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Evaluation of the GLC2000 and NALC2005 land
cover products for LAI retrieval over Canada

Alemu Gonsamo and Jing M. Chen

Abstract. Land cover information is an important input parameter for retrieving key land surface biophysical parameters,

such as leaf area index (LAI), often parameterized with geometrical-optical properties distinctive among land cover types.

This paper presents a comparative assessment and evaluation of the 1 km Global Land Cover (GLC2000) and the 250 m

North American Land Cover (NALC2005) over Canada. We used a 30 m Circa 2000 Land Cover from agricultural

regions of Canada as a reference dataset. The comparative assessment and evaluation were made at six generalized class

levels that were categorized based on relevance for parameterizations of key land surface biophysical parameter retrieval

algorithms. The overall per-pixel agreement between the GLC2000 and the NALC2005 was 63.4%. The overall accuracies

using the Circa 2000 reference data were 62.3% and 65.5% for the GLC2000 and NALC2005 datasets, respectively. Based

on the improved version 2 University of Toronto LAI algorithm, up to a 42% difference in LAI estimation was noted over

Canada due to differences in the two regional land cover datasets. This study assessed the performance of the newly

produced NALC2005 product and presents, for the first time, the often overlooked land cover characterization impact on

large scale LAI estimation.

Résumé. Les données sur l’occupation des sols sont un paramètre important pour estimer les paramètres terrestres clés tels

que l’index de surface foliaire (LAI). Elles sont souvent paramétrisées avec des propriétés géométriques et optiques qui

diffèrent selon le type d’occupation des sols. Cet article présente une étude comparative et une évaluation des données

« Global Land Cover » (GLC2000) à 1 km de résolution et « North American Land Cover » (NALC2005) à 250 m de

résolution sur le Canada. Nous avons utilisé les données d’utilisation des sols des régions agricoles du Canada Circa 2000

à 30 m de résolution comme données de référence. L’étude comparative et l’évaluation ont été conduites à six niveaux de

classes généralisées qui ont été catégorisées en fonction de leur importance pour la paramétrisation des algorithmes

d’estimation des paramètres terrestres clés. La correspondance générale par pixel entre GLC2000 et NALC2005 était de

63.4 %. La précision générale avec les données de références Circa 2000 étaient de 62.3 % et 65.5 % pour les données

GLC2000 and NALC2005 respectivement. En utilisant la version 2 améliorée de l’algorithme d’estimation du LAI de

l’Université de Toronto, jusqu’à 42 % de différence entre les estimation de LAI ont été constatées sur le Canada, dues aux

différences entre les deux jeux de données régionales d’occupation des terres. Cette étude a évalué la performance du

nouveau produit NALC2005 et a présenté pour la première fois l’impact souvent négligé de la caractérisation de

l’occupation des sols sur l’estimation du LAI à grande échelle.

Introduction

A large number of international environmental agreements

place global change at the top of scientific and political

agendas; the Kyoto Protocol, the Convention on Biological

Diversity, the Convention to Combat Desertification, the

Ramsar Convention on Wetlands, International Geosphere-

Biosphere Programme, Global Climate Observing System,

World Climate Research Programme, and Intergovernmental

Panel on Climate Change, to name a few. Among many

surface parameters, land cover information is one of the

crucial land surface parameters needed on a continual basis

for global change studies. With the availability of improved

spatial, spectral, geometric, and radiometric space-borne

earth observation data (e.g., Moderate Resolution

Imaging Spectroradiometer (MODIS) and Satellite Pour

l’Observation de la Terre Vegetation (SPOT VGT)),

ground-truth data, and improved classification algorithms,

it is possible to produce comprehensive global land cover

data sets (Friedl et al., 2002; Justice et al., 2002). Never-

theless, we are far from producing geospatially consistent

high-quality data at an operational level because of chal-

lenges associated with landscape heterogeneity, mixed pixels,

lack of consensus on land cover class definitions, and

uncertainties with satellite data (e.g., Congalton, 1991;

Foody, 2002; Giri et al., 2005; Herold et al., 2008).

Knowledge of land cover information, such as agriculture,

forest, natural, and planted woody vegetation cover area,

and information on their changing proportions is needed by

legislators, planners, and government officials to determine

better land use policies (e.g., Pannell and Roberts, 2009).

Several government agencies also need land use data to
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assess the environmental impact resulting from the devel-

opment of energy resources, to manage wildlife resources

and minimize human�wildlife ecosystem conflicts, to make

national summaries of land use patterns and changes for

national policy formulation, and to prepare environmental

impact statements and assess future impacts on environ-

mental quality (Anderson et al., 1976; Pannell and Roberts,

2009). Globally, land cover information has often been a

central piece of land use policies and environmental

monitoring agreements.

Land cover information is also a crucial input parameter

for retrieving other key land surface biophysical parameters

from a regional scale to a global scale, such as leaf area

index (LAI), fraction of absorbed photosynthetically active

radiation (fAPAR), and clumping index (CI) (e.g., MODIS

LAI and fAPAR products, Myneni et al., 1997; University

of Toronto (U of T) LAI and CI products, Deng et al., 2006;

Chen et al., 2005; CYCLOPES LAI product, Baret et al.,

2007). Garrigues et al. (2008) reported that the interchange

of biome types is one of the major factors of the

unsatisfactory performance of global LAI products. Myneni

et al. (2002) calculated the LAI difference to be up to 50%

when distinct biomes are misclassified for a given pixel in a

global MODIS LAI product. Given the moderate accuracy

of regional or global land cover products (overall accuracy

60%�80%) (Herold et al., 2008) their impact on LAI and

other critical land surface biophysical parameters may

propagate large uncertainties, particularly for major biome

interchanges with significant spectral differences. The im-

pact of the uncertainties of the input parameters associated

with land cover products is often overlooked in global LAI

and other biophysical parameter product validations.

