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Abstract

Climate control on global vegetation productivity patterns has intensified in response to recent global warming. Yet,

the contributions of the leading internal climatic variations to global vegetation productivity are poorly understood.

Here, we use 30 years of global satellite observations to study climatic variations controls on continental and global

vegetation productivity patterns. El Ni~no-Southern Oscillation (ENSO) phases (La Ni~na, neutral, and El Ni~no years)

appear to be a weaker control on global-scale vegetation productivity than previously thought, although continental-

scale responses are substantial. There is also clear evidence that other non-ENSO climatic variations have a strong

control on spatial patterns of vegetation productivity mainly through their influence on temperature. Among the

eight leading internal climatic variations, the East Atlantic/West Russia Pattern extensively controls the ensuing year

vegetation productivity of the most productive tropical and temperate forest ecosystems of the Earth’s vegetated sur-

face through directionally consistent influence on vegetation greenness. The Community Climate System Model

(CCSM4) simulations do not capture the observed patterns of vegetation productivity responses to internal climatic

variations. Our analyses show the ubiquitous control of climatic variations on vegetation productivity and can further

guide CCSM and other Earth system models developments to represent vegetation response patterns to unforced

variability. Several winter time internal climatic variation indices show strong potentials on predicting growing sea-

son vegetation productivity two to six seasons ahead which enables national governments and farmers forecast crop

yield to ensure supplies of affordable food, famine early warning, and plan management options to minimize yield

losses ahead of time.
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Introduction

The global ocean-atmosphere system has several inter-

nal patterns of variability, which modulate the location

and strength of storm tracks and fluxes of heat, mois-

ture and momentum. While a few patterns appear to be

primarily atmospheric in origin (for example, the North

Atlantic Oscillation NAO), many are connected to

anomalous sea surface temperature (SST) patterns that

systematically change the precipitation and heating

patterns (such as El Ni~no-Southern Oscillation ENSO),

and generate teleconnections downstream (Wallace &

Gutzler, 1981; Barnston & Livezey, 1987; Lau & Nath,

1994; Sheng, 1999; Trenberth & Smith, 2005; Hurrell &

Deser, 2010). Accordingly, some regions are more anti-

cyclonic than normal and provide persistent sunny and

drier conditions, while other regions are more cyclonic,

with more storms, rain, cloud and soil moisture. In

between storm tracks are altered. The resulting spatial

teleconnections are expressed using teleconnection

indices relating oceanic and atmospheric climate

anomalies at large distances (Barnston & Livezey, 1987;

Trenberth & Smith, 2005).

Understanding the nature and variations in the beha-

viours of teleconnection patterns is central to under-

standing seasonal predictability of regional vegetation

productivity and crop yield (Garnett et al., 1998; Hsieh

et al., 1999; Quiring & Blair, 1999; Iizumi et al., 2014;

Gonsamo & Chen, 2015), and their links to rainfall,

snowfall, droughts, temperature and cloud cover and

associated incident solar radiation patterns. Prominent

teleconnection patters such as ENSO show that El Ni~no

years are related on land with reduced precipitation

(that instead occurs over the high SSTs over the ocean),

continental freshwater discharge (Dai et al., 2009) and

evapotranspiration (Miralles et al., 2013) over many

land areas, while wetter land occurs during La Ni~na

years (Trenberth et al., 2014a). Hence, the internal cli-

matic variability (hereafter referred to as ‘climatic vari-

ability’ as opposed to externally forced ‘climate

change’), such as ENSO, also affects the interpretation
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of the historic Palmer Drought Severity Index (Tren-

berth et al., 2014a) trends and relations to climate

change. Evidently El Ni~no years promote more

droughts and limited terrestrial moisture supply result-

ing in enhanced plant moisture stress through greater

moisture demand along with the concomitant increase

in continental temperature. Therefore, teleconnection

patterns are strong indicators of the regional and global

carbon budgets of the terrestrial biosphere and of total

plant photosynthesis.

The total amount of carbon gained by the terrestrial

biosphere is partly regulated by climatic variability,

and therefore responds to a wide range of teleconnec-

tion patterns. Terrestrial carbon gain is manifested in

the light-harvesting capacity of plants, which can be

monitored remotely by changes in the Normalized Dif-

ference Vegetation Index (NDVI). Although, NDVI is

not an intrinsic physical productivity measure, the

growing season integrated NDVI value is widely used

as a surrogate of primary productivity of the terrestrial

biosphere (Myneni et al., 1997), and indicates the rate of

organic biomass growth and accumulation by plants.

Several teleconnection indices are linked to regional

NDVI variability (Gong & Shi, 2003; Woodward et al.,

2008). Well-studied ENSO dynamics show that during

warm ENSO (El Ni~no) events, the global terrestrial bio-

sphere decreases both in net and total productivity,

whereas during cool ENSO (La Ni~na) events, the terres-

trial carbon sink capacity increases (Patra et al., 2005;

Miralles et al., 2013). However, no clear global-scale

vegetation productivity response related to ENSO

phases has been reported (Behrenfeld et al., 2001), and

no studies have determined global vegetation

responses to other leading teleconnection patterns.

