASI data
Hyperspectral airborne images were acquired by the Compact

Airborne Spectrographic Imager (CASI) over five black spruce sites
Table 1
Site locations, structural parameters and vegetation type and condition.

Location Site ID Location

Haliburton Ha164 45°14′16″N, 78°32′18″W
Ha193 45°14′16″N, 78°32′18″W
Ha199 45°14′16″N, 78°32′18″W
Ha214 45°14′16″N, 78°32′18″W
Ha246 45°14′16″N, 78°32′18″W
Ha263 45°14′16″N, 78°32′18″W
Ha275 45°14′16″N, 78°32′18″W

Sudbury 2003
and 2004

Sb2 47°12′08″N, 81°54′29″W
Sb3 46°49′17″N, 81°22′06″W
Sb4 46°49′13″N, 81°22′30″W
Sb5 46°54′27″N, 81°25′11″W
Sb7 47°09′45″N, 81°44′32″W
Sb9 47°11′58″N, 81°52′01″W

Sudbury 2007 As25 47°09′48″N, 81°42′23″W
As26 47°09′32″N, 81°43′09″W
Sb17 47°09′50″N, 81°44′36″W
Sb24 47°10′19″N, 81°42′33″W
Sb8 47°09′45″N, 81°43′37″W
on September 5, 2003 and all six sites from 14–16th August, 2004
(Table 2). CASI records on-nadir radiance in 72 channels at a 7.5 nm
spectral resolution from 408 nm to 947 nm at a 2 m spatial resolution.
The images were radiometrically corrected to “at sensor” radiance
by the Earth Observations Laboratory at York University and atmo-
spherically corrected using CAM5S and ground aerosol optical depth
to give reflectance data (O' Neill et al., 1997). The CASI imagery was
georeferenced using GPS data and visual identification of 2×2 m
ground white targets collected at the centre of the sites, Final reflec-
tance spectra were generated after flat field adjustments were applied
(Zhang et al., 2008a). The CASI data were spatially aggregated to
Landsat scale (30 m) spatial resolution to allow direct comparison in
differences in Landsat and CASI spectral resolution on chlorophyll re-
trieval and due to the modelling characteristics of the 4-Scale canopy
model (Section 2.3.1), where reflectance inputs must contain a number
of tree crowns within a pixel.

2.2.2. Satellite Landsat 5 TM data
In order to assess how modelled foliar chlorophyll content changes

across different spatial sampling units, from ground-based leaf-level
measurements to medium spatial resolution satellite data (1200 m),
an intermediary satellite data source from Landsat 5 TM (30 m) was
employed. The Landsat 5 TM images were radiometrically and geomet-
rically corrected and georeferenced to UTM map projection. Landsat
scenes were selected as closely as possible to the time frame of ground
Vegetation LAI ΩE Condition

Broadleaf 4.12 0.86 Healthy
Broadleaf 7.15 0.90 Healthy
Broadleaf – – Healthy
Broadleaf 5.45 0.98 Healthy
Broadleaf – – Healthy
Broadleaf 5.34 0.94 Healthy
Broadleaf 4.86 0.93 Healthy
Needle leaf 3.97 0.81 Healthy
Needle leaf 2.36 0.88 Stressed
Needle leaf 3.21 0.84 Stressed
Needle leaf 3.09 0.80 Healthy
Needle leaf 1.14 0.85 Stressed
Needle leaf 3.83 0.84 Healthy
Broadleaf 4.16 0.86 –

Broadleaf 2.23 0.85 –

Needle leaf 4.99 0.81 –

Needle leaf 3.94 0.87 –

Needle leaf 2.58 0.84 Stressed



Table 2
Ground, CASI, Landsat 5 TM and MERIS data acquisition dates and conditions.

Location ID Ground CASI Landsat 5 TM MERIS

Date Date ϑi, ϑr, φ Date ϑi, ϑr, φ Date ϑi, ϑr, φ

Haliburton Ha162 10/06/04 – – 04/06/04 30°,0°,134° 25/06/04 31°,29°,25°
Ha183 01/07/04 – – 06/07/04 30°,0°,130° 17/07/04 32°,17°,65°
Ha209 27/07/04 – – – – 01/08/04 31°,25°,143°
Ha229 16/08/04 – – 16/08/04 37°,0°,139° 24/08/04 40°,9°,39°
Ha243 30/08/04 – – – – 02/09/04 41°,17°,135°
Ha255 11/09/04 – – – – 19/09/04 49°,33°,45°
Ha274 30/09/04 – – – – 05/10/04 55°,17°,49°

Sudbury 2003 08/03 05/09/03 40°,0°,0° 16/06/03 30°,0°,133° 14/08/03 35°,19°,140°
Sudbury 2004 08/04 14–16/08/04 30–55°,0°,0° 11/06/04

05/08/04
30°,0°,136°
35°,0°,140°

07/08/04 38°,6°, 38°

Sudbury 2007 08/07 – – 11/06/07 29°,0,°141° 13/08/07 36°,15°,140°

ϑi,=solar zenith angle; ϑr,=viewing zenith angle; φ=azimuth angle.
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data collection (Table 2). The Landsat scenes were atmospherically
corrected using cosine estimation of atmospheric transmittance (COST
model; Chavez, 1996). Whilst radiative transfer methods (e.g. 6S and
MODTRAN (Berk et al., 1998; Vermote et al., 1997)) can produce more
accurate results, they usually require coincident atmospheric measure-
ments such as aerosol optical depth, water vapour and ozone, to
parameterise the model (Sharma et al., 2009). Mahiny and Turner
(2007) found that 6S produced anomalous results when all the detailed
data on atmospheric condition that is required was not used. As these
measurements were not available, this study used the COST model
(Chavez, 1996), which is an absolute image-based method (Mahiny &
Turner, 2007). In the COST model, the cosine of sun zenith angle is
used to approximate the effects of absorption by atmospheric gases
and Rayleigh scattering for individual spectral bands (Eq. (1)).