In an effort to improve the U of T regional LAI algorithm,

we have implemented the MODIS 250 m reflectance data

(Trishchenko et al., 2006) and the independently produced

MODIS-based 250 m North American Land Cover

(NALC2005) (NALC, 2005) to minimize pixel geo-location

error while maximizing the pixel resolutions using the

dataset from the same sensor (Gonsamo and Chen, 2011).

The U of T LAI algorithm was used previously with the 1 km

Global Land Cover for the year 2000 (GLC2000) dataset.

This is too coarse for the current 250 m LAI algorithm and

was noted by Garrigues et al. (2008) to have an interchange

of biome types. MODIS also has standard 1 km and 500 m

land cover products that are still coarse for our 250 m LAI

algorithm and are not optimized for regional or local

applications (Giri et al., 2005). Both the GLC2000 and the

NALC2005 products followed a bottom-up approach by

combining and harmonizing regional and country products

and legends. As such, they are optimized for local use.

Therefore, this paper presents the comparative perfor-

mance assessment of two newly available Canadian regional

land cover datasets. The first dataset is version2 (v2) Land

Cover Map of North and Central America for the year 2000

(GLC2000) prepared by Canada Centre for Remote Sensing/

Natural Resources Canada (CCRS/NRCan) and Earth

Resources Observation and Science/United States Geologi-

cal Survey (EROS/USGS) Data Centre (EDC) as a regional

component of the Global Land Cover 2000 project

(GLC2000: Latifovic et al., 2003) from which v1 had already

been used in the U of T LAI algorithm. The second dataset,

which has not yet been independently validated, is the newly

available 250 m MODIS-based NALC2005 product pro-

duced by CCRS/NRCan, USGS, Insituto Nacional de

Estadı́stica y Geografı́a (INEGI), Comisión Nacional para

el Conocimiento y Uso de la Biodiversidad (CONABIO) and

Comisión Nacional Forestal (CONAFOR) (NALC, 2005).

All earth observation products are subjected to contin-

uous validation exercises by independent experts. Therefore,

although this study was performed for the U of T LAI

algorithm refinement, it contributes to the validation

activities of global and regional land cover products. The

assessment is based on the six generalized classes (needleleaf

forest, broadleaf forest, mixed forest, shrub, crops and grass,

and water bodies) that are relevant for parameterization of

global and regional LAI, fAPAR, and CI algorithms.

However, this level of generalization is also relevant for

other informed policy and land use and land cover decisions

on larger scales. The goal of this study is to evaluate the

accuracy of regional land cover products and their impacts

on the U of T LAI algorithm with the following objectives:

(i) compare the GLC2000 and NALC2005 land cover

products over Canada based on six generalized classes;

(ii) evaluate the two land cover products using the Circa2000

reference data; and (iii) assess the impact of land cover

mixture and uncertainty on LAI estimation.

Methodology

Land cover data sources

GLC2000

The GLC2000 v2 North America 0.0089 degree (approx.

1 km) data were downloaded from http://bioval.jrc.ec.

europa.eu/products/glc2000 (Latifovic et al., 2003) (accessed

30 June 2010). We acquired the data in the Geographic

Coordinate projection system with the World Geodetic

System 1984 (WGS1984) Datum and reprojected it to the

Lambert Conic Conformal (LCC) projection system.

The GLC2000 land cover classification was derived using

the four 1 km bands of SPOT VGT data from the growing

season of 2000 (Latifovic et al., 2003). The GLC2000 land

cover mapping was accomplished in two phases: initial

clustering and cluster agglomeration using a classification

procedure that combines unsupervised and supervised

classification approaches. The enhanced classification

method (ECM) and classification by progressive

generalization (CPG) were used as a combined classification

method to obtain the final land cover classes (Latifovic et al.,

2003). Although there was a slight modification in the v2
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GLC2000, the class names are different from those reported in

v1 (Latifovic et al., 2003, 2004).

NALC2005

The NALC2005 250 m data were downloaded from

www.cec.org (accessed 30 June 2010). The data were

acquired in the Lambert Azimuthal Equal Area projection
system and reprojected to the LCC projection system into a

1 km pixel based on the majority land cover prevalence of a

4 � 4 group of 250 m pixels. The NALC2005 classification

was derived from a time composite from summer 2005 of

seven land bands of level 1B MODIS data (collection 5)

and ancillary geographic information system (GIS) layers

following similar ECM and CPG classification approaches

as the GLC2000 (NALC, 2005). Both land cover datasets
were created using different input datasets and number of

classes (Table 1) but had the same purpose of providing

accurate land cover information for environmental modelers

and policy makers.

Circa 2000

For validation, we used the 30 m Circa 2000 reference

land cover data for agricultural regions of Canada that were

compiled by Agriculture and Agri-Food Canada (AAFC) in

universal transverse mercator projections. They were then

reprojected by the LCC projection system into a 1 km pixel,
based on the majority land cover prevalence. The Circa 2000

land cover is derived from Landsat-5 Thematic Mapper

(TM) and (or) Landsat 7 Enhanced Thematic Mapper

(ETM�) multispectral imagery and ground reference

training data using various supervised classification

approaches, including a hierarchical decision-tree process.

Image object segmentation, pixel filtering, and post

editing were applied as part of the image classification.