Such limited information makes the overall impacts of

internal climatic variations on global-scale terrestrial

primary productivity uncertain, and further hinders

crop yield predictability and regional climate forecast-

ing ability, important for determining agricultural

regions under future climate scenarios. With accumula-

tion of satellite observations over the last three decades,

we can now study the roles of teleconnection patterns

on long-term trends and interannual variability of glo-

bal and regional vegetation productivity.

Here, we use 30 years (1982–2011) of bi-monthly

8 km satellite NDVI3 g data, annual growing season

values, from the Global Inventory Modelling and Map-

ping Studies (GIMMS) (Pinzon & Tucker, 2014) to show

the impacts of eight leading teleconnection patterns on

global vegetation productivity. Data for the eight tele-

connection indices (Wallace & Gutzler, 1981; Barnston

& Livezey, 1987), namely the NAO, East Atlantic Pat-

tern (EA), West Pacific Pattern (WP), Pacific/ North

American Pattern (PNA), East Atlantic/West Russia

Pattern (WR), Scandinavia Pattern (SCA), Polar/ Eura-

sia Pattern (POL) and ENSO-Ni~no 3.4 index (NINO),

were obtained from the National Oceanic and Atmo-

spheric Administration (NOAA) National Weather Ser-

vice. We also use the gridded Climatic Research Unit

(CRU TS 3.21) (Harris et al., 2014) annual growing sea-

son mean temperature and total precipitation data at

0.5 9 0.5 degree, and the Clouds and Earth’s Radi-

ant Energy System (CERES) downwelling total short-

wave surface radiation data downscaled from 1 9 1 to

0.5 9 0.5 degrees to investigate the biophysical mecha-

nisms of teleconnection controls on the interannual

variability of global vegetation productivity.

Our goal is to determine how much teleconnection

indices control the spatial pattern of global vegetation

productivity through mediation of meteorological vari-

ables. Therefore, our objectives are: (i) to study the

long-term trend of NDVI in relation to decadal and

multidecadal teleconnection indices; (ii) to study the

interannual relationship between vegetation productiv-

ity and teleconnection indices those with intraannual

and interannual frequencies of variability; and (iii) to

evaluate the winter time teleconnection indices for crop

yield forecasting ability with a few months lead time.

We use satellite observed NDVI and modelled net pri-

mary productivity (NPP) as proxies of vegetation pro-

ductivity. We do not imply that NDVI from satellite

sensor is equivalent to NPP ‒ both are independent but

related measures of vegetation productivity. Our aim is

not to explain the entire interannual and long-term

variances in vegetation productivity. Therefore, other

nonclimatic causes on vegetation productivity patterns

are discussed only if they coincide in the direction of

influence with teleconnection phases.

Materials and methods

Data

Satellite NDVI data. The 30-year (1982–2011) measurements

of Normalized Difference Vegetation Index (NDVI) are

obtained from the bi-monthly 8 km Global Inventory Model-

ling and Mapping Studies (GIMMS) third-generation

(NDVI3 g) (Pinzon & Tucker, 2014) observations that are

derived from satellite-based surface reflectance aboard the

Advanced Very High Resolution Radiometer (AVHRR) series

of sensors. NDVI is defined as the ratio of the difference

between near-infrared reflectance and red visible reflectance

to their sum. NDVI values <0.1 (Defries & Townshend, 1994;

Markon et al., 1995; Hird & Mcdermid, 2009) were removed

from the entire analysis, as they were interpreted to be from

the nongrowing season and nonvegetated land pixels.

Climate data. The annual growing season mean temperature

and total precipitation data were obtained from the monthly
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gridded Climatic Research Unit (CRU TS 3.21) (Harris et al.,

2014) data at 0.5 9 0.5 degree resolutions for 1981–2011. The
annual growing season total all sky downwelling shortwave

surface radiation data at 1.0 9 1.0 degree resolutions for 2001–

2011 was obtained from the National Aeronautics and Space

Administration (NASA) Clouds and Earth’s Radiant Energy

System (CERES) Energy Balanced and Filled (EBAF) monthly

product (http://ceres-tool.larc.nasa.gov). The CERES EBAF

downwelling shortwave radiation (version CERES_EBAF-Sur-

face_Ed2.8_S) is the computed downward shortwave flux

based on the Langley Fu-Liou radiative transfer model (Fu &

Liou, 1992, 1993; Fu, 1996; Fu et al., 1998). Details of CERES

EBAF-surface product description and methodology are given

in (Kato et al., 2013). The radiation data used in this study

were retrieved on March 08, 2015. Product updates are given

in Ed2.8 Data Quality Summary (http://ceres.larc.nasa.gov/

products.php?product=EBAF-Surface).

Teleconnection index data. We restricted the teleconnection

indices to those that dominate the interannual variability of

climatic variations in phase and amplitude with continental to

global-scale implications accounting for the most spatial vari-

ance of the observed standardized anomaly (Quadrelli & Wal-

lace, 2004; IPCC, 2007). The eight teleconnection indices:

North Atlantic Oscillation (NAO), East Atlantic Pattern (EA),

West Pacific Pattern (WP), Pacific/ North American Pattern

(PNA), East Atlantic/West Russia Pattern (WR), Scandinavia

Pattern (SCA), Polar/ Eurasia Pattern (POL) and ENSO-Ni~no

3.4 index (NINO), were obtained from the National Oceanic

and Atmospheric Administration (NOAA) National Weather

Service website (www.cpc.ncep.noaa.gov). The procedure

used to calculate the teleconnection indices except NINO, is

based on the Rotated Principal Component Analysis (RPCA)

applied to monthly mean standardized 500-mb height anoma-

lies (Barnston & Livezey, 1987) in the analysis region 20°N–

90°N by isolating the primary teleconnection patterns for all

months and allowing time series of the patterns to be con-

structed. The RPCA procedure is superior to grid-point-based

analyses, typically determined from one-point correlation

maps, in that the teleconnection patterns in the RPCA

approach are identified based on the entire flow field, and not

just from height anomalies at select locations. The standard-

ized monthly anomaly fields are determined in the three-

month period centred on that month. NINO is calculated from

monthly Ni~no-3.4 index that uses 1981–2010 base period to

calculate departures (http://www.cpc.ncep.noaa.gov/prod

ucts/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt).

We calculated teleconnection index anomalies for each year

as a mean value of December of the preceding year and Jan-

uary, February and March of the current year. We then

removed trends from the resulting winter teleconnection

index by detrending the time series for 1981–2011 base period,

encompassing the time frame of the climate and NDVI data

used in this study. The El Ni~no years were defined as five con-

secutive overlapping 3-month periods, at or above, the

+1.5 NINO index anomaly, La Ni~na years at or below the �1.5

anomaly, and neutral years between �0.5 and +0.5 anomaly.

ENSO phase year is a year starting from July of the preceding

year to June of the current year. El Ni~no event years were,

1983, 1988 and 1998. La Ni~na event years were, 1989, 2000 and

2011. Neutral ENSO event years were, 1982, 1990, 1991, 1993,

1994, 1997 and 2002.

In order to identify the long-term trend relationship between

NDVI and decadal climatic variations, we obtained the Pacific

Decadal Oscillation (PDO) (http://www.ncdc.noaa.gov/tele

connections/pdo/) and Atlantic Multidecadal Oscillation

(AMO) (http://www.esrl.noaa.gov/psd/data/timeseries/

AMO/) from NOAA. The temporally smoothed PDO data

were interpreted negative phase for 1999–2011 and positive

PDO phase for 1982‒1998 (Trenberth et al., 2014b), while the

AMO interpreted positive for 1995–2011 and negative AMO

phase for 1982‒1994. The NOAA’s National Climatic Data Cen-

ter (NCDC) PDO index is based on NOAA’s Extended Recon-

structed Sea Surface Temperature (ERSST version 3) (Smith

et al., 2008). The AMO is calculated from the Kaplan SST data-

set (Kaplan et al., 1998).

Modelling. Net primary productivity (NPP) was simulated

using the Community Climate System Model version 4

(CCSM4) which consists a finite volume nominal 1°
(0.9° 9 1.25°) 26-level implementation of the Community

Atmosphere Model version 4 (CAM4) with coupled ocean,

land and sea ice components. The land component, the Com-

munity Land Model version 4 (CLM4), includes a terrestrial

carbon cycle. A seven-member ensemble of CCSM4 simula-

tions with different initialization and using historic forcing

were analysed for 1982–2005 (Lombardozzi et al., 2014). The

resulting annual ensemble mean NPP, temperature and pre-

cipitation, and the standard deviation of the seven-member

ensemble gridded NPP values were acquired, and detrended

to remove the long-term trends. We represent NPP standard

deviation (noise) as unforced values due to internal climatic

variability and mean (signal) as forced values.

Analyses

The NDVI data were averaged to monthly values from the

bi-weekly time scale. Then NDVI values below 0.1 were

removed from the entire analysis, as they were interpreted

to be from the nongrowing season and nonvegetated land

pixels. Those areas which did not have data for the entire

30 years of study period were also removed from analyses.

The annual sum NDVI values were obtained for the growing

season only at native 8 9 8 km spatial resolution. These data

were used to study the NDVI trend and relationships to

PDO and AMO and NDVI responses to long-term variabili-

ties in annual growing season temperature and precipitation

(Fig. S1). In the remaining analyses, the trends were

removed at annual time scale to study the interannual rela-

tionship between NDVI and teleconnection patterns at native

8 9 8 km spatial resolution (Fig. 3). We have done further

sensitivity analysis on impacts of eight leading teleconnec-

tion patterns on global annual growing season NDVI anom-

aly during teleconnection phase years at 8 9 8 km native

NDVI, 0.5 9 0.5 degree native CRU climate data, and

1.25 9 0.9 degree native CCSM4 NPP spatial resolutions
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(Fig. S2). The results show that different spatial resolutions

do not affect the teleconnection pattern relations to growing

season NDVI values. The monthly solar radiation data were

also bilinearly interpolated to 0.5 9 0.5 degree from its

native 1 9 1 degree spatial resolution. The monthly NDVI

and climatic data were integrated to annual time scales using

the growing season months only after removing, NDVI val-

ues below 0.1, those grids which did not have growing sea-

son NDVI values for the entire 30 years, and interpolating to

common 0.5 9 0.5 degree spatial resolution. The new annual

growing season datasets were deterended at annual time

scale based on the common base period of each analysis

using the entire available time series period, for example, for

NDVI vs. teleconnection, the base period is 1982‒2011 and

for radiation vs. teleconnection, the base period is 2001‒2011.

