
ISPRS Journal of Photogrammetry and Remote Sensing 102 (2015) 85–95
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs
Evaluating leaf chlorophyll content prediction from multispectral
remote sensing data within a physically-based modelling framework
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.008
0924-2716/� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: holly.croft@utoronto.ca (H. Croft).
H. Croft a,⇑, J.M. Chen a, Y. Zhang b, A. Simic c, T.L. Noland d, N. Nesbitt a, J. Arabian a

a University of Toronto, Department of Geography, Toronto, ON M5S 3G3, Canada
b Delta State University, Division of Biological and Physical Sciences, Cleveland, MS 38733, USA
c Bowling Green State University, Department of Geology, Bowling Green, OH 43403-0211, USA
d Ontario Ministry of Natural Resources, Ontario Forest Research Institute, 1235 Queen St. E., Sault Ste. Marie, ON P6A 2E5 Canada
a r t i c l e i n f o

Article history:
Received 6 October 2014
Received in revised form 5 December 2014
Accepted 15 January 2015
Available online 9 February 2015

Keywords:
Leaf area index
Landsat
PROSPECT
4-Scale
Spatial statistics
Radiative transfer model
a b s t r a c t

Accurate modelling of leaf chlorophyll content over a range of spatial and temporal scales is central to
monitoring vegetation stress and physiological condition, and vegetation response to different ecological,
climatic and anthropogenic drivers. A process-based modelling approach can account for variation in
other factors affecting canopy reflectance, providing a more accurate estimate of chlorophyll content
across different vegetation species, time-frames, and broader spatial extents. However, physically-based
modelling studies usually use hyperspectral data, neglecting a wealth of data from broadband and mul-
tispectral sources. In this study, we assessed the potential for using canopy (4-Scale) and leaf radiative
transfer (PROSPECT4/5) models to estimate leaf chlorophyll content using canopy Landsat satellite data
and simulated Landsat bands from leaf level hyperspectral reflectance data. Over 600 leaf samples were
used to test the performance of PROSPECT for different vegetation species, including black spruce (Picea
mariana), sugar maple (Acer saccharum), trembling aspen (Populus tremuloides) and jack pine (Pinus bank-
siana). At the leaf level, hyperspectral and simulated Landsat bands showed very similar results to labo-
ratory measured chlorophyll (R2 = 0.77 and R2 = 0.75, respectively). Comparisons between PROSPECT4
modelled chlorophyll from simulated Landsat and hyperspectral spectra showed a very close correspon-
dence (R2 = 0.97, root mean square error (RMSE) = 3.01 lg/cm2), as did simulated reflectance bands from
other broadband and narrowband sensors (MODIS: R2 = 0.99, RMSE = 1.80 lg/cm2; MERIS: R2 = 0.97,
RMSE = 2.50 lg/cm2 and SPOT5 HRG: R2 = 0.96, RMSE = 5.38 lg/cm2). Modelled leaf chlorophyll content
from Landsat 5 TM canopy reflectance data, acquired from over 40 ground validation sites, demonstrated
a strong relationship with measured leaf chlorophyll content (R2 = 0.78, RMSE = 8.73 lg/cm2, p < 0.001),
and a high linearity with negligible systematic bias. Study results demonstrate the small number of input
bands required for PROSPECT inversion and provide a theoretical and operational basis for the future
retrieval of leaf chlorophyll content using broadband or multispectral sensors within a physically-based
approach.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Leaf chlorophyll content is a key ecological variable, both directly
through its role in photosynthesis and in the conversion of solar
radiation into stored chemical energy (Gitelson et al., 2006), and
indirectly as a bio-indicator of plant physiological condition; high-
lighting areas of plant disturbance and environmental pressure
(Sampson et al., 2003; Zarco-Tejada et al., 2002). The potential of
leaves to absorb photosynthetically active radiation (PAR) is largely
a function of foliar concentrations of photosynthetic pigments,
which can affect CO2 assimilation and primary production
(Richardson et al., 2002). As a result, leaf chlorophyll content is an
inherent element of water, energy and carbon cycles and is an
increasingly key component within regional and global carbon
models (Inoue et al., 2008). Monitoring the response of plant chloro-
phyll content to changing environmental and climatic conditions is
also paramount for understanding and modelling ecosystem
responses. However, most approaches for retrieving leaf chloro-
phyll content have focused on using hyperspectral or occasionally
narrow-band reflectance data (Croft et al., 2014b; Zhang et al.,
2008a). Little work has been devoted to multispectral or broadband
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sensors, thereby potentially neglecting a wealth of data across a
range of spatial scales and time-frames. The Landsat satellite series
in particular, provides the longest running continuous collection of
fine-spatial resolution imagery—dating back to Landsat 1 in 1972
and continuing with the recent launch of Landsat 8 in February
2013. This very long data time series offers the possibility of moni-
toring changes in forest biophysical parameters over a long time
frame (Croft et al., 2014a), with a spatial resolution (30 m) that sup-
ports both the requirements of fine-spatial resolution studies and
global monitoring (Kovalskyy and Roy, 2013). Other multi-spectral
sensors include the Systeme Pour l’Observation de la Terre (SPOT)
High-Resolution Visible (HRV), MODIS and the forthcoming Senti-
nel-2 and -3 multi-spectral sensors (Verrelst et al., 2012).