The classification product is based on a set of images that

were collected between the 1998 and 2003 growing seasons.

The reference data used to train the classifier were collected

from a variety of sources, such as crop insurance databases,

high-resolution air or satellite imagery, visual interpretation

of Landsat images, topographic maps, field data, digital

elevation data and its derivatives, and soil databases.

Although there are two other Circa 2000 datasets of the

remaining forest region and northern territories of Canada,

we have not included these as references because of lack of

availability, inconsistent accuracies among individual scenes,

and classifier variations among the dataset.
This Circa 2000 dataset covering approximately 3.7 million

square kilometres is compiled by AAFC, but it also integrates

products mapped by other provincial and federal agencies

with the appropriate legend translations. Thus, the classifica-

tion consists of various supervised classification approaches

depending on the agencies responsible for the specific

geographic region. The Circa 2000 land cover for agricultural

regions has considerable accuracy for use with the validation

dataset. Positional accuracy was within 1 pixel (30 m).

A cross-validation measure based on input training data of

each of the 97 scenes resulted in an average overall accuracy of

86.6% (minimum 72.8% and maximum 96.3%). A thematic

(pixel) consistency measurement of 151 overlapping cases

resulted in an average percentage consistency of 92.1%

(minimum 72.9% and maximum 98.9%). An overall accuracy

measure using 3164 independent ground reference sample

Table 1. Generalized land cover class legend with corresponding cover types and ID number from the individual dataset.

Classes GLC2000 v2 cover type and (ID) NALC2005 cover type and (ID)

Circa2000 cover type and

(ID)

Needleleaf

forest

Needleleaf evergreen forest with closed and open

canopies and needleleaf mixed forest with closed

canopy (4, 5, 6, 20)

Needleleaf forest (1, 2) Coniferous (210)

Broadleaf

forest

Broadleaf deciduous or evergreen forest with closed

or open canopies (1, 2, 3, 29)

Broadleaf evergreen and deciduous forest

(3, 4, 5)

Deciduous (220)

Mixed

forest

Mixed broadleaved or needleleaf forest with closed

canopy (7, 8)

Mixed forest (6) Mixed (230)

Shrub Broadleaf or needleleaf deciduous or evergreen

shrubland with closed or open canopies and

mixed broadleaf or needleleaf dwarf-shrubland

with open canopy (9, 10, 11, 12)

Shrubland and shrubland with lichen and

moss 7, 8, 11)

Shrubland (50)

Crops and

grass

Grassland, grasslands with tree or shrub or dwarf-

sparse shrub layer, cropland and crop with shrub

or woodland, wetlands, and herbaceous wetlands

(13, 14, 15, 16, 17, 18, 19, 27, 28)

Grassland, wetland, cropland, grassland with

lichen and moss, and barren land with

lichen and moss (9, 10, 12, 13, 14, 15)

Wetland, grassland, and

agriculture (80, 110,

120, 121, 122)

Water

bodies

Water bodies (24) Water (18) Water (20)

Other* Burns, disturbances, snow, ice, urban and built-up

areas (21, 22, 23, 25, 26)

Urban, snow and ice (16, 17, 19) Exposed land and

developed land (30, 34)

*Areas corresponding to the ‘‘other’’ category in any of the three datasets have been excluded from comparison. For the Canadian land mass, not

necessarily all of the cover types listed in the table are present. All noninland water bodies are masked out from comparison in all the three datasets.
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points, collected based on a stratified systematic sampling

grid across the 3.7 million square kilometres, resulted in an

accuracy of 82%.

Land cover intercomparison and accuracy assessment

Although all three land cover products were reprojected

into the LCC projection system to fit the U of T LAI

algorithm input data scheme, all the area calculations were

made using the actual pixel size based on Albers Equal-Area

Conic projection system. For the purposes of this study, the

‘‘other’’ and ‘‘noninland water’’ categories were not included
in the comparison (Table 1); however, significant differences

may occur between the products for inland water. Although

the main aim of this work was to compare the two regional

land cover datasets, we attempted to evaluate their

differences based on the Circa 2000 dataset. The results are

first presented for the GLC2000 and NALC2005 comparisons

followed by evaluation using the Circa 2000 data. It is

assumed that there will be only minor thematic changes in
the six generalized classes between 2000 and 2005 because

urban, built-up areas, and disturbances are masked out

from the comparisons. All the comparisons are made at the

coarsest pixel size (1 km) level among the three datasets.

Although most quantitative methods for classification

accuracy assessment use an error matrix derived from

independent classification and reference datasets, recent

studies have focused on sampling scheme, sampling size,
classification scheme, land cover heterogeneity, accuracy of

the ground truth or reference data, spatial distribution

of error, and spatial autocorrelation (Congalton, 1991;

Friedl et al., 2000; Stehman and Czaplewski, 1998;

Foody, 2002; Latifovic and Olthof, 2004). The error matrix

is expected to satisfy the statistical distribution of map

information, the representativeness of the sampling unit,

the number of samples collected, and the choice of sampling
units (Congalton and Green, 1999). Considering these

factors, we have first tried to consider the representativeness

of the Circa 2000 reference data. Figure 1 shows the

proportional distribution of the six aggregated classes across

the three datasets. Although the geospatial representativeness

of the sampling unit is not fully achieved over Canada entirely

(Circa 2000 only covers part of Canada), Figures 1 and 2 show

that the six classes are proportionally represented in the
reference dataset. Figure 2 shows that the northern territories

are characterized by homogeneous land cover classes mostly

composed of the ‘‘crops and grass’’ and ‘‘water bodies’’

classes. Therefore, the accuracy results based on the southern

portion of reference data may underestimate the actual

performance of the GLC2000 and NALC2005 products.