We use the winter, defined here as December of the preced-

ing year and January, February and March of the NDVI year,

teleconnection indices for the following two reasons: (i) most

of the leading teleconnection indices are only active during

the northern hemisphere winter, and (ii) they provide predic-

tive power for summer time crop yield forecasting in northern

hemisphere ahead of time (Gonsamo & Chen, 2015). In order

to encompass the time period beyond the coincident calendar

period, we also study the lagged impact of teleconnection pat-

terns on the ensuing year NDVI, NPP and climate data values.

A seven-member ensemble of CCSM4 simulations with differ-

ent initialization were used to obtain annual ensemble mean

(signal) and standard deviation (noise) NPP (Lombardozzi

et al., 2014).

To increase the confidence in our findings and minimize

the detection of spurious correlations, the interannual

covariability analyses amongst NDVI, climate, and telecon-

nection indices were conducted only from detrended data.

The original raw data were only used in Figs 1 and S1 to

analyse the impacts of long-term trends of PDO, AMO, tem-

perature and precipitation on NDVI. In order to remove the

effect of temporal autocorrelation that may occur at monthly

or seasonal time scales, we only use annual growing season

NDVI (values >0.1), growing season total precipitation, total

radiation and mean temperature, and winter period telecon-

nection indices. All significance levels reported in this study

have been estimated with a two-tailed Student’s t-test (95%-

level).

To remove multicollinearity in multivariate analysis among

several teleconnection indices, temperature, radiation and pre-

cipitation, we employ principal component analysis (PCA),

also called empirical orthogonal function (EOF) analysis to

produce eight new orthogonal independent teleconnection

indices. There were strong correlations among several telecon-

nection indices (Table S1). Each of the original teleconnection

indices contributed to the resulting variances in all eight PCAs

(Table S2). For example, NINO explains most of the variances

in PCA 7, whereas EA contributes the maximum to PCA 5.

Therefore, we have not conducted the commonly applied step-

wise regression to eliminate PCAs that contribute the least to

the obtained variances. Finally, we used all eight PCAs to

analyse the relationships of teleconnection indices to precipita-

tion, radiation and temperature.

Results

This section starts with the results of long-term trends

of the growing season NDVI in relation to decadal

internal climatic variability followed by the interannual

relationships between NDVI and high frequency tele-

connection patterns. We then present the spatial distri-

butions of each meteorological variable control on

vegetation productivity and the roles of teleconnection

patterns on regional meteorological variability to

explain the interannual relationship between NDVI and

teleconnection indices. We also present results from

CCSM4 NPP simulations to test whether the observed

relationships between teleconnection patterns and

NDVI are captured by modelled productivity mea-

sures. Finally, given that the high frequency teleconnec-

tion indices used in this study are from the winter

months, we apply the observed relationships between

teleconnection indices and NDVI to predict summer

time crop yield productivity using winter time telecon-

nection patterns.

Long-term trends of NDVI and climatic variability

The global growing season NDVI trend is mostly posi-

tive for the last 30 years, although negative trends are

apparent in the Patagonian steppe, the boreal zones of

Canada, the arid zones of the northern Sahel, the south-

ern Sahara, the coastal lowlands of the horn of Africa,

southern Arabia and the semiarid zones of Asia

(Fig. 1a). Australia, Central Eurasia and Southern

Africa are the three large regions equally controlled by

both precipitation and temperature for long-term and

interannual variabilities in vegetation productivity

(Figs 1f,h and S1). The Patagonian steppe is highly cor-

related to precipitation (Figs 1f and S1); meaning that

changes in precipitation and drought regimes may

explain the declining trends in NDVI in this region

(Figs 1 and S3). The positive trend in the global grow-

ing season NDVI largely follows the negative and posi-

tive years of Pacific Decadal Oscillation (PDO) and

Atlantic Multidecadal Oscillation (AMO) (Fig. 1a–c).

Global and continental NDVI responses to ENSO

El Ni~no phase years have lesser impact on the continen-

tal vegetation productivity than neutral years, while La

Ni~na phase years are the most important indicator of

continental vegetation productivity (Figs 2a and S5)

associated with cold and wet years of forested tropical

areas (Fig. 4). A year after La Ni~na phase years, vegeta-

tion productivity increases throughout all regions of

the world (Figs 2b and S5), as shown by NINO’s glob-

ally well distributed negative correlations with ensuing
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year NDVI (Fig. 3). The same is true during La Ni~na

phase years, when vegetation productivity is increased

except in North America and Oceania (Fig. 2a), mainly

due to decreased moisture stress during the cold and

wet La Ni~na years. Neutral phase years of ENSO are

associated with decreased productivity of vegetation in

South America and Australia, where the effect lasts to

ensuing year NDVI (Fig. 2a,b).