ρ ¼ π � d2 � Lλsat−Lλhazeð Þ=ESUNλ � cos2θ ð1Þ

where p=reflectance factor; Lλsat=spectral radiance at the sensor;
Lλhaze=path radiance; d=earth–sun distance (AU); ESUN=mean
solar exoatmospheric irradiances; solar zenith angle (°). The solar
exoatmospheric spectral irradiances (ESUN) for the Landsat 5 TM
were obtained from Chander et al. (2009), based on previous calcula-
tions from Markham and Barker (1986). Path radiance (Lλhaze) was
obtained from pixels of known zero reflectance like large deep water-
bodies and assuming that any value in the raw image in these areas
other than zero represents haze effects. This value was subsequently
verified through a band specific histogram analysis by examining the
step in pixel radiance values, usually occurring at 1% for the image
(Chavez, 1988).

2.2.3. Satellite MERIS data
Ten MERIS Reduced Resolution Level 2 (1200 m) images were used,

covering both Haliburton and Sudbury study sites (Table 2). MERIS is a
medium-spectral resolution imaging spectrometer, measuring surface
reflectance in fifteen spectral bands from415–885 nmand has a tempo-
ral revisit time of 2–3 days. MERIS Level 2 (L2) products are radiometri-
cally and atmospherically corrected, for Rayleigh scattering, ozone,
water vapor absorption and aerosol content. The Level 2 products con-
tain both surface reflectance and geolocated geophysical parameters, in-
cluding geometric information, solar and viewing geometry, terrain
height, some meteorological data and several flags that address the
quality and the validity of the image (Canisius et al., 2010). The MERIS
Level 2 imageswere reprojected toWGS 84 andUTM coordinate system
(UTM 18) and resampled using nearest neighbour interpolation using
the BEAM VISAT software application. The MERIS images were also
co-registered and geometrically corrected using tie points, which were
distributed evenly throughout the image and contained geo-location
coordinates.
2.2.4. Landsat and MERIS spectral comparison
Sensors on different satellite platforms canmeasure spectral radiance

across a range of different wavebands and bandwidths, with systematic
differences occurring according to different measured components of
surface variables within a pixel (Guyot & Gu, 1994; Steven et al., 2003).
It is therefore not possible to directly compare reflectance factors from
sensors sampled at differing bandwidths. In order to use Landsat data
for this study, differences in reflectance that arose from sensor charac-
teristics was explored in order to derive an adjustment factor for com-
parability with MERIS data. Landsat 5 bands were simulated from
hyperspectral reflectance from a typical black spruce reflectance spec-
tra, sampled using an ASD spectroradiometer (Section 2.1.3). The spec-
tral response function of a sensor describes its relative sensitivity to
different wavelengths, and was used to calculate reflectance factors in
simulated Landsat bands, as a weighted sum of hyperspectral reflec-
tance and the SRF (Eq. (2)).

L ¼
XN
λ¼1

β λð ÞL′ λð Þ=
XN
λ¼1

β λð Þ ð2Þ

where L and L′(λ) is reflectance in the larger bandwidth and reflectance
data in the originalwavelength andβ(λ) is theweight of the spectral re-
sponse function (Chen et al., 2002). Simulated bands have also been
used to investigate the effects of different sensor bandwidths and spec-
tral response functions on NDVI values, and to formulate corrections for
biases to allow cross sensor comparisons (Steven et al., 2003). Fig. 2
demonstrates the differences in reflectance that occurs as a result of
broader bandwidths (simulated from hyperspectral reflectance) for a
typical black spruce reflectance spectra, compared to hyperspectral
and simulated MERIS data.

Fig. 2 shows that the greatest differences between MERIS and
Landsat-derived reflectance occurs in green and red wavelengths,
where there are larger variations in hyperspectral reflectance factor
across the Landsat band extent. The sub-band variations in reflec-
tance are 'smoothed' by the larger Landsat bandwidth, causing simu-
lated Landsat reflectance factors in the green band (520–600 nm) for
example, to be >10% lower than then the simulated MERIS-derived
reflectance at 560 nm (±10 nm). Consequently, correction factors
were derived for both broadleaf and deciduous species, to empirically
correct Landsat reflectance to MERIS narrowband reflectance, and to
compensate for this spectral smoothing across larger bandwidths.
The correction factors are shown in Fig. 2 for the MERIS bands
which spectrally overlap with Landsat bands, with two additional
MERIS bands at 445 nm and 755 nm, due to their spectral proximity
to the Landsat bands (b5 nm) in a region showing negligible spectral
changes between the hyperspectral data and Landsat data. The cor-
rection factors were calculated using hyperspectral leaf reflectance
rather than canopy reflectance, which may be contribute to some