To take full advantage of the increasing wealth of satellite data
that is available, the effect of a reduced number of bands on the
accuracy of chlorophyll predictions and model inversion processes
must be considered. Physically-based models provide an explicit
connection between biophysical variables and canopy reflectance,
through the modelling of radiation transfer within the canopy or
leaf, based on physical laws. The PROSPECT leaf model
(Jacquemoud and Baret, 1990) is a very popular and longstanding
radiative transfer model, which in its inverse mode simulates leaf
biochemical and structural properties from leaf reflectance and
transmittance spectra (400–2500 nm). Since 1990, several model
improvements have been undertaken, including incorporating
new leaf biochemical dry matter constituents and increasing the
spectral resolution to 1 nm (Feret et al., 2008). The latest versions
(PROSPECT4 and 5) include a more realistic leaf surface roughness
parameter and updates to the specific absorption coefficients for
water, dry matter, and leaf pigments. Importantly, PROSPECT5 also
incorporates a physically-based separate treatment of chlorophylls
and carotenoids (Feret et al., 2008). Despite the extensive use of
PROSPECT and widespread validation across several vegetation
species and functional types, including broadleaf (Demarez and
Gastellu-Etchegorry, 2000) and coniferous trees (Croft et al.,
2013b), very few studies have used broadband data within such
physically-based, radiative transfer models. Notable exceptions
include the work of Houborg and Boegh (2008) and Houborg
et al. (2009), who used four SPOT bands (10 m spatial resolution)
to model leaf chlorophyll in agricultural crops using the ACRM can-
opy reflectance model (Kuusk, 1995) and PROSPECT (Jacquemoud
and Baret, 1990), giving a root-mean-square deviation of 7.1
lg/cm2. In an early study, Jacquemoud et al. (1995) tested the
application of SAIL and PROSPECT for modelling sugar beet
biochemical properties, using near hyperspectral AVIRIS data and
simulated Landsat TM bands, finding that both data sets provided
extremely similar results. Despite this positive finding, little fur-
ther work has occurred using physically-based models and broad-
band reflectance data for chlorophyll retrieval.

In this study, we assessed the potential of using broadband satel-
lite sensors to model leaf chlorophyll content. A linked canopy geo-
metrical optical radiative transfer model (4-Scale) and leaf radiative
model (PROSPECT) were inverted and the performance of PROSPECT
compared for hyperspectral leaf reflectance factors against simu-
lated Landsat broad bands, along with bands from other multispec-
tral sensors. The specific objectives of this research are to:

� investigate the potential for broadband and multispectral
reflectance data to model leaf chlorophyll content within a
physically-based approach;
� assess the accuracy of PROSPECT modelled chlorophyll content

using simulated bands from multi-spectral sensors (Landsat 5
TM, MODIS, MERIS, SPOT HRG) against hyperspectral inputs;
� compare the performance of PROSPECT4 and PROSPECT5 to

model chlorophyll content from hyperspectral and multispec-
tral reflectance data.
2. Methods

2.1. Field sites

Field sampling was conducted at three locations throughout
Ontario, Canada (Haliburton Forest, Sudbury and Chapleau), repre-
senting a range of vegetation species, canopy structural conditions
and ecosystem communities.

2.1.1. Haliburton forest
Haliburton forest, Ontario (45� 140 15.500N, 78� 320 18.000 W) is

located within the Great Lakes-St. Lawrence region (Rowe, 1972),
with an average annual precipitation of approximately 1050 mm
and mean annual temperature of 5 �C (Gradowski and Thomas,
2006). The field site is located within a mature sugar maple stand
(Acer saccharum M.) and is underlain by shallow brunisols or juve-
nile podzols (pH 4.2 to 5.1) (Gradowski and Thomas, 2006).
Ground-based sampling in the sugar maple (SM) stand was carried
out 7 times during the 2004 growing season from June 10th to Sep-
tember 30th (Zhang et al., 2007).

2.1.2. Sudbury
Black spruce (BS) and trembling aspen (TA) trees were sampled

at a range of sites northwest of Sudbury, Ontario (46� 490 1300 N to
47� 120 900 N and 81� 220 200 W to 81� 540 3000 W; Fig. 1). Six black
spruce (BS) sites were sampled in the summer of 2003 and 2004
(Zhang et al., 2008a) and 11 black spruce and two trembling aspen
(TA) sites were sampled during the summer of 2007 (Simic et al.,
2011). The field locations were situated at an elevation of approx-
imately 350 m above sea level, and underlain by shallow soils on
Canadian Shield bedrock. Temperatures range from �40 �C to
30 �C, with a mean annual temperature of 5 �C and mean annual
precipitation of approximately 800 mm (Leithead et al., 2012).
The dominant vegetation is black spruce (Picea mariana Mill.) with
deciduous forest patches containing aspen (Populus tremuloides
Michx). Understory species include feathery bog-moss (Sphagnum
cuspidatum), grass and dense green moss (Zhang et al., 2008a).

2.1.3. Chapleau
Ten pure jack pine (Pinus banksiana Lamb.) (JP) managed stands

located southeast of Chapleau, Ontario (47�3601700N to 47�3304000N,
and 83�08’2300W to 82�4300400W) were sampled in July, 2012. Stand
ages range from approximately 15 to 90 years old. The sites were
underlain by well drained silt loam soils over deep gravely sand,
with mean annual temperatures of 4.6 �C and annual precipitation
of 871 mm (Zhu et al., 2004). Understory species include dense
moss, upland willow (Salix humilis), blueberry (Vaccinium spp.)
and grasses. At the Chapleau sites, both old (JP old), aged between
1 and 4 years, and new growth from this growing season (JP new)
of jack pine needle leaves were sampled for reflectance factors and
laboratory chlorophyll analysis.

2.1.4. Ground data collection
Leaves and shoots were sampled from the upper canopy, using a

shotgun or mobile canopy lift, and sealed in plastic bags at a tem-
perature of 0 �C for further analysis (Zhang et al., 2007). Leaf reflec-
tance and transmittance were measured with an ASD
spectroradiometer Fieldspec Pro FR (Analytical Spectral Devices,
Inc. Boulder, USA) attached via a fibre optic cable to a Li-Cor
1800 integrating sphere (Li-Cor 1800-12S, Li-COR, Inc., Lincoln,
Nebraska, USA). Reflectance and transmittance spectra were mea-
sured using methods described by (Zhang et al., 2008a, 2007). Leaf
chlorophyll was extracted using spectranalysed grade N,N-dimeth-
ylformamide, and absorbance measured at 663.8 nm, 646.8 nm,
and 480 nm using a Cary-1 spectrophotometer (Wellburn, 1994).