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Fig. 1 Trends and interannual relationships among NDVI, precipitation, temperature and solar radiation. Trends in annual growing

season NDVI sum (a), total precipitation (e) and mean temperature (g) for 1982–2011. Annual growing season NDVI sum difference

between 1999 and 2011 negative PDO and 1982‒1998 positive PDO (b) and 1995–2011 positive AMO and 1982‒1994 negative AMO (c)

for significant trends shown in (a). (d) Geographic distribution of temperature (T), precipitation (P) and solar radiation (R) controls on

interannual vegetation productivity for 2001–2011. The climatic controls in (d) were calculated based on coefficient of determinations of

NDVI against T, P and R for common measurement period 2001–2011. Values in (d) are normalized by dividing each channel value

with the maximum coefficient of determination of each grid for clarity. Discrete map for (d) by assigning each grid channel only to its

maximum meteorological variable control is given in Fig. S3 for further clarity. Growing season NDVI sum responses to interannual

variabilities in precipitation (f) and temperature (h) for 1982–2011. All colour shaded values in (a, b, c, e, f, g, h) are significant at 95%

confidence level from a two-tailed Student’s t-test. r is Pearson correlation coefficient. NS is not statistically significant. (d, f, h) were cal-

culated from detrended datasets at 0.5 9 0.5 degree. Trends in (a, b, c) were calculated from raw data at 8 9 8 km. The relationships

among T, P and R are given in Fig. S4 for 2001–2011.
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Global and continental NDVI responses to other ENSO-
like climatic variability

NAO is negatively correlated to vegetation productivity

in the western hemisphere and positively correlated in

central Europe, Southern Scandinavia, and midwestern

Eurasia (Fig. 3) through its influence mainly on temper-

ature (Fig. 4). Since the mid-1960s, there has been a

positive trend towards higher NAO index values and

concomitant winter warming in Europe and Asia

(Hurrell & Deser, 2010). A steeper gradient (the high or

positive NAO phase) that causes the westerly wind to

pick up heat and carry it across central Europe and

Asia, is associated with warmer Europe and Asia tem-

peratures and colder and drier winters in Canada

(Fig. 4). These asymmetric trends delay the spring

greenup of the Canadian boreal vegetation and there-

fore productivity, and result in the opposite trend in

Europe and Asia (Hurrell & Deser, 2010). We suspect

that this partly explains the declining greenness in

boreal Canada and increasing greenness in Europe and

central Eurasia (Fig. 1a), as NAO was positive for 20

out of 30 years during the study period.

The SCA being negatively correlated with NAO

(Table S1) is negatively correlated with vegetation pro-

ductivity in central Europe and western Siberia (Fig. 3).

The positive phase of the winter SCA causes cold-air

accumulation over a vast area extending from western

Europe to Siberia (Macias-Fauria et al., 2012) (Fig. 4),

and resulting in overall lower vegetation productivity

in Europe (Fig. 3). Winter NAO and SCA can signifi-

cantly (P < 0.05) explain vegetation productivity in

most of central Europe, which makes them strong

potential tools for crop yield prediction, particularly

related to the recent and projected occurrences of heat-

waves in this region (Trnka et al., 2014) (Table 1).

Among the eight leading teleconnection patterns, the

East Atlantic/West Russia Pattern (WR) is negatively

correlated with the ensuing year NDVI values of the

most productive forest ecosystems of the Earth’s vege-

tated surfaces, such as the rain forests in Amazon- and

Congo-basins and Southeast Asia, and the temperate

and boreal forests in northeastern America (Fig. 3)

through statistically weak impact on meteorological

variables (Fig. 4) but directionally consistent influence

on continental vegetation greenness (Gonsamo et al.,

2015) (Fig. S6). PNA is negatively correlated with NDVI

of the ensuing year over North America, showing per-

sistent lag effects on vegetation productivity (Fig. 3).

PNA can explain the vegetation productivity of the

ensuing year in most of the eastern United States,

revealing a strong potential tool for crop yield predic-

tion and drought monitoring in this region (Table 2).

PNA is highly correlated with NINO (Table S1) and has

a comparable effect on climate patterns as NINO dur-

ing the phase and lagged years (Fig. 4), with eastward

propagating SST anomalies in the North Pacific possi-

bly related to the air-sea interactions in the North Paci-

fic. The timescale for the SST anomalies to travel across

the entire North Pacific is � 1 year (Sheng, 1999). Such

wide spread and delayed impacts of PNA, WR, and

NINO on vegetation productivity (Fig. 3) and meteoro-

logical variables (Fig. 4) provide further observational

reinforcement of the oceanic and atmospheric bridge

–0.2

0.0

0.2

0.4

0.6

0.8

–6.0

–4.0

–2.0

0.0

2.0

4.0

6.0

–15

–10

–5

0

5

10

15

Neutral (n = 7)
La Niña (n = 3)
El Niño (n = 3)

Neutral (n = 7)
La Niña (n = 2)
El Niño (n = 3)

Neutral (n = 7)
La Niña (n = 2)
El Niño (n = 3)

Observations: satellite NDVI anomaly (1982−2011)

Modelling: CCSM4 NPP noise anomaly (1982−2005)

Modelling: CCSM4 NPP signal anomaly (1982−2005)

(a) (b)

(c) (d)

(e) (f)

G
lo

ba
l

A
si

a

N
or

th
 A

m
er

ic
a

Eu
ro

pe

A
fr

ic
a

So
ut

h 
A

m
er

ic
a

O
ce

an
ia

A
us

tr
al

ia

G
lo

ba
l

A
si

a

N
or

th
 A

m
er

ic
a

Eu
ro

pe

A
fr

ic
a

So
ut

h 
A

m
er

ic
a

O
ce

an
ia

A
us

tr
al

ia

Fig. 2 Responses of NDVI and NPP anomalies to ENSO phases.