To avoid autocorrelation, we have selected the reference data

based on the classic stratified random sampling techniques
with proportional sample sizes based on the prevalence of the

six generalized classes. The final selected reference sample

size equals approximately one-third of the original Circa

2000 pixels. Given that the regional or global land cover

product validations have often been hampered by the lack of

availability of reference data, we assume that our evaluation

based on Circa 2000 is reasonable.

The intercomparison between GLC2000 and NALC2005

was made by visual, area, per-pixel, and per-class compar-

isons. Furthermore, GLC2000 and NALC2005 were

compared based on class interchanges, (i.e., the proportion

of a particular class from one land cover data allocated to

other classes in the other land cover data and vice versa).

The spatial distribution of per-pixel agreements and dis-

agreements were further discussed and evaluated using the

Circa 2000 reference data. Standard techniques were used

for quantitative accuracy assessments such as producer and

user accuracies and kappa coefficient (Foody, 2002),

which were often followed by qualitative interpretations of

the error matrices and disagreements.

Qualitative validations following Mayaux (2002) were

performed wherever possible using visual interpretations of

Google Earth maps (http://www.earth.google.com), the

Canadian National Topographic Database (NTDB), and

Terrestrial ecozones of Canada (Figure 3 and Wiken, 1986).

Google superimposes high-resolution images over coarser

images according to image availability, quality, and date. In

Canada, most of the high-resolution Google Earth images

are from Digital Globe’s Quick Bird satellite, spanning from

2002 to 2010 at a spatial resolution of 0.6 m and above, and

from the SPOT satellite, at a spatial resolution of 2.5 m and

above. The NTDB is a digital cartographic reference

product generated by NRCan and it includes features such

as watercourses, boundaries, urban areas, railways, roads,

vegetation, and relief (Edition 3.1 data, NTDB, NRCan).

Canada’s physiographic and ecological regions contain

15 ecozones, areas of the Earth’s surface representative of

large and very generalized ecological units characterized by

interactive and adjusting abiotic and biotic factors (Wiken,

1986). These ecozones are often used for environmental

reporting purposes. We use the ecozones in this paper to

refer to areas that need further attention for land cover

Figure 1. Percent area totals of the three land cover classification

datasets. GLC2000 and NALC2005 percent area totals are

calculated for all of Canada whereas Circa 2000 is only available

for the section of southern Canada as presented in Figure 2 for

all the three datasets.
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classification because of spatial disagreements among the

land cover datasets.

Impact of land cover mixture and uncertainty on LAI
estimation

We have used the U of T LAI algorithm (Deng et al., 2006)

that was developed based on a 4-scale geometrical optical

model with a multiple scattering scheme. The algorithm

makes use of the 4-scale simulations characterized by the

LAI relationship with the bi-directional reflectance distribu-

tion function (BRDF) of the red (rR), near infrared

(NIR, rNIR), and shortwave infrared (SWIR, rSWIR) reflec-

tances for each distinctive land cover type. The land cover

types with similar structural characteristics are combined to

form six biomes based on canopy architecture: needleleaf

Figure 3. Terrestrial physiographic and ecological ecozones of Canada,

adapted from Wiken (1986).

Figure 2. Land cover classification of Canada with six generalized classes using (a) GLC2000, (b)

NALC2005, and (c) reference data from Circa 2000.

Vol. 37, No. 3, June/juin 2011
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forest, tropical forest, broadleaf forest, mixed forest, shrub,

and cropland and grassland. Nonvegetated land and water

surfaces are assigned an LAI value of zero. The LAI is

retrieved from a lookup table (LUT), which is in turn
generated from the BRDF of the three spectral bands

producing simple ratio (SR), SR ¼ qNIR

qR
, and reduced simple

ratio (RSR),

RSR ¼ qNIR

qR

1�
qSWIR � qSWIRmin

qSWIR � qSWIRmin

 !

vegetation indices based on the interactions of incidence
solar radiation and the vegetated surface represented by a

priori range of ancillary parameters (e.g., land cover types,

soil and leaf optical properties, canopy shape and height,

and vegetation clumping at the plant and canopy scales).

qSWIRmax
and qSWIRmin

are the maximum and minimum SWIR

reflectances selected for specific land cover types, respec-

tively. The RSR is used for forest land cover because it

reduces the impact of the forest background and hetero-
geneity variations on LAI estimations, whereas SR is used

for other vegetated land cover LAI estimations.

In v1 of the U of T LAI algorithm, the LUT is

parameterized for each aggregated land cover type. These

parameterizations include the land cover specific use of

vegetation indices (RSR or SR), clumping index, qSWIRmax

and qSWIRmin
, BRDF�LAI relationships, and other ancillary

parameters. As such, the land cover data is indispensable for
obtaining accurate LAI estimates. This is the common

approach for large-scale LAI estimation algorithms. Gon-

samo and Chen (2011) have further improved the U of T

LAI algorithm and produced v2 U of T that uses the same

LUT and only differs from v1 by mathematically incorpor-

ating the measured background reflectance, spatially explicit

clumping index, and local pixel topography consideration in

the LAI estimation. However, the impact of land cover
remains the same in v2 U of T although a spatially-explicit

pixel-based clumping index is used in contrast to the land

cover specific values used in v1. The clumping index

modeling itself is land cover specific (Pisek et al., 2011).