Fig. 1. Reflectance spectra for hyperspectral and Landsat bands for (a) sugar maple (SM), (b) black spruce (BS), (c) trembling aspen (TA), (d) jack pine (JP) (new), and (e) jack
pine (old).
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At the site level, the satellite-derived leaf chlorophyll was com-
pared to mean ground-level chlorophyll data calculated from all
leaf samples collected within each field site. Effective LAI (Le)
was measured using the LAI-2000 plant canopy analyzer (Li-Cor,
Lincoln, NE, USA) (Chen et al., 1997). The element clumping index
and leaf area index were measured using TRAC (Tracing Radiation
and Architecture of Canopies) (Chen and Cihlar, 1995). Structural
parameters of trees (density, height and diameter breast height)
were also measured and understory reflectance was measured
using the ASD Fieldspec Pro Spectroradiometer for the dominant
species present at each site (Croft et al., 2013b).
2.2. Landsat 5 TM data acquisition and processing

Landsat 5 TM images were radiometrically and geometrically
corrected and georeferenced to UTM map projection. Landsat
scenes were matched as closely as possible to the timeframe of
ground data collection, within the summer growing season of each
year. The Landsat scenes were atmospherically corrected using
cosine estimation of atmospheric transmittance (Chavez Jr.,
1996), where the cosine of sun zenith angle is used to approximate
the effects of absorption by atmospheric gases and Rayleigh scat-
tering for individual spectral bands (Eq. (1)),

q ¼ p � d2 � ðLksat � LkhazeÞ=ESUNk � cos2 h ð1Þ

where p = reflectance factor; Lksat = spectral radiance at the sensor;
Lkhaze = path radiance; d = earth–sun distance (AU); ESUN = mean
solar exoatmospheric irradiances; h = solar zenith angle (�). The
solar exoatmospheric spectral irradiances (ESUN) for the Landsat
5 TM were obtained from Chander and Markham (2003). Path radi-
ance (Lkhaze) was obtained from pixels of known zero reflectance
such as large deep water bodies and it was assumed that any value
in the raw image in these areas other than zero represented haze
effects. This value was subsequently verified through a band spe-
cific histogram analysis by examining the step in pixel radiance val-
ues (Chavez Jr., 1988).
2.3. Modelling leaf reflectance using the 4-Scale canopy model

Foliar chlorophyll content was modelled using a canopy geo-
metrical–optical model (Chen and Leblanc, 1997) linked with a leaf
radiative transfer model (Jacquemoud and Baret, 1990). The 4-
Scale model simulates the bidirectional reflectance distribution
function (BRDF) based on canopy architecture at four scales: (1)
tree groups, (2) tree crown geometry, (3) branches, and (4) foliage
elements (Chen and Leblanc, 2001). The model considers both the
structural effects of tree branches and scattering elements, the spa-
tial distribution of tree groups, tree crowns geometries and the
effects of background reflectance and shadows. Deciduous crowns
are modelled as a spheroid and coniferous crowns as a cone and
cylinder, both of variable dimensions. A crown is represented as
a complex medium, where reflected radiance from shaded compo-
nents is determined by first-order scattering (separating sunlit and
shaded components), and multiple scattering from subsequent
interactions with vegetation or background material (Chen and
Leblanc, 2001).

The 4-Scale model was run in the forward mode, using fixed and
variable structural parameters and leaf and understory reflectance
spectra to model canopy reflectance. To derive leaf level reflec-
tance, the 4-Scale model was inverted using a look-up-table
(LUT) approach (Zhang et al., 2008a, 2013a,b). LUT methods are
computationally efficient and can overcome the difficulty of local
minima; by giving the global minimum, providing the variable
space is sufficiently sampled (Jacquemoud et al., 2009). However,
the ‘ill-posed’ problem means that different combinations of the
same structural and solar/view zenith input parameters can lead
to the same canopy reflectance, and consequently some a priori
scene information is required to constrain the inversion (Kimes
et al., 2000). The fixed parameters are listed in Table 1, and were
based on ground measurements and reported values in the litera-
ture (e.g. Chen and Leblanc, 1997). Variable parameters included
solar and viewing zenith and azimuth angles and LAI, which was
derived empirically using the reduced simple ratio (RSR) following
methods discussed in Croft et al. (2013b). Based on a given pixel’s



Table 1
Canopy structural parameters and background component for coniferous and deciduous vegetation sites.

Parameter Deciduous Coniferous – Black spruce Coniferous – Jack pine

Stem height (Ha) 10 m 5 m 5 m
Crown height (Hb) 8 m 5 m 5 m
Crown radius (R) 1.25 m 0.85 m 1.2 m
Crown shape Spherical Cone + cylinder Cone + cylinder
Tree density (number per hectare) 1100 2800 3000
Neyman tree grouping factor 2 4 4
Element clumping index (XE) 0.95 0.89 0.89
Needle:shoot ratio (cE) 1 1.4 1.4
Element width (Ws) 0.15 m 0.04 m 0.04 m
Understory vegetation and background Maple and wood Soil, moss and labrador tea Soil, moss and tealeaf willow
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variable parameters, the LUT for the corresponding vegetation type
was used to generate the probability of viewing the sunlit leaf (FPT)
and sunlit background fraction (FPG) and background reflectance
(qPG) from the total scene component, and a multiple scattering
factor (M) to account for multiple scattering in the tree crown
(Croft et al., 2013b). From these inputs; the sunlit leaf reflectance
can be modelled from the satellite or airborne derived canopy
reflectance (Eq. (2)).

qL ¼
qsatellite � qPGFPG

MFPT
ð2Þ

Based on the input parameters, the 4-Scale model calculates canopy
reflectance as a linear summation of four components (Chen and
Leblanc, 2001): the sunlit vegetation (PT), shaded vegetation (ZT),
sunlit ground (PG) and shaded ground (ZG). A multiple scattering
factor is used to convert sunlit crown reflectance into sunlit leaf
reflectance; accounting for the enhancement of sunlit and shaded
reflectance due to multiple scattering and incorporating shaded
scene components (see Zhang et al., 2008a and Croft et al., 2013b
for more details).