Fig. 2. Differences in needle leaf reflectance according to spectral bandwidth for hyperspectral data and simulated Landsat and MERIS reflectance, shown for Landsat bands a) blue;
b) green; c) red; d) NIR. The values represent the correction factors for Landsat derived reflectance to MERIS bands.
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uncertainty in corrected results for the canopy data, particularly in
the NIR, due to the presence of additional canopy variables and back-
ground contributions. As the 620 nmMERIS band was not covered by
Landsat data, it was modelled by linear spectral interpolation be-
tween the 560 nm and 665 nm bands, in accordance with the linear-
ity between 560–620 nm for MERIS derived reflectance factors. This
interpolation was considered important in order to compare the
modelled chlorophyll content from Landsat and MERIS sensors as a
result of differences in spatial scale rather than as a result of differ-
ences in the spectral input into PROSPECT. Whilst the interpolation
in canopy reflectance data was linear, the algorithm to model leaf re-
flectance from canopy reflectance is wavelength dependent and will
lead to reflectance factors at 620 nm independent of reflectance at
560 and 665 nm. In order to assess the error associated with model-
ling chlorophyll from reduced wavebands and coarser bandwidths
relative to hyperspectral reflectance, the PROSPECT leaf radiative
transfer model was used to compare derived chlorophyll values (see
Section 2.3 for more details). The RMSE values from MERIS, Landsat
and ‘Landsat adjusted’ chlorophyll estimates against hyperspectral
derived chlorophyll were found to be 0.67, 1.60 and 0.91 ug/cm2, re-
spectively. The chlorophyll estimates using original Landsat bands
also demonstrate a strong performance in chlorophyll retrieval, al-
though the Landsat adjustment further reduces the error in modelled
chlorophyll by 0.59 ug/cm2.

2.3. Modelling leaf chlorophyll content

Foliar chlorophyll content was modelled using a canopy geometrical–
optical model (4-Scale; Chen & Leblanc, 1997) linkedwith a leaf radiative
transfer model (PROSPECT; Jacquemoud & Baret, 1990). The linking of
canopy and leaf models to retrieve leaf and canopy chlorophyll content
has been demonstrated previously using a range of different model com-
binations, mainly using airborne data. These include SAILH (Kuusk, 1985)
with LIBERTY (Dawson et al., 1998) and PROSPECT (Moorthy et al., 2008),
SPRINT (Goel & Thompson, 2000) and PROSPECT (Zarco-Tejada et al.,
2004) and 4-Scale with PROSPECT for airborne CASI data (Simic et al.,
2011; Zhang et al., 2007, 2008a).

2.3.1. Leaf reflectance inversion
For canopy modelling, whilst many studies have previously used

turbid medium models such as SAIL (Verhoef, 1984), these models do
not take account of canopy structural variables, such as crown shape,
clumping of foliage elements and tree distribution. Crown shadowing
dominates in closed canopies and the effects of background reflectance
and shadows dominate in open canopies (Chen & Leblanc, 1997;
Demarez & Gastellu-Etchegorry, 2000). As forest canopies cannot be
treated simply as a turbid medium, the integration of geometrical-
optical techniques can be used to correct for the influences of canopy
architecture on reflectance factors and account for multiple scattering
effects (Chen & Leblanc, 1997; Gastellu-Etchegorry et al., 1996; Li
et al., 1995). This is because reflected radiance fromshaded components
is determined by first-order scattering (separating sunlit and shaded
components), and then multiple scattering from subsequent interac-
tions between light and vegetation or background material (Chen &
Leblanc, 2001). Crucially for this study, hybrid models apply the scien-
tific principles of both geometric and turbid medium models, and can
therefore be applied to both sparse and dense canopies (Goodenough
et al., 2006). The 4-Scalemodel (Chen& Leblanc, 1997) simulates the bi-
directional reflectance distribution function (BRDF) based on canopy
architecture at four scales: 1) tree groups, 2) tree crown geometry, 3)
branches, and 4) foliage elements (Chen & Leblanc, 2001). The model
considers both the structural effects of tree branches and scattering el-
ements and also the spatial distribution of tree groups and the geometry
of tree crowns. Deciduous crowns aremodelled as a spheroid and conif-
erous crowns as a cone and cylinder, both of variable dimensions. A
crown is represented as a complex medium, where mutual shadowing

image of Fig.�2
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occurs between shoots or leaves, meaning that sunlit foliage can be
viewed on the shaded side and shadowed foliage can be viewed on
the sunlit side.

4-Scale was run in the forwardmode, using fixed and variable struc-
tural parameters and leaf and understory reflectance spectra to model
canopy reflectance. To derive leaf level reflectance, the 4-Scale model
was inverted using a look-up-Table (LUT) approach. LUT methods are
computationally efficient and can overcome the difficulty of local mini-
ma, by giving the global minimum, providing the variable space is
sufficiently sampled (Jacquemoud et al., 2009). The fixed structural pa-
rameters were based on ground measurements and reported values in
the literature (e.g. Chen & Leblanc, 1997) and are listed in Table 3.
Zhang et al. (2008a) provide a discussion of the sensitivity of the
model to certain canopy structural parameters, including LAI, stem den-
sity, tree height and crown radius. Variable parameters were solar
zenith angle (ϑi), viewing zenith angle (ϑr), and azimuth angle (φ)
which were obtained from image acquisition metadata, and LAI which
was calculated using an empirical algorithm (discussed further in
Section 2.3.3).