The use of RSR in the U of T LAI algorithm further

minimized the impact of land cover on LAI estimation

unlike other global LAI products (e.g., MODIS LAI

(Myneni et al., 1997) and CYCLOPES LAI (Baret et al.,
2007)).

The implementation of the U of T LAI algorithm can be

done using any regional or global land cover products

aggregated to the general classes as shown in Table 1. For

the purpose of this study, we have used v2 of the U of T LAI

algorithm. The 10-day composite of 1 km SPOT VGT data

(atmospherically corrected and free from cloud, cloud

shadow, and snow) was acquired between 1 and 10 June
2003 with the associated view-target-sun geometry files

being used as input to simulate LAI.

Assuming that the 30 m Circa 2000 reference land cover

data contain the highest resolution cover type relevant for

the radiative transfer characterization of the U of T LAI

algorithm, the individual LAI value of a 1 km pixel can be

decomposed to a higher resolution product. This high-

resolution LAI, derived from LAI unmixing, is used as a

reference LAI for comparison of land cover mixture and

uncertainty in LAI estimation. Probabilistic models for

unmixing spectral reflectance of a pixel to individual

constituents of end members are becoming common decom-

position methods for optical remote sensing (e.g., Bateson,

et al., 2000). The model could also be adapted to remote

sensing products assuming that the pixel is a linear

composition of deterministic land cover types, a usual

assumption for optical data unmixing:

LAIPixel ¼
Z

LAIixi þ e (1)

where LAIPixel is the LAI value of the coarse resolution pixel

constituting the sub-pixel LAIi contributions from each land

cover type represented by the area fraction weight, xið Þ of

that land cover compared with the total vegetated surface of

the pixel, and e is an error term. Assuming that there are no

interaction effects of land cover types at 30 m resolution (a

fairly valid assumption), the 1 km LAIPixel values derived

using the GLC2000, NALC2005, or the 1 km aggregated

Circa 2000 land cover input data can be decomposed using

the the weighted (vi) (where subscripts n, b, m, s, and g

stand for needleleaf, broadleaf, mixed forests, shrub, and

grass covers, respectively) contribution of LAIi from each of

the constituting generalized land cover classes

LAIPixel ¼ LAInxn þ LAIbxb þ LAImxm þ LAIsxs

þ LAIgxg þ e (2)

The xi of each land cover constituting the 50 km grid

‘‘zone’’ is extracted from the vegetated surface of the Circa

2000 dataset. The 50 km grid is an arbitrarily sized zone

selected as a compromise between: (1) computing efficiency

and (2) large scale land cover uncertainty, heterogeneity,

pixel misregistration, and spatial autocorrelation. The LAI

was simulated assuming that the entire scene had the same

land cover which produced five sets of LAI products for

each specific generalized land cover type (Table 1). Then the

LAIPixel was derived using Equation (2) based on the

product of vi and LAIi values of that zone for that land

cover type. This LAI was used as reference data to evaluate

the LAI derived from each of the three land cover products.

However, the LAI over all of Canada was first calculated

using the two major land cover datasets (GLC2000 and

NALC2005).
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Results

Comparison of the GLC2000 and NALC2005 land cover

products

Initially, a comparison of percentage of area totals for the

two regional land cover datasets assigned to each of the six

generalized classes was performed (Figure 1). In Figure 1,

there is a reasonable agreement of area totals between the

GLC2000 and NALC2005 datasets for the shrub classes.

However, disagreement occurs between the datasets for the

remaining five classes, with broadleaf and mixed forest

showing the highest proportional differences. Even if we

merge all forest classes and compare the area totals between

the two datasets, the differences are still considerable (44.9%

and 51.2% area totals of forest cover for the GLC2000 and

NALC2005 datasets, respectively).

The total forested area cover over Canada is 3 601 856 km2

and 4 109 135 km2 from GLC2000 and NALC2005, respec-

tively. The difference of forested area from the two land cover

datasets is approximately 0.5 million sqaure kilometres,

which is very significant particularly for reporting forest

carbon budget from regional ecosystem models. Accord-

ing to the 2001 Canada’s Forest Inventory (CanFI2001:

Powel and Gillis, 2006), the forested area over Canada

is 4 021 000 km2 which is in close agreement with the

NALC2005 estimate. The slight underestimation of forested

area from the NALC2005 data compared with the Can-

FI2001 data is mainly because the Hudson Plains area in

Northern Ontario is classified as a forest of low proportional

area in CanFI2001, whereas in the NALC2005 data it is

classified as a wetland which belongs to the crops and grass

cover type in the aggregated six classes. Whereas, the large

underestimation of forest area from the GLC2000 compared

with both the NALC2005 and CanFI2001 is explained by the

fact that forest areas are underestimated in the northwestern

provinces and territories (e.g., northern British Columbia

and Alberta, and the Yukon and Northwest Territories) in

the GLC2000 dataset (Figure 2, Power and Gillis, 2006).

Figure 4 presents a spatial comparison of the distribution

of agreement and disagreement between the two datasets.

The 3 km � 3 km resampling of majority land cover to

reduce the possible pixel misregistration error has signifi-

cantly reduced the overall agreement between the GLC2000

and NALC2005 datasets (Figure 4). According to Figures 2

and 4, the major generalized category classified similarly

between the two datasets is the crops and grass class.