2.4. Modelling leaf chlorophyll content using the PROSPECT model

The leaf radiative transfer model PROSPECT (Jacquemoud and
Baret, 1990) was selected to generate leaf chlorophyll content
using the leaf level reflectance data collected at the field sites
and also from the modelled sunlit leaf reflectance derived from
Landsat canopy data. Leaf optical properties (reflectance and trans-
mittance) from 400 to 2500 nm are defined in PROSPECT4 as a
function of four parameters: structure parameter, chlorophyll
(a + b) concentration, dry matter content and water. PROSPECT5
also includes carotenoid content (Car) and a brown pigment
parameter to represent non-photosynthetic leaf matter. Absorp-
tion is calculated as the linear summation of the specific absorp-
tion coefficients of biochemical constituents and their respective
concentrations. Modelled leaf transmittance was derived from
the spectral ratio of measured reflectance and transmittance for
broadleaf and needle leaf samples and applied to modelled leaf
reflectance (Zhang et al., 2008a). To improve PROSPECT running
time and reduce the likelihood of spurious predictions using a
reduced input data set, PROSPECT was inverted using bound value
ranges for each of the predicted variables (Table 2). The values
were set according to laboratory measurements and values
reported in the literature (Feret et al., 2008).

To investigate the effects of broadband versus hyperspectral
reflectance on chlorophyll retrieval by PROSPECT, Landsat TM 5
Table 2
Bound variable ranges of modelled parameters for PROSPECT-4 and -5 inversions.

Model N parameter Chlorophyll (lg/cm2) Carotenoid (lg/cm

PROSPECT-4 1–5 0–100 –
PROSPECT-5 1–5 0–100 0–20
bands were simulated from hyperspectral reflectance for each
sample using an ASD spectroradiometer (Section 2.1.3). The spec-
tral response function (SRF) of a sensor describes its relative sensi-
tivity to different wavelengths, and was used to calculate
reflectance factors in simulated Landsat bands, as a weighted
sum of hyperspectral reflectance and the SRF (Eq. (3)).

L ¼
XN

k¼1

bðkÞL0ðkÞ
XN

k¼1

bðkÞ
,

ð3Þ

where L and L0(k) is reflectance in the larger bandwidth and reflec-
tance data in the original wavelength and b(k) is the weight of the
spectral response function (Chen et al., 2008). The PROSPECT
absorption coefficients were also recalculated to the corresponding
bands of the tested sensors (Table 3) using their respective spectral
response functions. Whilst only visible and NIR bands are used in
the inversion process, the presence of SWIR bands are also shown
because of their use in the RSR index. Simulated bands have also
been used to investigate the effects of different sensor bandwidths
and spectral response functions on normalized difference vegeta-
tion index (NDVI) values, and to formulate corrections for biases
to allow cross sensor comparisons (Steven et al., 2003).

2.5. Assessing spatial covariance between LAI and leaf chlorophyll
content

To investigate the extent to which leaf chlorophyll content and
LAI are spatially correlated, a bivariate local indicator of spatial
autocorrelation (LISA) using Moran’s I statistic was employed
(Anselin, 1995). Common statistical methods such as Pearson’s cor-
relation fail to take account of spatial dependency in datasets
(Anselin, 1995). Moran’s I is a measure of spatial autocorrelation;
defined as the likelihood that data closer together are more likely
to be similar than those that are further apart (Tobler, 1965), and
is a concept that underpins spatial statistical theory (Croft et al.,
2013a). The local Moran’s I statistic is advantageous over its global
counterpart because global Moran’s I only indicates the overall
clustering that exists within the dataset, rather than the location
of these data clusters (Anselin, 1995). Bivariate LISA gives the local
correlation between a variable at a given location and the weighted
average of another variable in a defined neighbourhood (Eq. (4)):

Ii ¼ zxi

XN

j¼1;j–i

wijzyj ð4Þ

where and zx and zy are the standardized z-scores of variables x
(LAI) and y (Chlorophyll), respectively, in district i and the neighbor-
2) Brown pigment Water content (g/cm2) Dry matter (g/cm2)

– 0.00–0.04 0.00–0.05
0 0.00–0.04 0.00–0.05



Table 3
The full width half maximum spectral bands of the sensors tested using simulated leaf level data in the PROSPECT model.

Sensor Blue (nm) Green (nm) Red (nm) Red-edge (nm) NIR (nm) SWIR (nm)

Landsat TM 5 450–520 520–600 630–690 760–900 1550–1750

MODIS 456–475 544–564 620–670 837–876 1616–1644

MERIS 407–417 505–515 615–625 703–713 750–757
437–447 555–565 660–670 773–780
485–495 677–685 855–875

880–890

SPOT HRG 500–590 610–680 790–890 1580–1750
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ing district j (Sunderlin et al., 2008). The spatial weight matrix (wij)
is a binary contiguity matrix that defines the spatial structure of
locations included in the calculation of the local Moran’s I. A first-
order contiguity matrix was used, where all observations that share
a common border have wij = 1, otherwise wij = 0. LISA calculations
were computed using the GeoDa software package (Anselin et al.,
2006). A key feature within GeoDa is the ability to infer and map
the statistical significance of spatial patterns, according to: Prob
[Li > di] 6 ai, where Li is the LISA statistic at location i, di is a critical
value and ai a defined significance level (Anselin, 1995), based on a
randomization test. This approach compares spatially randomised
reference distributions of local Moran’s I values to observed values,
in order to determine the probability of the observed value being
obtained from a random distribution (Anselin, 1995). The threshold
value of p = 0.05 is used to define significance.
3. Results