Satellite measured global and continental mean annual growing

season NDVI sum anomalies during (a) and one year after each

phase of ENSO years (b). The Community Climate System

Model version 4 (CCSM4) simulated standard deviation (noise)

anomalies of the seven-member ensemble gridded NPP values

representing the internal climatic variability during (c) and one

year after each phase of ENSO years (d). The CCSM4 mean (sig-

nal) anomalies of the seven-member ensemble gridded NPP val-

ues (e) and one year after each phase of ENSO years (f). ENSO

events are defined as five consecutive overlapping 3-month

periods at, or above, the +1.5 NINO index anomaly for El Ni~no

events, at or below the �1.5 anomaly for La Ni~na events, and

between �0.5 and 0.5 for neutral events. ENSO phase year is a

year starting from July of the preceding year to June of the cur-

rent year. Both NDVI and NPP datasets were detrended.
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theories(Lau & Nath, 1994) even at wider tropical-

extratropical and interhemispheric geographic scales.

East Atlantic Pattern (EA), following the southeast-

ward shifted nodal line of NAO, is positively correlated

with the overall increases of vegetation productivity in

most of the Earth’s vegetated surfaces, with North

America, southern Europe, and northwestern Siberia

exhibiting the greatest responses (Fig. 3). WP is less

capable of explaining the global distribution of

vegetation productivity (Fig. 3) and the only index not

significantly related with any of the remaining telecon-

nection indices (Table S1). POL, enhancing the strength

of the circumpolar vortex during the positive phase, is

negatively correlated with circumpolar vegetation pro-

ductivity during the phase and ensuing years (Fig. 3)

through its influence on temperature which extends

from midwestern USA to North Africa and southwest-

ern China (Fig. 4).

Fig. 3 Impacts of eight leading teleconnection patterns on global growing season NDVI and NPP anomalies during and the ensuing

teleconnection phase years. The teleconnection anomalies are calculated as a mean value of December of the preceding year and Jan-

uary, February and March of the NDVI and NPP year. All teleconnection, NDVI and NPP datasets are detrended, and the modelled

NPP is obtained from the Community Climate System Model version 4 simulated mean (signal) anomalies of the seven-member ensem-

ble gridded NPP values. The relationships between teleconnection and standard deviation (noise) anomalies of the seven-member

ensemble gridded NPP representing the internal climatic variability are given in Fig. S7. All colour shaded values are significant at 95%

confidence level from a two-tailed Student’s t-test.
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Interannual changes of NDVI in response to
meteorological variables

We have presented global distributions of tempera-

ture, precipitation and solar radiation controls on

vegetation productivity for 2001–2011 (Figs 1d and

S3). During the common measurement period 2001–
2011, satellite and gridded climatic observations

reveal that the interannual changes in global vegeta-

tion productivity are explained by temperature, radi-

ation and precipitation over 33.2%, 34.3% and 32.5%

of Earth’s vegetated surface respectively (Fig. S3).

Yet, the three meteorological variables co-explain

interannual productivity for large portion of the

Earth’s surface (Fig. 1d). Prairie region in North

America, Patagonia in South America, and parts of

Australia’s lowlands are highly controlled by precipi-

tation (Figs 1d and S3). In pacific coastal temperate

zones of North America, Amazon rainforest, and

Eurasian high latitudes, radiation plays the highest

role in explaining interannual changes in vegetation

productivity.

Fig. 4 Impacts of eight leading teleconnection patterns on global growing season temperature and precipitation for 1982–2011, and

radiation for 2001–2011. Phase year is temperature, radiation and precipitation responses to teleconnection indices during the same

year. A year after phase year is temperature, radiation and precipitation responses to teleconnection indices during the ensuing year.

The teleconnection anomalies are calculated as a mean value of December of the preceding year and January, February and March of

the temperature and precipitation year. All datasets were detrended. All colour shaded values are significant at 95% confidence level

from a two-tailed Student’s t-test.
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The Community Climate System Model simulation
response to climatic variability

To test whether the observed global vegetation produc-

tivity responses to teleconnections were well repre-

sented in the current state-of-the-art Community

Climate System Model version 4 (CCSM4), we exam-

ined a seven-member ensemble of CCSM4 simulations

with different initialization (Lombardozzi et al., 2014).

All ensemble members were run with identical experi-

mental conditions but with different initialization, each

producing different climate trajectories which were

assumed as climatic variability within the model aris-

ing from random internal variation. The modelled NPP

is assumed as a surrogate value of the satellite mea-

sured NDVI (Myneni et al., 1997), and standard devia-

tions (noise) of the individual ensemble members are

assumed to indicate the internal climatic variability

partly represented by teleconnection indices. We found

that, in contrast to the strong correlations between

observed NDVI and teleconnections (Figs 2 and 3), the

CCSM4 performed poorly in capturing the NPP corre-

lations with teleconnection, even with the well-studied

ENSO index (Figs 2 and S8). Neither the standard devi-

ations (noise) NPP values show the observed telecon-

nection pattern control on vegetation productivity

(Fig. S7). There are no significant relationships between

global and continental mean NPP and NDVI (Fig. S8) ‒
while they are not equivalent we expected modest rela-

tionships for regional averaged values. The lack of rela-

tionships among the CCSM4 and teleconnection indices

shows that CCSM4 simulations do not capture interan-

nual covariability between NPP and meteorological

variables.