Although the disagreements are fairly uniformly distributed

for the forest classes, the major disagreements are visibility

concentrated around the boreal and taiga plains and shields

of Canada (Figures 3 and 4). These areas are predominantly

covered by a mixture of boreal forests that are barren or are

wetlands or grasslands. For example, the Hudson Plains

area, which is south of Hudson Bay (Figure 3) and where

strong disagreement was observed, is actually dominated

by peat and grasslands; this is correctly classified in the

NALC2005 but not in the GLC2000. In addition, the

northern limit of the GLC2000 for fo rest is lower in

latitude than that for the NALC2005. The visual interpreta-

tion with Canada’s forest regions in Google Earth indicates

that the NALC2005 has captured the forest region in the

northern territories better than the GLC2000 for areas

dominated by boreal forest and taiga (Figures 2 and 3).

To illustrate the variations between the two datasets, we

have presented the percent allocation of the total per-class

pixels from the GLC2000 to the NALC2005 classes

(Table 2) and vice versa (Table 3). With six aggregated

land cover classes, the overall per-pixel agreement is 63.4%

and the Kappa coefficient is 0.494 between the GLC2000

and the NALC2005. In Tables 2 and 3, the crops and grass

classes show the maximum agreement between the two

datasets. For example, in Table 2, 72.5% of the crops and

grass class from the GLC2000 is allocated to the same class

of the NALC2005 while it is 81.9% when reversed (Table 3).

The least per-pixel agreement is obtained for the shrub class,

which is in contrast to the shrub class being the best

matching class between the two datasets based on the area

totals comparison (Figure 1). The class-specific per-pixel

Figure 4. Spatial agreement and disagreements between the GLC2000 and NALC2005

data (a) 1 km � 1 km (spatial per-pixel agreement 63.4%), and (b) 3 km � 3 km

majority land cover resampling (spatial per-pixel agreement 46.3%).
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spatial agreements were 52.9%, 19.6%, 18.2%, 6.3%, 62.5%,

and 52.4% for needleleaf forest, broadleaf forest, mixed

forest, shrub, crops and grass, and water bodies, respectively,

between the GLC2000 and NALC2005 datasets.

There are several reasons for the disagreements obtained

between the GLC2000 and NALC2005 datasets. Latifovic et

al. (2004) noted that in North America, the central and core

forested areas were in good agreement, while disagreement

occurred mostly along edges and transition zones when

comparing four global land cover datasets that included the

GLC2000. However, our results show that the major

disagreement between the two datasets occurs across the

forest and shrub region classes being confused within the

dataset (Giri et al., 2005). Often, one obvious discrepancy

comes from the application of different thresholds of

average tree height and canopy cover for separating various

classes (Latifovic and Olthof, 2004). For example, more

pixels of shrub class from the GLC2000 data are classified to

needleleaf forest, broadleaf forest, mixed forest, or crops and

grass in NALC2005 dataset than are classified as a shrub

class (Table 2), whereas most of the shrub pixels of the

NALC2005 dataset are classified either to the needleleaf

forest or crops and grass classes in the GLC2000 (Table 3).

The confusion of class definitions among the forest and

shrub, shrub and grasslands, mixed forest and pure forest

classes may explain the major discrepancies (Tables 2 and 3)

as there is little confusion between the broadleaf and

needleleaf forest classes. Additionally, the water bodies class

is confused with the crops and grass class and needleleaf

forest cover types (Tables 2 and 3). The confusion between

the crops and grass class with the water class can be

explained by the misrepresentation of wetland (which is

categorized here as crops and grass) with water features. The

confusion between needleleaf and water can be explained

because of the high patchy water level during the early

spring (time of image aquisition) which is typical of the

northern needleleaf forest of Canada. This discrepancy

could be captured by the 250 m NALC2005 but not by

the approximately 1 km GLC2000 dataset (see Figure 2).

These conclusions are derived using the NTDB to distin-

guish between water and wetland and Google Earth maps to

determine the northern needleleaf forest areas.

Evaluation of the GLC2000 and NALC2005 land cover

products

Table 4 shows the class-specific accuracies for the

GLC2000 regional dataset in comparison with the Circa

2000. The crops and grass class appears with high producer

and user accuracies in both the GLC2000 and NALC2005

datasets (Tables 4 and 5) and thus are quite accurately

mapped. Classes with high producer and low user accuracies

indicate overmapping. Examples of this are classes such as

broadleaf and mixed forest cover types in both the GLC2000

and NALC2005 (Tables 4 and 5). The high user accuracies

of the crops and grass and waterbody classes in both the

GLC2000 and NALC2005 indicate that most of the pixels in

the reference dataset for these two classes are accurately

mapped in both regional datasets. These two classes also

have higher producer accuracies indicating higher spatial

agreements. Both user and producer accuracies in both

datasets have similar trends except that more shrub class is

misclassified as needleleaf or crops and grass classes in the

Table 2. Percent confusion matrix among the 6 generalized classes of GLC2000 compared with NALC2005.

NALC2005

GLC2000 Needleleaf forest Broadleaf forest Mixed forest Shrub Crops and grass Water bodies

Needleleaf forest 65.5 1.0 16.7 4.3 9.6 2.8

Broadleaf forest 3.9 45.6 38.4 0.3 10.5 1.3

Mixed forest 8.5 28.5 52.3 0.2 10.0 0.6

Shrub 30.9 13.5 23.0 12.2 19.7 0.8

Crops and grass 10.7 2.3 4.1 9.1 72.5 1.2

Water bodies 21.9 1.2 4.2 2.5 9.1 61.1

Note: Producer accuracy (spatial agreement) is in boldface.

Table 3. Percent confusion matrix among the 6 generalized classes of NALC2005 compared with GLC2000.