The element clumping index (ΩE) is related to canopy architecture
and properties such as crown size and tree density (Kurcharik et al.,
1997) and is important for estimating radiation interception and distri-
bution in plant canopies (Simic et al., 2010). The non-random spatial
distribution of trees is simulated using the Neyman type A distribution
(Chen & Leblanc, 1997); representing clumping and patchinesswithin a
forest stand. Fr controls the repulsion effect which determines if
branches from one tree are allowed to overlap with branches from
other trees. Fr=1 means maximum repulsion and no overlap at nadir
and Fr=0 means no repulsion and overlapping is allowed. In addition
to the canopy variables listed in Table 3, the composition and reflec-
tance properties of the forest floor also affect the accuracy of modelled
chlorophyll content values (Verrelst et al., 2010; Zarco-Tejada et al.,
2004; Zhang et al., 2008a). An understory layer was therefore included
to represent the optical properties of background components at both
the Haliburton and Sudbury test sites.

Based on the input parameters, the 4-Scale model calculates cano-
py reflectance as a linear summation of four components (Chen &
Leblanc, 2001); the sunlit vegetation (ρPT), shaded vegetation (ρZT),
sunlit ground (ρPG) and shaded ground (ρZG), as shown in Eq. (3),
where FPT, FPG, FPG and FZT represent the probability of viewing each
component, respectively.

ρ ¼ ρPTFPT þ ρZTFZT þ ρPGFPG þ ρZGFZG ð3Þ

4-Scale also includes a multiple scattering scheme for 2nd order
scattering and above (Chen & Leblanc, 2001). In order to derive leaf
reflectance from canopy reflectance, the enhancement of both sunlit
and shaded reflectance due to multiple scattering must be accounted
for, using a multiple scattering factor (M factor; Simic et al., 2011;
Table 3
Canopy structural parameters and background component for coniferous and vegeta-
tion sites.

Parameter Deciduous Coniferous

Stick height (Ha) 10 m 5 m
Crown height (Hb) 8 m 5 m
Crown radius (R) 1.25 m 0.85 m
Crown shape Spherical Cone+cylinder
Tree density (per hectare) 1100 2800
Neyman tree grouping factor 2 4
Element clumping index (ΩE) 0.8 0.89
Needle:shoot ratio (γE) 1 1.4
Element width (Ws) 0.15 m 0.04 m
Repulsion factor (Fr) 0.5 0.5
Understory vegetation Maple saplings and wood Soil and moss
Zhang et al., 2008a). This was calculated using the proportions of sun-
lit and shaded components output from 4-Scale:

M ¼ ρ−ρPGFPG
ρLFPT

ð4Þ

where ρ is the canopy-level reflectance simulated by 4-Scale, ρL is
measured leaf reflectance, ρPG is background reflectance and FPG is
the fraction of background reflectance. Finally, the M factor (Eq. (4))
is used to invert satellite reflectance data to model leaf reflectance
factor (ρL).

ρL ¼
ρsatellite−ρPGFPG

MFPT
ð5Þ

The use of the M factor allows for the simplification of Eq. (3) into
Eq. (5), and it serves for two purposes: (1) to include the two less var-
iable shaded components, and (2) to convert the sunlit crown reflec-
tance to sunlit leaf reflectance. The LUT developed using the 4-Scale
model includes the variations of the two shaded components with
sun and view angles and canopy geometry.

2.3.2. Leaf chlorophyll content retrieval
The leaf radiative transfer model PROSPECT (Jacquemoud & Baret,

1990) was selected to generate leaf chlorophyll content based on the
modelled leaf reflectance spectra. Leaf optical properties (reflectance
and transmittance) from 400 to 2500 nm are defined in PROSPECT as a
function of four parameters: structure parameter, chlorophyll (a+b)
concentration, dry matter content and water. Absorption is calculated as
the linear summation of the specific absorption coefficients of biochemi-
cal constituents and their respective concentrations. PROSPECT has had
widespread validation across a number of vegetation species and func-
tional types, including broadleaf (Demarez & Gastellu-Etchegorry, 2000;
Jacquemoud et al., 1995a,b) and coniferous trees (Kötz et al., 2004;
Zarco-Tejada et al., 2004). It also requires a smaller number of input
parameters than other leaf-level models, is readily inverted (Moorthy
et al., 2008) and there is good agreement between reflectance spectra
and chlorophyll content in forward simulations (Zarco-Tejada et al.,
2004). Due to the inclusion of both broadleaves and conifer needles in
the study sites, a version of PROSPECTmodified for application with co-
nifer needles (Zhang et al., 2008b) was used, which introduced a leaf
thickness factor to account for the effects of changes in the leaf width
relative to leaf thickness on light absorption (Zhang et al., 2008b).
Modelled leaf transmittancewas derived from the spectral ratio ofmea-
sured reflectance and transmittance for broadleaf and needle leaf sam-
ples and applied to modelled leaf reflectance, derived from Eq. (5)
(Zhang et al., 2008a).