3.1. Hyperspectral and multispectral leaf reflectance factors for all
sampled species

Representative hyperspectral reflectance factors are shown for
the four vegetation species, with JP old and JP new shown sepa-
rately, along with reflectance in Landsat bands simulated from
the hyperspectral data using the appropriate spectral response
functions. The leaf reflectance spectra exhibit considerable differ-
ences among species, with the two broadleaf species (SM and
TA) displaying near-infrared (NIR) reflectance factors in the order
of 0.5 although giving differences in visible wavelengths, with TA
showing much lower reflectance factors and a smaller green peak.
Of the needle leaf species, both old and new JP leaves gave rise to
considerably higher NIR reflectance factors than those of BS.

The important differences in hyperspectral spectra in compari-
son to Landsat band spectra are the number of bands present, the
bandwidths and the band position. The locations of the Landsat
bands represent the major inflection points in the spectra (i.e.,
blue, green and red) although, perhaps importantly, miss the
shoulder of the red edge. In terms of bandwidth effects, the great-
est differences between hyperspectral and Landsat-derived reflec-
tance occurs in green and red wavelengths, where there are larger
variations in hyperspectral reflectance factor across the Landsat
bandwidth (Croft et al., 2013b). The sub-band variations in reflec-
tance are ‘smoothed’ by the larger Landsat bandwidth, causing
simulated Landsat reflectance factors in the green band (520–
600 nm) for example, to be approximately 10% lower than that in
the narrowband (10 nm) reflectance at 560 nm (Croft et al.,
2013b). The effect of these reduced bands and broader bandwidths
on chlorophyll content modelled using PROSPECT is assessed in
Section 3.3.1.

3.2. PROSPECT simulations with hyperspectral and Landsat band data

Forward runs of PROSPECT4 were performed to examine the
effect of varying chlorophyll, structural parameter (N), water
content (Cw) and dry matter (Cm) values on hyperspectral and
Landsat reflectance spectra (Fig. 2). In the resulting modelled leaf
reflectance spectra, the influence on reflectance and the wave-
length dependency of the various leaf parameters are demon-
strated, with the dominance of chlorophyll content in visible
wavelengths and water content in the mid-infrared (>1400 nm)
wavelengths. Dry matter content and leaf structure influence the
entire spectrum (Ollinger, 2011).

The wavelength positions of Landsat bands coincide with the
locations of the major inflection points within vegetation spectra
(i.e., �560, 665 and the NIR); however, the top of the red-edge
shoulder (�750 nm) is missed (Landsat band centre = 835 nm).
As this band has been indicated as sensitive to chlorophyll
(Vogelmann et al., 1993), this departure may lead to error or uncer-
tainty in chlorophyll prediction using Landsat bands. The coarse
bandwidths in the NIR and MIR and large sampling interval leads
to an absence of information from narrow features from for exam-
ple, lignin or cellulose content, which affects the modelled results
of structural variables (e.g., N and Cm) in particular, and also water
content.
3.3. Modelled leaf-level chlorophyll content

The modelled chlorophyll values were plotted against measured
leaf chlorophyll content for hyperspectral reflectance, with unfixed
structural parameters (Fig. 3a and d) for JP samples, along with mod-
elled values using fixed structural parameters (JP new – N = 3.5,
Cm = 0.025; JP old – N = 5, Cm = 0.03) for hyperspectral and Landsat
spectra. The structural (N) parameter is a dimensionless, integrated
function of leaf thickness and leaf structure (e.g. mesophyll intercel-
lular space) and cannot be measured empirically. Previous studies
have fixed the N parameter for representative vegetation types or
per individual leaf sample, based on inferences from measurements
(e.g. thickness, specific leaf area) and forward simulations
(Malenovský et al., 2013; Zarco-Tejada et al., 2004a). Results from
PROSPECT5 present a comparable performance to PROSPECT4, both
in terms of coefficient of determination (R2) values and linearity.
This is particularly surprising for the Landsat spectra, where a
greater number of inversion parameters relative to a few input
bands may have led to spurious predictions. The green band overlap-
ping carotenoid and chlorophyll regions did not appear to affect the
modelled chlorophyll results, although it is unlikely that Landsat
bands would be able to retrieve carotenoid content due to the
dominance of chlorophyll. Allowing the brown pigment parameter
to vary freely resulted in considerably more scatter and several
anomalous results, particularly for Landsat spectra. Once the brown
pigment was set to zero, the retrievals performed well.

The results from the unfixed simulation show a large underes-
timation in chlorophyll content for the JP samples. The forward
PROSPECT simulations (Fig. 2) illustrate the high absorbance in
visible wavelengths for large chlorophyll contents, which is not
consistent with the reflectance spectra (Fig. 1) resulting in the
model inversion underestimating chlorophyll. However, thicker
leaves (with a larger N parameter value) show increased visible



Fig. 2. PROSPECT-4 simulations for hyperspectral (left) and Landsat (right) bands where unfixed variables are (a) Chlorophyll; (b) structural parameter (N); (c) water content;
(d) dry matter. The values of fixed variables are indicated within the figures.
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and NIR reflectance for the same chlorophyll content (Fig. 2). The
adoption of fixed structural parameters results in a considerable
improvement in modelled chlorophyll, with the R2 value increasing
from R2 = 0.54 to R2 = 0.77 and a much greater linearity
(slope = 0.42 to 0.74, intercept = 17.8 to 8.5). Importantly, the
results for modelled chlorophyll using Landsat bands show extre-
mely similar results to those from hyperspectral spectra (PROS-
PECT-5: R2 = 0.76 and R2 = 0.79, for hyperspectral and Landsat
bands, respectively). This result indicates that, given the appropri-
ate band locations, reduced and broader bands maybe used for leaf
chlorophyll retrieval using radiative transfer methods.
3.3.1. Comparison between leaf-level modelled broadband chlorophyll
and hyperspectral chlorophyll

To assess broadband performance relative to hyperspectral
inputs, rather than a potentially coincidental relationship with
measured chlorophyll, the Landsat modelled chlorophyll results
are compared with hyperspectral modelled chlorophyll values.
These results are also shown alongside modelled chlorophyll from
bands from three other popular sensors (MERIS, MODIS and SPOT5
HRG; see Table 3 for details) to further evaluate the use of PROS-
PECT with differing reflectance inputs of various bandwidths, band
positions, and number of bands (Fig. 4).