Table 1 Predicting performances of eight leading teleconnection indices on country specific vegetation productivity for 1982–2011

Country EA NAO NAO (lag) NINO PNA PNA (lag) SCA SCA (lag) WP WR (lag)

Austria �
Belarus �
Cayman Islands �
Kenya +
Lao People’s Democratic Republic �
Liberia �
Libya

Liechtenstein �
Saint Martin �
Moldova �
Portugal +
Palestine +
Saint Helena �
Sierra Leone �
Slovenia �
Seychelles �
Ukraine �
Belgium + �
Czech Republic + � �
Germany + �
Denmark + � �
Estonia + �
Lithuania + �
Luxembourg + �
Latvia + �
Netherlands + �
Poland + �
Saint Pierre and Miquelon + +

The teleconnection anomalies are calculated as a mean value of December of the preceding year and January, February and March

of the NDVI year. Both teleconnection and NDVI datasets were detrended. + sign is for statistically significant positive and – sign is

for statistically significant negative relationship between NDVI and the teleconnection indices at 95% confidence level from a two-

tailed Student’s t-test. (lag) is the predicting performances of teleconnection indices on the NDVI productivity of the ensuing year.

Only countries where there is statistically significant predicting performance at 95% confidence level from a two-tailed Student’s t-

test are shown.
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Relationships among meteorological variables and
climatic variability

Natural ocean-atmosphere variations interact to impose

complex and varying limitations on climate (Fig. S9)

and vegetation productivity (Figs 1d and S3) in various

parts of the world. ENSO is highly correlated with EA,

PNA and WR (Table S1) and contributes the highest to

the obtained variance in the first PCA (Table S2). NAO,

WR and SCA load the highest on the second PCA

(Table S2) indicating these three indices are highly

related to each other. In order to provide a comprehen-

sive interpretation of interactions among ocean-atmo-

sphere variations on global meteorological variables,

we apply multivariate regression analysis on orthogo-

nal variables of the eight teleconnection indices, trans-

formed using principal component analysis (PCA) to

remove multicolinearity. Our results show globally

well distributed control of teleconnection indices on

temperature, precipitation and radiation interannual

changes (Fig. S9). The extensive controls also could be

explained by inherently strong correlations among tem-

perature, precipitation and radiation (Fig. S4). The

results in Fig. S9 indicate that the eight leading telecon-

nection indices control all three meteorological vari-

ables. The recent period from 2001 to 2011 show

stronger role of teleconnection indices on the interan-

nual variabilities of temperature and precipitation com-

pared to the longer term roles during 1982–2011.

Climate-induced crop yield forecasting skills of winter
time climatic variability

We analyse the interannual relationships between win-

ter time teleconnection indices and national and state

level growing season integrated NDVI, the latter as a

proxy of crop yield productivity in relation to changes

in climatic variables in line with recent developments

presented in several studies (Garnett et al., 1998; Hsieh

et al., 1999; Quiring & Blair, 1999; Iizumi et al., 2014;

Gonsamo & Chen, 2015). We do not use national crop

yield inventory as crop management intensity and har-

vest index (ratio of yield to biomass) have been increas-

ing substantially (e.g., Hay, 1995; Johnson et al., 2006;

Lorenz et al., 2010) since the Green Revolution in the

1960s. Therefore, yield may not directly translate to

crop photosynthetic productivity in response to cli-

matic variability. In this study, we use the growing sea-

son NDVI as a direct proxy of climate-induced crop

yield productivity indicator. We use the detrended tele-

connection and NDVI datasets and calculate the slope

and P-value (two-tailed Student’s t-test) pixel-by-pixel

using ordinary least squares linear regression. Then, we

average both slope and P-value at country and USA

state levels. We only report those countries and USA

states for which the averaged P-value is <0.05.
The winter teleconnection indices can successfully

(P < 0.05) predict the growing season NDVI in several

countries in Europe and few in Africa, and 16 states in

the USA (Table 1, Table 2). NAO and SCA are the most

prominent predictors in Europe during the concurrent

calendar year. NINO, PNA and WR predict the grow-

ing season NDVI of several states in USA six seasons

ahead (Table 2). The nature of winter teleconnection

indices, and changes in their behaviour, including pre-

dictably of rainfall, snowfall, droughts, heat wave or

temperature patterns with at least two seasons lead

time, are central for agricultural crop yield forecasting.

Our findings highlight the strong importance of winter

teleconnection indices to global crop production fore-

casting by providing early warning during unfavour-

able climate regimes ahead of cropping season to

operationally plan potential management options and

produce an economically viable yield.

Discussion

Trends in NDVI and interannual covariability with
climate

The GIMMS NDVI dataset has been widely used for

detecting vegetation growth change (Peng et al., 2013;

Pinzon & Tucker, 2014; Poulter et al., 2014) and exten-

sively used as an indicator of primary productivity of

the terrestrial biosphere (Myneni et al., 1997; Zhou

et al., 2001). Our results are in agreement with previous

study (Jong et al., 2012), which presents detailed analy-

ses of short-term and long-term geographic distribu-

tions of trends. Although the precipitation is increasing

Table 2 The same as Table 1 but for the USA states

US states EA NINO (lag) PNA (lag) WR (lag)

Wisconsin +
Maine �
Vermont �
Georgia �
District of Columbia �
West Virginia �
Maryland �
New York � �
Pennsylvania � �
Alabama �
Mississippi �
New Hampshire � � �
Massachusetts � � �
Connecticut � � �
Rhode Island � � �
New Jersey � � �
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in the arid zones of the northern Sahel and the southern

Sahara (Fig. 1e), the increased temperature (Fig. 1g)

results in enhanced moisture stress through greater

water demand which may explain the decline in vege-

tation greenness on these regions. This is further sup-

ported by the strong control of both precipitation and

temperature on the interannual changes of vegetation

greenness in the arid zones of the northern Sahel and

the southern Sahara (Fig. 1f,h).