GLC2000

NALC2005 Needleleaf forest Broadleaf forest Mixed forest Shrub Crops and grass Water bodies

Needleleaf forest 73.2 0.3 1.5 5.5 13.1 6.4

Broadleaf forest 7.3 25.6 31.3 15.3 18.2 2.2

Mixed forest 45.0 8.2 21.8 9.9 12.2 2.9

Shrub 25.5 0.1 0.2 11.5 58.7 3.9

Crops and grass 9.9 0.9 1.6 3.3 81.9 2.5

Water bodies 13.5 0.5 0.5 0.6 6.7 78.3

Note: Producer accuracy (spatial agreement) is in boldface.
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GLC2000 compared with the broadleaf and mixed forest

classes in the NALC2005 (Tables 4 and 5).

Mayaux et al. (2006) reported an overall accuracy of

68.6% for the nonaggregated GLC2000 land cover classes

compiling reference data from across the world excluding

North and South America. Latifovic and Olthof (2004)

reported an overall accuracy of approximately 62% between

the GLC2000 and the 1 km aggregated reference data over

all of Canada that was derived from Landsat TM/ETM�
scenes collected across Canada. Our result of an overall

accuracy of 62.4% is in good agreement with the study by

Latifovic and Olthof (2004). This agreement suggests that

we can draw a sound conclusion for Canada using the Circa

2000 data that covered only the southern portion of Canada

(Table 4). The reason for the confusion in the GLC2000 and

the Circa 2000 for needleleaf and mixed forest classes is that

GLC2000 defines needleleaf forest as having a broad range

of 25%�75% canopy cover for which the open canopies may

be mixed with broadleaf or shrub, whereas the Circa 2000

defines needleleaf forest as a predominantly needleleaf treed

area that includes mixed forest and shrub. This may create

fuzzy boundaries between the two classes and the disagree-

ment for these two classes may not be necessarily as high as

reported in Table 4. The same may be true for the shrub

class in Table 4.

The reason for the confusion of the mixed forest with the

needleleaf forest classes and the shrub class with the other

forest classes between the NALC2005 and Circa 2000 is

most likely due to the confusion of class definitions, as is

shown in the compared results obtained between the

GLC2000 and Circa 2000. We hypothesize the reason as
there was no class definition for the NALC2005. Although

there was no independent validation for the NALC2005

dataset, the preliminary validation from the NALC2005

indicates that, for the 13 class aggregate, the overall

accuracy was between 59% and 69% with an average

accuracy of 65% (NALC, 2005). This is in close agreement

with our result for the aggregated six classes with an overall

accuracy of 65.5% (Table 5).

Implications of land cover mixture and uncertainty of LAI

estimation

The U of T LAI algorithm uses the RSR vegetation index
among the forest classes. Therefore, no major differences

were expected in the LAI values among forest cover type

confusion (higher LAI values in Figure 5) between the

GLC200 and NALC2005. Most of the discrepancies are in

low LAI values (B2) which are explained by the confusion

of forest and nonforest cover types between the GLC2000

and NALC2005 in prairie areas, the Hudson plains, and the

northernmost forest boundaries (Figure 3). This agrees with
Deng et al. (2006) who reported that the major discrepancy

usually comes from the confusion of forest with nonforest

cover types. Table 3 shows that there is large confusion

among shrub and other forest classes between the GLC2000

Table 4. Class-specific confusion matrix and overall accuracy among the 6 generalized classes of GLC2000 compared with Circa2000.

GLC2000

circa2000 Needleleaf forest Broadleaf forest Mixed forest Shrub Crops and grass Water bodies User accuracy Overall

Needleleaf forest 75.1 2.9 11.3 5.1 3.3 2.2 65.4

Broadleaf forest 16.7 26.4 41.2 4.7 9.0 2.0 16.4

Mixed forest 37.2 19.4 35.8 3.4 1.3 2.9 30.2

Shrub 32.0 8.9 14.3 19.0 22.4 3.4 19.2

Crops and grass 10.6 4.3 6.9 6.5 70.6 1.1 88.9

Water bodies 24.7 3.8 4.4 2.2 3.8 61.0 75.2

Accuracy 62.4

Kappa 0.492

Note: Confusion matrix and accuracy figures are given in percentages. Producer accuracy (spatial agreement) is in boldface.

Table 5. Class-specific confusion matrix and overall accuracy among the 6 generalized classes of NALC2005 compared with circa2000.

NALC2005

circa2000 Needleleaf forest Broadleaf forest Mixed forest Shrub Crops and grass Water bodies User accuracy Overall

Needleleaf forest 63.5 6.0 22.1 4.1 3.8 0.6 77.4

Broadleaf forest 6.8 41.9 41.5 0.3 8.8 0.7 16.4

Mixed forest 15.5 16.7 65.6 0.2 1.1 0.8 33.6

Shrub 14.0 32.9 36.9 7.3 8.3 0.7 18.2

Crops and grass 4.9 7.4 7.1 1.6 78.6 0.4 92.1

Water bodies 15.2 3.6 8.1 0.5 3.5 69.0 91.9

Accuracy 65.5

Kappa 0.545

Note: Confusion matrix and accuracy figures are given in percentages. Producer accuracy (spatial agreement) is in boldface.
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and NALC2005, which explains some of the differences

observed in low LAI distribution in Figure 5. The overall

pixel-by-pixel mean absolute difference is 0.665 LAI, which

is 42% and 35% of the mean LAI values obtained over

Canada from 1�10 June 2003 using v2 U of T LAI

algorithm with the GLC2000 and NALC2005 land cover

products, respectively.