Fig. 3. Modelled leaf chlorophyll content for all species evaluated from (a) PROSPECT4 – hyperspectral structural parameter not fixed (root mean square error
(RMSE) = 12.61 lg/cm2); (b) PROSPECT4 – hyperspectral fixed structural parameter (RMSE = 8.31 lg/cm2); (c) PROSPECT4 – Landsat bands fixed structural parameter
(RMSE = 9.01 lg/cm2); (d) PROSPECT5 hyperspectral – structural parameter not fixed (RMSE = 13.40 lg/cm2); (e) PROSPECT5 – hyperspectral fixed structural parameter
(RMSE = 7.70 lg/cm2); (f) PROSPECT5 – Landsat bands fixed structural parameter (RMSE = 7.05 lg/cm2). (JP – jack pine, SM – sugar maple, BS – black spruce, TA – trembling
aspen).
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Modelled chlorophyll content derived using Landsat, MODIS
and MERIS bands all displayed a strong linear relationship with
hyperspectral results, with PROSPECT5 MERIS chlorophyll showing
the least scatter around the 1:1 line (R2 = 0.99). The Landsat chlo-
rophyll displayed slightly more scatter, but still exhibited a very
strong relationship with hyperspectral chlorophyll (PROSPECT4;
R2 = 0.97) and a strong linearity (slope = 0.93, intercept = 0.78),
demonstrating a lack of systematic under- or overestimation. The
decreased performance using SPOT5 was likely due to the lack of
a blue band and also the very broad red bandwidth (610–
690 nm), which would lead to a higher red band reflectance factor
and explain the under prediction in modelled chlorophyll content.
Nonetheless, the still strong relationship between SPOT5 and
hyperspectral chlorophyll (PROSPECT 4; R2 = 0.96) demonstrates
the limited number of reflectance bands that are needed to gener-
ate a strong performance from PROSPECT (SPOT5 = 545 nm,
645 nm and 835 nm).

3.4. Modelling leaf chlorophyll from Landsat TM satellite data

At the canopy scale, in addition to sunlit leaves, reflectance fac-
tors are also a function of non-photosynthetic elements, back-
ground material and shaded components. The results shown in
Fig. 5 were produced using the 4-Scale canopy model, using the
fixed parameters in Table 1, to remove the effects of confounding
scene factors and retrieve leaf reflectance. The input Landsat data
was taken as an average from 3 � 3 pixels centred on the ground
site to reduce positional inaccuracy. Leaf chlorophyll content was
subsequently modelled from modelled leaf reflectance using PROS-
PECT-4 and -5 retrievals.

The findings from Landsat satellite data show very strong vali-
dation results (R2 = 0.78, RMSE = 8.73 lg/cm2 and R2 = 0.82,
RMSE = 9.06 lg/cm2 for P4 and P5, respectively), with a high line-
arity around the 1:1 line; obtaining slope values close to 1 (0.94
and 1.06) and small intercepts (1.87 and 0.75). The high compara-
bility to leaf-level PROSPECT performance (Fig. 3) indicates that 4-
scale is successfully removing the influence of canopy structural
effects and background influences.

3.5. Mapped leaf chlorophyll content and leaf area index

The leaf chlorophyll content retrieval algorithm was applied
over a broader, spatially continuous extent (3 km � 3 km) at
30 m resolution. Spatially continuous maps at a fine resolution
may be used to monitor vegetation stress and the mechanisms
controlling plant-environment interactions (Moorthy et al.,
2008). The modelled leaf chlorophyll content for three locations
(Haliburton, Sudbury and Chapleau) are mapped in Fig. 6 along
with LAI values.

The majority of leaf chlorophyll estimates for Haliburton and
Sudbury ranged from 30 to 40 lg/cm2, which is consistent with
the laboratory measured leaf-level results and previous studies
(Zarco-Tejada et al., 2004a). The Chapleau location typically dis-
played higher chlorophyll content (�40–50 lg/cm2), with less local
variability and clumping than the other locations, probably attrib-
utable to the presence of the pure jack pine stands. Fig. 6 shows the
spatial differences in modelled leaf chlorophyll content and LAI for
all three study areas, with the spatial regions of very low LAI and
Chlorophyll content, attributable to lakes, water courses and roads,
or areas of bare ground due to logging activity.

3.6. Spatial co-variance of LAI and leaf chlorophyll content

In an effort to investigate how LAI as an input variable and mod-
elled leaf chlorophyll content spatially co-vary over a given area,
we used bivariate Local Moran’s I statistic to identify spatial clus-
ters in the data (Anselin, 1995; Sunderlin et al., 2008). A measure
of the statistical significance of the relationship between the two



Fig. 4. Comparison of PROSPECT 4 hyperspectral derived chlorophyll with modelled chlorophyll from (a) Landsat 5 TM (root mean square error (RMSE) = 3.01 lg/cm2); (b)
MODIS (RMSE = 1.80 lg/cm2); (c) MERIS (RMSE = 2.50 lg/cm2); (d) SPOT5 HRG (RMSE = 5.38 lg/cm2) and PROSPECT 5 hyperspectral modelled chlorophyll against modelled
chlorophyll from (e) Landsat 5 TM (RMSE = 2.77 lg/cm2); (f) MODIS (RMSE = 2.39 lg/cm2); (g) MERIS (RMSE = 1.63 lg/cm2); (h) SPOT5 HRG (RMSE = 7.75 lg/cm2). (JP – jack
pine, SM – sugar maple, BS – black spruce, TA – trembling aspen).