2.3.3. Leaf area index
LAI is a highly spatially and temporally variable structural param-

eter influencing the probabilities of viewing the sunlit foliage and
background and the multiple scattering factor (Simic et al., 2010;
Zhang et al., 2008a). Due to its variation in space and time, LAI was
also derived from the CASI, Landsat and MERIS satellite imagery to
give spatially-continuous LAI values. Satellite imagery has demon-
strated results for LAI retrieval at a range of different spatial and tem-
poral scales (Abuelgasim et al., 2006; Chen & Cihlar, 1996; Chen et al.,
2002; Weiss et al., 2007). The Reduced Simple Ratio (RSR) has shown
a more linear relationship with LAI than NDVI and is less likely to
saturate at higher LAI conditions (Chen et al., 2002). In comparison
to the simple ratio (SR; Red/NIR), RSR (Eq. (6)) is less sensitive to
differences in cover types, enabling more accurate modelling of LAI
in mixed cover types and allowing the development of a single LAI al-
gorithm (Chen et al., 2002). RSR is also less influenced by background



Fig. 3. Relationship between Landsat SR and Landsat RSR.
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contributions (soil, moss cover, understory, leaf litter) than SR (Chen
et al., 2002).

RSR ¼ ρNIR

ρρ
1−

ρSWIR−ρSWIRmin

ρSWIRmax
−ρSWIRmin

 !
ð6Þ

where ρNIR, ρred, and ρSWIR are the reflectance in NIR, red, and SWIR
band, respectively. Minimum andmaximum SWIR reflectance (ρSWIRmin

and ρSWIRmax) were defined as the 1% minimum and maximum cut-off
in SWIR reflectance histograms for each image. LAI values were
modelled using empirical algorithms developed by Chen et al. (2002)
in a comprehensive study of different land covers across Canada. In
this paper, the Coniferous algorithm (Eq. (7)) gave the strongest results
for both coniferous and deciduous species.

LAI ¼ RSR=1:242 ð7Þ

The absence of a SWIR band in CASI and MERIS data meant that
RSR could not be calculated directly for these products. Consequently,
LAI values were retrieved by first correcting SR to RSR using a calibra-
tion factor derived from the relationship between Landsat SR and
Landsat RSR (Fig. 3).

The modelled LAI values from RSR are shown in Fig. 4 for each data
source. The CASI and Landsat LAI data were calculated as an average
value from 3×3 Landsat pixels centred on the ground site to reduce
positional inaccuracy and the MERIS data are shown for a 1200 m
pixel.
Fig. 4. Measured LAI against modelled LAI for a) CASI (RMSE=1.82); b) Landsat 5 T
2.3.4. Leaf chlorophyll scaled from fine- to coarse spatial resolution
products

The coarse spatial scale of satellite-derived biophysical products
(e.g. ≥500 m) makes validation with ground data complex and
prone to uncertainty (Chen et al., 2002; Fisher & Mustard, 2007;
Jenkins et al., 2002). Relationships between ground measurements
and coarse scale satellite measurements may be low due to the spatial
heterogeneity present within a pixel (Fisher & Mustard, 2007), not
only in leaf chlorophyll content but also variables such as tree species,
tree density, LAI and areas of bare ground. In this study, we used both
airborne CASI and Landsat 5 TM data (30 m) to act as an intermediary
between ground measurements and MERIS RR data (1200 m). The
use of CASI data also allowed assessment of the impact of the coarse
spectral resolution of Landsat TM data on chlorophyll estimates.
Hyperspectral CASI data (aggregated to 30 m) was used to investigate
the relationship between hyperspectral and broadband derived chlo-
rophyll at a smaller number of sites due to CASI data availability; re-
ducing the range of data available for analysis. The narrow CASI swath
extent restricted the ability to also scale up CASI chlorophyll esti-
mates to MERIS spatial resolutions.

The spatial aggregation process of reflectance factors can cause
errors in coarser resolution surface parameter and algorithms that
define the relationship between aggregated reflectance and the sur-
face parameter (Simic et al., 2004). Mathematically, the correct way
to obtain chlorophyll content for a coarse pixel (MERIS 1200 m),
consisting of n small pixels (Landsat TM 30 m), is to calculate the
chlorophyll value of each small pixel, and then take the arithmetic
mean of all of the small pixels (Chen, 1999). These values and algo-
rithms are called distributed products (ChlD). Remote sensing prod-
ucts generated at coarse resolutions or where fine-scale reflectance
is first aggregated to the coarse scale pixel are denoted as lumped
products (ChlL) and algorithms (Chen, 1999; Hu & Islam, 1997;
Simic et al., 2004). Following the procedures outlined in Chen et al.
(2002), leaf chlorophyll maps were produced for each Landsat scene
using the algorithms outlined in previous sections and the same as
applied to MERIS data. The fine spatial resolution chlorophyll maps
were then resampled into coarse resolution (1200 m) MERIS pixels
(ChlD and ChlL).