LAI estimates from remotely sensed optical data usually

saturate at relatively low LAI values depending on the leaf

spectral albedo (single-scattering albedo), forest background

reflectances, and the view or illumination geometry. For

example, MODIS’s main LAI algorithm saturates at dense

vegetation areas and often the backup algorithm is used in

such cases. In the backup algorithm, which is based on the

Normalized Difference Vegetation Index�LAI relationship,

the upper end of LAI is usually below 6.5 for all biome types

(Shabanov, et al., 2005). Contrary to the MODIS product,

the U of T LAI algorithm has a higher flexible threshold for

the upper LAI bound for forested (approx, 6�8) and

nonforested (approx. 4�6) vegetation cover types. In the

case of nonforest vegetation typical LAI is low, and the

estimated typical LAI should not reach saturation domain.

However, as explained in previous sections, a large amount

of forest pixels are classified as nonforest vegetation cover

type in the GLC2000. The spike at the LAI value of 5 for the

GLC2000 land cover indicates that a large number of pixels

that were classified as grass and crop cover types actually

resulted in a saturated upper end of the U of T LAI value.

This indicates that a large number of GLC2000 shrub and

forest cover types are misclassified as grass and crop cover

types. The reason for the spike at an LAI value of around 8

is explained by the fact that some forest pixels are in

saturation domain in both land cover datasets as the LAI

was derived in the height of the growing season.

Figure 6 shows the effects of land cover mixture and

uncertainty in the U of T LAI algorithm estimations. The

results from the Circa 2000 1 km majority-based aggregated

land cover and the Circa 2000 30 m LAI show that the land

cover mixture has a negligible effect on LAI estimations

(Figure 6a). The mean LAI values for Circa 2000 (0.8038),

GLC2000 (0.8228), and NALC2005 (0.8741) are statistically

different from the mean LAI values obtained from the Circa

2000 30 m (0.7811) (two-tailed t-test: p value B0.0001). The

reason for obtaining lower LAI estimates from the three 1

km land cover products compared with the high-resolution

30 m land cover of Circa 2000 is that the larger (1 km) pixels,

which have a significant mix of the shrub and grass and

crops classes with the forest class are labelled as forest land

cover classes because of proportionally larger forest cover

types. However, all the mismatches of the water class were

filtered out of the comparison, which might have had a

larger overall effect on LAI estimation using different land

cover products. In the U of T LAI algorithm, water classes

are assigned a LAI value of zero. The new improved v2 U of

T LAI algorithm (Gonsamo and Chen, 2011), which

incorporates a spatially explicit clumping index and back-

ground reflectance values, may have reduced the spurious

land cover impact on LAI estimation compared with

empirically determined land cover specific clumping index

Figure 6. Scatter plots of LAI derived from the v2 U of T LAI algorithm using (a) Circa 2000, (b) GLC2000, and (c)

NALC2005 land cover datasets, averaged over 50 km grid zones and plotted along with the LAI derived using the

30 m Circa 2000 land cover fraction per grid zone.

Figure 5. Canada-wide LAI value distribution based on v2 U of

T LAI algorithm using GLC2000 and NALC2005 land cover

products. The frequency is given in 1 km pixel numbers of valid

land pixels of the Canadian land mass. The absolute LAI

difference obtained by using the two land cover types is plotted

along with the actual LAI frequencies.
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values used in U of T v1, MODIS, and ECOCLIMAP LAI

algorithms (Myneni et al., 1997; Masson et al., 2003;

Champeaux et al., 2005; Deng et al., 2006).

Conclusion

This study has attempted to comparatively assess and

evaluate agreement and map uncertainties with using the

GLC2000 and NALC2005 land cover products over

Canada. The main objective was to assess the six aggregated

classes that were chosen based on the relevance for global

LAI, fAPAR, and CI algorithms parameterization. From

our work, it can be shown that even in such broad-scale

aggregation classes there can be large disagreements among

the same classes of various regional land cover datasets.

The two main reasons, among many that have been

discussed in previous studies, are the class definitions and

the temporal-spectral dynamics of land cover that is usually

viewed at a global and regional scale as static phenomena.

Based on our comparison and validation, we would like to

echo the long-recognized concern to internationally

establish homogeneous land cover definitions and reporting

schemes.

Our study indicates that the NALC2005 has better

quantitative accuracy over Canada than the GLC2000 based

on the Circa 2000 reference data and visual and qualitative

assessments. The NALC2005 exhibits better spatial distribu-

tion, such as capturing the northern limit of forest zones.

The main disagreement areas, such as the boreal forest and

taiga region of Canada, may receive special attention in

future land cover classification and accuracy assessments.

The total forested area over Canada is 3 601 856 million km2

and 4 109 135 million km2 based on the GLC2000 and the

NALC2005, respectively, with a large difference of estimated

forested area (approx. 0.5 million km2) between the two land

cover types. The pixel-by-pixel mean absolute difference of

0.665 LAI, obtained using the improved v2 U of T LAI

algorithm over Canada based on the GLC2000 and

NALC2005 land cover datasets, shows that land cover

misclassification is a great uncertainty source in LAI

estimation. For the first time, we have systematically

investigated the impact of land cover maps on biophysical

parameter retrieval from remote sensing data. Additionally

in this study, the newly developed NALC2005 data has been

evaluated independently for the first time. It is also

important to note that the implication of particularly mixed

needleleaf and broadleaf forest classes and their confusion

with other pure leaf type forest classes may hold large

uncertainties in studying land surface biophysical para-

meters that require land cover as crucial input. The

implications of misclassification of global or regional

fAPAR and CI algorithms following various methods have

yet to be studied.
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