Fig. 5. Leaf chlorophyll content for all species evaluated from Landsat imagery modelled using the 4-Scale canopy model linked with (a) PROSPECT4 (p < 0.001; root mean
square error (RMSE) = 8.73 lg/cm2) and (b) PROSPECT5 (p < 0.001; RMSE = 9.06 lg/cm2). (JP – jack pine, SM – sugar maple, BS – black spruce, TA – trembling aspen).
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spatial LAI and leaf chlorophyll datasets was then derived from
spatially randomised reference distributions of local Moran’s I val-
ues to observed values, and is shown in Fig. 7 at a range of confi-
dence intervals (Anselin et al., 2006).

Perhaps unsurprisingly, Fig. 7 reveals the presence of significant
spatial correlations between areas of low LAI values or bare ground
and low leaf chlorophyll content in the pixel, due to the lack of
leaves present. Another notable spatial basis of significant relation-
ships are regions of high LAI and high chlorophyll content (Fig. 6),
for example the north-east corner of the Chapleau site (Fig. 7c).
This could be due an isolated patch of different tree species, or a
result of stand age controls on both LAI and chlorophyll (Croft
et al., 2014a). Importantly, Fig. 7 shows large regions of non-signif-
icant relationships (where p > 0.05) between the two variables
across all three sites, and variations in the spatial patterns of cor-
relations. This result indicates the that the algorithm is robust
and leaf chlorophyll predictions are not due to a over-dependence
on LAI values.
4. Discussion

As demonstrated in Fig. 3, the structural variables for the jack
pine leaves (N parameter to 3.5 for new leaves and 5 for old leaves)
had to be fixed to prevent an underestimation of chlorophyll con-
tent. The effects of the N parameter on leaf reflectance can be seen
in Fig. 2, which illustrates that for the same chlorophyll content,
reflectance factors will be higher in both red and NIR wavelengths.
Previous studies have highlighted the unsuitability of PROSPECT
for needle leaved species because the assumption of infinite planes
is violated for needle leaves, which have adaxial and abaxial sur-
faces that are not flat planes or are not horizontally infinite
(Zhang et al., 2008b). PROSPECT considers light transfer between
internal plates isotropically, however the needle thickness is simi-
lar to needle width leading to potentially large losses in light
through leaf edges. Zhang et al. (2008b) found light scattered
isotropically in visible wavelengths, but predominately forward-
scattered in NIR. Despite black spruce and jack pine having similar



Fig. 6. Mapped leaf area index for (a) Haliburton, (b) Sudbury, (c) Chapleau and leaf chlorophyll content for (d) Haliburton, (e) Sudbury, (f) Chapleau sites.
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leaf thicknesses, jack pine needle reflectance factors in both visible
and NIR wavelengths are considerably higher than those of black
spruce needles (Fig. 1). This higher jack pine reflectance is contrary
to what we might expect given its chlorophyll content is approxi-
mately 50% higher (mean chlorophyll content; BS = 40.66 lg/cm2

and JP old = 63.36 lg/cm2). Reducing leaf structural effects to leaf
thickness may be an oversimplification, given that leaf structure
also includes the fraction of intercellular airspace, the ratio of cell
walls to intercellular space, and epidermal and mesophyll cell
dimensions (Ollinger, 2011; Serrano, 2008). In effect, the N param-
eter encompasses all of these factors into one value, which repre-
sents the number of mesophyll air/cell interfaces, although this
makes it difficult to actually measure (Ollinger, 2011). Another
explanation for higher than expected jack pine reflectance may
be the presence of a thicker epicuticular wax, or a different wax
morphology or chemical composition that is increasing leaf surface
reflectance but is unrelated to internal leaf biochemical or physical
variables. Further work into the relationship between internal leaf
structure, leaf pigments, surface composition and reflectance fac-
tors for jack pine and other needle leaves is required to address this
issue.
Fig. 7. The statistical significance in patterns of spatial correlation between L
Despite the small number of Landsat bands used in the PROS-
PECT inversion simulations and their large bandwidths, the pre-
dicted chlorophyll results showed a surprisingly high accuracy
when compared to corresponding hyperspectral inputs (R2 = 0.97,
RSME = 3.01 lg/cm2). This may be due to the high redundancy of
wavelength channels in vegetation studies (Jacquemoud et al.,
1995; Simic and Chen, 2008). Thenkabail et al. (2004) found that
data volume can be reduced by 97% when hyperspectral wave-
bands are reduced to the first five principal components, and still
explain close to 95% variability in data. They identified seven opti-
mal bands (495 nm, 555 nm, 655 nm, 675 nm, 705 nm, 915 nm,
and 985 nm for vegetation studies. In a mathematical context, a
greater difficulty with the use of some multispectral sensors in
radiative transfer modelling may be the limited number of bands
present, particularly when the input bands is similar or equal to
the number of predicted variables (Jacquemoud et al., 1995). In this
study, the use of bounded restrictions (Table 2) improved the
accuracy of the modelled chlorophyll results using Landsat bands,
reducing the number of spurious predictions. Nonetheless, our
findings, with over 600 leaf samples tested, comprehensively
demonstrate the strong performance of PROSPECT, and confirm
AI and leaf chlorophyll content, derived from local Moran’s I statistic.
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the findings of Jacquemoud et al. (1995) who showed that chloro-
phyll retrievals were very similar from 188 AVIRIS narrow bands
and 6 Landsat bands (root mean square error (RMSE) = 18 lg/cm2

and 15 lg/cm2, respectively) over sugar beet canopies. It is
expected that more complex radiative transfer models, which
require a greater number of inversion parameters, may not be suit-
able for the limited number of input bands available from multi-
spectral sensors.