3. Results and discussion

3.1. Modelled leaf reflectance

The 4-Scale canopy model was used to model leaf reflectance for
broadleaves and conifer needles using a-priori determined structural
parameters (Table 3) over a range of different solar and viewing ge-
ometries ϑi=29°–55°; ϑr=0°–33°). The same model parameters
and algorithm was performed for CASI, Landsat and MERIS derived
reflectance factors. Fig. 5 displays measured (ground) leaf reflectance,
M (RMSE=1.67); c) MERIS (RMSE=1.41). The 1:1 line is shown for all cases.
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Fig. 5. Modelled and measured leaf reflectance and transmittance spectra and canopy reflectance for CASI, Landsat and MERIS data for broadleaf and coniferous sites.
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modelled leaf reflectance from CASI, Landsat and MERIS pixels of
three ground sites, and the original airborne or satellite reflectance
spectra. The Landsat reflectance spectra contain modelled reflectance
factors at MERIS wavelengths (see Section 2.2.4). The airborne or sat-
ellite reflectance spectra may not necessarily be the same for both
sensors due to different acquisition conditions. Importantly, Fig. 5
demonstrates the correspondence between modelled and measured
leaf reflectance spectra.

The leaf spectra are well modelled for Haliburton sites (Fig. 5d,g),
which exhibit higher LAI values, closed canopies and less spatial hetero-
geneity than coniferous sites. Modelled results show a close corre-
spondence with ground measurements for visible and near-infrared
wavelengths, which are largely a function multiple scattering effects
and is related to LAI and leaf distribution. The strong correlation
between modelled and measured leaf spectra, for a range of image
acquisition conditions, indicates that the model corrects well for vary-
ing solar and viewing geometries, which affects the relative contribu-
tions of sunlit and shaded foliage and background components. The
CASI data contained low reflectance values below 500 nm due to prob-
lemswith atmospheric correction in blue wavelengths. Reflectance fac-
tors from the two independent satellite data sources also demonstrate a
consistency in modelled values. The accuracy of the leaf reflectance re-
trieval indicates that both the 4-Scale inversion algorithm and multiple
scattering factor (Zhang et al., 2008a), are correcting for tree architec-
ture and mutual shadowing within and between tree crowns. The LUT
tables for deciduous and coniferous species are correctly parameterising
forest structure and themanner inwhich leaf, branch and canopy struc-
tures interact with solar irradiance. The modelled leaf reflectance fac-
tors are now removed of canopy, background and image acquisition
factors and can be used for leaf chlorophyll inversion.

3.2. Modelling foliar chlorophyll from ground measurements

In order to evaluate the accuracy of modelled leaf chlorophyll con-
tent from satellite reflectance data, it is first necessary to assess the
inherent accuracy and uncertainty associated with the PROSPECT
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Fig. 6. Modelled leaf chlorophyll from PROSPECT against measured leaf chlorophyll for
coniferous and broadleaf species (pb0.001; RSME =4.28 μg/cm2).
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leaf radiative transfer model. Laboratory measured leaf chlorophyll
content is compared to modelled leaf chlorophyll content derived
from leaf reflectance factors measured using a spectroradiometer
(Fig. 6), for both broadleaves and needles. The leaf area measured
by the spectroradiometer directly corresponded to the area used to
measure chlorophyll content in the laboratory. Only leaf reflectance
at MERIS wavebands was used as an input into the PROSECT model.
Consequently, this analysis removes any error associated with atmo-
spheric scattering, spatial heterogeneity within a pixel and the influ-
ence of non-photosynthetic elements, background vegetation and
changing LAI, to give a quantifiable indication of the accuracy of the
leaf chlorophyll inversion model.

The strong relationship between measured and modelled leaf
chlorophyll content exists despite the inclusion of different leaf
shapes and internal structures and displays a high degree of linearity
(slope=0.75, intercept=9.52). The strength of the regression (R2=
0.75) also compares well to previous findings, where Zarco-Tejada
et al. (2004) found a relationship between needle leaf reflectance
spectra and PROPSECT inverted chlorophyll content of R2=0.4.
Moorthy et al. (2008) found that comparisons between PROSPECT es-
timated needle-level pigment content and laboratory measurements
yielded a RMSE of 12.6 μg/cm2 with a R2=0.54, which increased to
yield an RMSE of 7.9 μg/cm2, with the inclusion of a transmission
normalization factor to account for the shape of conifer needles com-
pared to broadleaves. Given the inclusion of both broadleaf and coni-
fer needles spectra in the PROSPECT inversion, the dynamic range of
Fig. 7.Modelled and measured leaf chlorophyll content for a) CASI (pb0.05; 10.45 μg/cm2);
data.
chlorophyll content is large. The high coefficient of determination
demonstrates the suitability of the leaf radiative transfer model for
modelling leaf level chlorophyll for multiple species and leaf struc-
tures and shapes.

3.3. Modelling foliar chlorophyll content from airborne and satellite
measurements

At the canopy scale, reflectance factors are a function of leaves,
stems, branches and other non-photosynthetic materials, background
material and shaded components. Consequently, it is important to
account for these variables in deriving leaf reflectance from airborne
or satellite platforms. The results for modelled leaf chlorophyll con-
tent from both Landsat and MERIS reflectance data are shown in
Fig. 7. CASI (30 m) and Landsat chlorophyll results were produced
from average modelled chlorophyll data from 3×3 pixels around
the ground site to reduce the impacts of geographic location inaccura-
cies and the impact of non-vegetative influences on pixel reflectance,
particularly as some of the sites were located close to roads which
affected reflectance factors.

Both sources of satellite data show reasonably strong validation
results (R2=0.65 and 0.62, for Landsat and MERIS data, respectively),
with a high linearity around the 1:1 line and a consistency between the
different data sources and spatial resolutions. The relationship between
leaf chlorophyll estimation obtained through 4-Scale and PROSPECT
obtained slope values close to 1 (1.34 and 0.91) and small intercepts
(9.81 and 4.83). The modelled CASI chlorophyll estimates also show a
strong relationship tomeasured chlorophyll values, with results around
the 1:1 line. A lower regression coefficient (R2=0.41) is found than
from Landsat andMERIS data, which is likely attributable to the smaller
range of values tested, and an absence of higher chlorophyll contents
from broadleaf sites. Nonetheless, the strong linearity around the 1:1
line in the results of all products indicates that there was no systematic
underestimation or overestimation of leaf chlorophyll content using
this algorithm and site structural parameters.

3.4. Cross-validation of modelled leaf chlorophyll content from Landsat
and MERIS data

To assess the effects of sub-pixel heterogeneity on coarse spatial scale
MERIS derived chlorophyll measurements, Landsat derived leaf chloro-
phyll content was aggregated toMERIS (1200 m) pixels. Fig. 8a was cal-
culated by taking themean reflectance in each Landsat bandwithin each
1200 mMERIS pixel and applying the leaf reflectance inversion and leaf
chlorophyll algorithmto the1200 m reflectance. This aggregationmeth-
od produced lumped leaf chlorophyll content (ChlL) estimates. Fig. 8a
compares leaf chlorophyll content retrieved from MERIS reflectance
b) Landsat 5 Tm (pb0.001; 8.87 μg/cm2) and c) MERIS (pb0.001; RSME=6.42 μg/cm2)
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Fig. 8. The relationship between MERIS derived leaf chlorophyll content and scaled Landsat chlorophyll content a) Landsat lumped chlorophyll (ChlL) values (pb0.005; RMSE=
9.93 μg/cm2) and b) Landsat distributed chlorophyll (ChlD) values (pb0.01; RMSE=7.42 μg/cm2).
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and from aggregated Landsat reflectance at a 1200 m resolution (ChlL).
The relationship between the leaf chlorophyll content derived from the
two sensors is highly significant (pb0.005).

As the relationships between surface reflectance in the various
bands and the leaf chlorophyll are non-linear, it is expected that con-
siderable error exists in the retrieved leaf chlorophyll content for the
large 1200 m pixels when they are spatially heterogeneous. A more
accurate way is to model leaf chlorophyll content at Landsat 30 m
resolution and then aggregate the chlorophyll estimates to 1200 m
resolution, giving distributed chlorophyll estimates (ChlD) (Chen
et al., 2002). This is because lumped (ChlL) reflectance averaging pro-
cess masks sub-pixel variations and introduces biases when used to
retrieve surface parameters, even using the same algorithms (Chen,
1999). This is due to spatial differences in land cover, which causes
non-linearity in the relationship between reflectance and leaf chloro-
phyll content. Fig. 8b shows the comparison of leaf chlorophyll con-
tent (ChlD) calculated at 30 m resolution and scaled to 1200 m with
leaf chlorophyll estimated from MERIS 1200 m reflectance data. The
relationship exhibits a similar degree of scatter to Fig. 8a, and it is
still around the 1:1 line, with a good linearity and statistical signifi-
cance (pb0.01). Fig. 8b is more useful than Fig. 8a in assessing the ac-
curacy of MERIS chlorophyll estimates because the Landsat results
shown in Fig. 8b can remove much of the influence of surface hetero-
geneity on the chlorophyll content retrieval, while this influence re-
mains in MERIS results. Further analysis is required to assess if the
scatter around the 1:1 line in Fig. 8b could be attributed to surface
heterogeneity with the 1200 m spatial extent.
Fig. 9. Deviation from the 1:1 line between MERIS chlorophyll estimates and Landsat
ChlD against the standard deviation of Landsat SR pixel values (pb0.01).
3.5. Fine-scale spatial heterogeneity

Spatial heterogeneity in land cover and a nonlinearity of algorithms
and their dependence on land cover types introduces uncertainties in
coarse scale analysis (Chen, 1999; Ehleringer & Field, 1993; Simic et
al., 2004). A textural approachwas used to analyse the effects of Landsat
and MERIS sub-pixel spatial heterogeneity and the scaling effect that
occurs when moving from a fine spatial resolution to a coarser resolu-
tion (Hu & Islam, 1997). The simple ratio vegetation index (NIR/Red)
was used to assess the spatial variability that existed within modelled
ChlD values (Bonan et al., 1993; Friedl, 1996). Fig. 9 shows the relation-
ship between the standard deviation of SR values for Landsat ChlD esti-
mates against the distance of the ChlD values from the 1:1 line with
MERIS chlorophyll estimates (Fig. 8b).

Fig. 9 indicates that there is a weak relationship between sub-pixel
heterogeneity (represented by the standard deviation of SR values)
and differences found between Landsat ChlD values and coarser scale
MERIS chlorophyll estimates, covering the same spatial extent. Exclud-
ing four BS sites (in grey), differences in coarse-scale chlorophyll and
ChlD retrievals are related to the spatial variability within the MERIS
pixel extent (R2=0.24; pb0.01). The four excluded BS sites show
large spatial variability (standard deviation>5) but present a small nu-
merical difference between modelled values from both products, indi-
cating that spatial variability does not always lead to discrepancy in
chlorophyll estimates. This suggests that both the type and composition
of surface variables within a pixel contributes to scaling uncertainties.