The slight differences in the chlorophyll prediction results from
PROSPECT-4 and -5 using hyperspectral bands confirmed the find-
ings of Feret et al. (2008), with leaf-level PROSPECT-5 predictions
slightly exceeding PROSPECT-4 for hyperspectral and Landsat
bands (Landsat: R2 = 0.75 and 0.79 for PROSPECT-4 and -5, respec-
tively). Feret et al. (2008) also found a slight improvement for
PROSPECT-5 (RMSE = 9 lg/cm2) compared to PROSPECT-4
(RMSE = 10 lg/cm2) and attributed this slight improvement to bet-
ter modelling of leaves with low chlorophyll content, and offset-
ting of the presence of carotenoids by PROSPECT-4 by an
overestimation of chlorophyll. Our study provides some support
for this with a slightly reduced PROSPECT-5 intercept value (7.4
and 8.5 for PROSPECT-5 and -4, respectively) although the differ-
ences are relatively small. Surprisingly, the differences between
chlorophyll modelled from Landsat and hyperspectral bands was
small given the increased bandwidth, although this could be attrib-
utable to the presence of the blue Landsat band (450–520 nm),
which captures much of the carotenoid signal. The RMSE (7.05
and 7.70 lg/cm2 for Landsat and hyperspectral, respectively) was
very close to those found by Feret et al., 2008 (RMSE = 9 lg/cm2),
despite the inclusion of both needle and broadleaf species.

The mapped leaf chlorophyll content and LAI for sites at the
three study areas shown in Fig. 6 reveals the spatial differences
in the two variables. The large areas of extreme low LAI values cor-
respond to lakes and areas of bare ground and the lack of trees
explains the lack of leaf chlorophyll content. However, there is also
a large degree of spatial independence between LAI and modelled
leaf chlorophyll in the forested regions (Fig. 7), which is an impor-
tant finding because LAI is derived from the same sensor as used to
model chlorophyll and is also a fundamental variable parameter
used to drive the 4-Scale inversion. The spatial independence of
the two variables is attributable to the inclusion of the Landsat
SWIR band in the empirical LAI modelling, which is not used in
chlorophyll modelling and provides a separate and independent
source of data. There does appear to be some localised areas of very
high chlorophyll content, particularly surrounding water bodies
and roads. This could be a result of variations in the landscape veg-
etation composition that does not match the fixed parameters in
Table 1, for example the presence of different tree species and
background composition or variations in canopy structural vari-
ables that deviate from the fixed structural parameters, as demon-
strated by Figs. 6 and 7. This highlights a challenge for modelling
leaf chlorophyll using physically-based algorithms, because the
representative fixed parameters do not always reflect the variables
within the landscape. Background vegetation for example, has its
own phenology and varies spatially with canopy structure. Whilst
further progress is needed to develop the technologies for supply-
ing spatially-distributed information on canopy structure and
background composition, a physically-based approach represents
the opportunity to theoretically account for these confounding
variables, in comparison to empirical approaches which are largely
site, time and species specific (Croft et al., 2014c). Despite these
challenges, the relationship between measured and modelled chlo-
rophyll from Landsat satellite data for the validation sites is very
good (R2 = 0.78; RMSE = 8.73 lg/cm2). In comparison, vegetation
indices have shown similar strong performances over homoge-
nous, closed forests with one vegetation type (e.g. Datt, 1998,
R2 = 0.83). Zarco-Tejada et al. (2004b) demonstrated that for open
canopies the relationship between vegetation index and leaf chlo-
rophyll is lower (R2 = 0.35), unless the spatial resolution is fine
enough to allow the separation of vegetation crowns from other
scene components (increasing the result to R2 = 0.69). The fine spa-
tial resolution of the Landsat map (30 m) reveals the degree of
localized spatial variation in leaf chlorophyll in forested areas
across the landscape and permits representation of local controls
on the spatial variability in pigment content such as soil nutrient
content, soil moisture content, topography, leaf/stand age and veg-
etation stress.
5. Conclusion

This research demonstrates the potential to use data from Land-
sat 5 TM and other multispectral sensors to predict leaf chlorophyll
content using a physical modelling approach. The accuracy of
PROSPECT chlorophyll predictions using simulated Landsat bands
was assessed against hyperspectral results, and a very strong rela-
tionship (R2 = 0.97) and negligible differences (RMSE = 3.01 lg/
cm2) were found. This relationship was confirmed using simulated
bands from other sensors, i.e., MERIS (RMSE = 1.80 lg/cm2) and
MODIS (RMSE = 2.50 lg/cm2), with only SPOT5 displaying notably
poorer performance (RMSE = 5.38 lg/cm2), i.e., underestimations
at higher chlorophyll contents. The same strong results were found
when tested on Landsat satellite data (R2 = 0.78; RMSE = 8.73 lg/
cm2), using a 4-Scale canopy reflectance model to model leaf
reflectance and subsequent PROSPECT inversion to derive leaf chlo-
rophyll. Very similar results were found for PROSPECT-4 and PROS-
PECT-5 for both hyperspectral and multispectral leaf-level inputs
and also for canopy-coupled inversions (e.g., canopy R2 = 0.78
and 0.82 for P4 and P5, respectively), although the higher number
of inversion parameters for PROSPECT-5 relative to the limited
input bands could result in errors in the inversion process.
Bounded variable ranges were required in the inversion. The appli-
cation of this algorithm at the fine spatial resolution (30 m) that
Landsat offers provides considerable possibilities for promoting a
better understanding of leaf pigment dynamics at fine spatial res-
olutions and over decadal timescales.
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