3.6. Spatial variability in leaf chlorophyll content

The leaf chlorophyll content retrieval algorithm was applied over a
broader, spatially continuous extent to investigate spatial variability in
leaf chlorophyll distribution. The ability to produce such foliar chloro-
phyll maps provides a better understanding of temporal and spatial dy-
namics of chlorophyll variation. Spatially continuous maps are critical
tools that can be used to monitor vegetation stress and remediation
efforts, employ sustainable forest management practices and gain a
better understanding of plant–environment interactions and the con-
trolling mechanisms on chlorophyll content (Moorthy et al., 2008).
Fig. 10 shows mapped leaf chlorophyll content for Sudbury 2003,
using MERIS and Landsat data. Chlorophyll estimates are shown for a
range of 0–100 μg/cm2, due to the simulation of unrealistically high or
low modelled results, particularly for water bodies.

Themajority of leaf chlorophyll estimates appeared to range from15
to 65 μg/cm2, which is typical in young and mature needle leaf forest
stands (Malenovský et al., 2006; Zarco-Tejada et al., 2004). Visual as-
sessment of the mapped leaf chlorophyll estimates from Landsat and
MERIS data show a high degree of spatial correlation (Fig. 10). The
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Fig. 10. Spatial variation in leaf chlorophyll content (μg/cm2) for Sudbury (2003) from MERIS (1200 m) and Landsat TM (30 m) satellite data.
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MERIS chlorophyll values are generally lower than those from Landsat,
which is probably attributable to the spatial variation in leaf chlorophyll
values that can be seen within the Landsat derived image. The presence
of water bodies and bare ground, with zero or very low chlorophyll
values has the effect of 'smoothing' out the coarser-scale estimates
(ChlD), removing the contribution of very high values. LowerMERIS es-
timates correspond to areas in the Landsat map representing both low
leaf chlorophyll content and also water bodies, demonstrating the com-
plexity associated with sub-pixel spatial heterogeneity. The spatial var-
iability in pigment content could be attributed to environmental factors
such as soil nutrient content, soil moisture content and slope, in addi-
tion to leaf age and stress. The MERIS chlorophyll map reveals coarser
patterns of spatial variability which could be linked to local topography,
associated soil moisture differences or exposure to light. The finer-scale
Landsatmap reveals the degree of localised spatial variation in leaf chlo-
rophyll across the landscape, with localised patches of high values of
chlorophyll (i.e. >70 μg/cm2), within regions of already high chloro-
phyll estimates of 50 μg/cm2. The areas displaying lower leaf chloro-
phyll contents (i.e. 20–30 μg/cm2) in contrast are much broader and
less in localised patches.

4. Conclusion

This research provides a theoretical basis for the future retrieval of
spatially distributed leaf chlorophyll content over different spatial
and temporal scales. Through the use of physically-based models,
leaf level reflectance was retrieved from satellite-derived canopy re-
flectance, which was subsequently used to derive leaf chlorophyll es-
timates. In this paper we present several important developments
and findings for obtaining leaf chlorophyll contents:
1. A physically-based approach, using a linked canopy model (4-Scale)
and leaf radiative transfer model (PROSPECT), successfully accounted
for differences in broadleaf and needle leaf structures and canopy ar-
chitecture, producing a modelled leaf chlorophyll content result of
R2=0.62 (pb0.0001) fromMERIS satellite-derived reflectance data.

2. This modelled approach negates a site-specific dependency in the
relationship between reflectance and leaf chlorophyll, and can
potentially be accurately applied over a range of spatial extents
and time frames without explicitly requiring ground calibration.

3. Leaf chlorophyll estimates showed consistent validation results
using two independent data sources (MERIS and Landsat 5 TM),
and at two different spatial resolutions (1200 m and 30 m, respec-
tively). Landsat and MERIS satellite data resulted in a good relation-
ship between ground measured values and modelled estimates
(R2=0.65 and 0.62, respectively), and a strong linearity.

4. The spatial heterogeneity that may exist within a coarse pixel size
(1200 m) can lead to a degree of uncertainty in modelled leaf chloro-
phyll. Although results suggest a lack of systematic bias, contributions
from non-vegetated elements such as water bodies and areas of bare
ground can result in greater scattering and a weaker relationship.

The results presented in this paper compare favourably to other
studies, e.g. (Moorthy et al., 2008; Zarco-Tejada et al., 2004; Zhang et
al., 2008a), particularly as previous research has often been restricted
to a single vegetation type or species. The application of this algorithm
at broad spatial extents enables the production of foliar chlorophyll
maps, which are powerful tools for promoting a better understanding
of chlorophyll dynamics over space and time. Spatially continuous
maps are vital for monitoring vegetation stress and for enhancing un-
derstanding of plant-environment interactions and the controlling
mechanisms on chlorophyll content (Moorthy et al., 2008). The ability
of this technique to characterise variations in chlorophyll content across
different vegetation species and canopy structures is important for
making the method operational across coarser spatial extents, and for
its inclusion in photosynthesis and carbon cycle models.
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