The global-scale increase in vegetation productivity

for 1982–2011 (Fig. 1a) is in a good agreement with ear-

lier modelling and satellite-based studies which were

conducted for shorter and earlier time periods after

1980s (Nemani et al., 2003; Cao et al., 2004; Running

et al., 2004; De Jong et al., 2011; Jong et al., 2012). Zhao

& Running (2010) reported recent drought-induced

decline in global primary productivity for 2000–2009
period. Our results also show, 2000–2009 remain well

below the global average of 1982–2011 NDVI except for

year 2001 albeit not declining (Fig. S5). Increases in

wildfire frequency, and warming induced increases in

moisture stress through greater water demands ampli-

fied by the decline in northern hemisphere ice extent

partly explains the declining greenness in the boreal

Canada (Girardin et al., 2013). The remaining variance

in decline in boreal Canada could be explained by the

delayed spring activity and greenup of vegetation due

to persistently positive NAO for 20 out of 30 years dur-

ing the study period. Tropical areas are never limited

by temperature alone (Figs 1 and S3) but long-term

increases in temperatures in Amazon and Congo for-

ests, possibly coinciding with other growth enhancing

global changes and meteorological variables may

explain the long-term relationship between tempera-

ture and NDVI in these regions (Fig. S1a).

PDO and AMO explain most of the long-term trend

in NDVI (Fig. 1a–c). PDO explains many of the climatic

variabilities observed globally during the post-1998 hia-

tus with higher continental temperatures and tropical

land precipitation (Trenberth et al., 2014b) compared to

the 1982–1997. Both PDO and AMO modulate other

teleconnection patterns and, by inference, their impact

on NDVI trends. Although long-term trends in NDVI

are the manifestation of many global processes occur-

ring due to the coupling of externally forced climate

change and internal climatic variability, human growth

and development has been another major factor in

altering vegetation productivity through land cover

land use change (LCLUC) (e.g., Wright et al., 2012;

Jeganathan et al., 2014). This is particularly evident in

the post-1990s cropland abandonment in Eurasian

grain belt, the industrial and agricultural heartland of

the former Soviet Union (e.g., Wright et al., 2012; de

Beurs et al., 2015). For example, the long-term increases

in temperatures (Fig. 1g), persistent positive phase of

NAO and its strong control on vegetation productivity

(Fig. 3), and possibly coinciding with cropland aban-

donment and forest regeneration in some part of Eura-

sian grain belt may explain the long-term increase in

NDVI in the region (Fig. 1a). However, detangling and

attributing the NDVI trends to climatic and LCLUC fac-

tors are beyond the scope of the current work. It should

be noted that all of our subsequent analyses are based

on interannual covariability after removing long-term

trends, to partially remove the influence of unac-

counted factors on NDVI changes.

Our results show that most of the earth’s vegetated

land surfaces are colimited by the three meteorological

variables unlike the results presented in previous stud-

ies (Churkina & Running, 1998; Nemani et al., 2003;

Running et al., 2004). Our results differ owing partly to

the methodological difference and partly to increased

teleconnection patterns controls on interannual changes

in meteorological variables (Fig. S9) and eventually on

vegetation productivity during 2001–2011 compared to

the 1982–1999 period of Nemani et al. (2003) study,

which was dominated by steep increases in global tem-

peratures. Another source of difference is the modelled

potential geographic limits of the three meteorological

variables presented in previous studies (Churkina &

Running, 1998; Nemani et al., 2003; Running et al.,

2004) are more spatially homogeneous than the actual

measured geographic distribution of growth limits pre-

sented in this study. While it is easy to imagine the

modelled potential limits such as Amazon and Congo

vegetations as radiation limited and global arid zones

as water limited, heterogeneity in land cover and biome

(e.g., difference in Amazon savannah and Amazon for-

est, arid zones of north Africa, south Africa, Australia

and Eurasia) makes the three climatic variables colimit

vegetation growth in a complex manner at local scale.

Our results show that vegetated areas in northern

hemisphere those controlled by temperature (Figs 1d

and S3) are highly affected by temperature mediated

influence NAO and SCA patterns (Figs 3 and 4).

Vegetation productivity responses to climatic variability

Our results, based on three decades of satellite observa-

tions, suggest that teleconnection patterns dominate the

interannual variability of continental vegetation pro-

ductivity, similar to their strong role on terrestrial evap-

oration patterns (Miralles et al., 2013). Winter

teleconnections show strong potential in predicting

overall vegetation productivity. Winter NAO and SCA

alone can predict the central European vegetation pro-

ductivity during the ensuing growing season (Table 1).

Given the recurring drought and devastating
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heat-waves (Trnka et al., 2014) on European crop pro-

duction, NAO and SCA appear to be indispensable

early warning tools (Gonsamo & Chen, 2015) for

farmers to plan management options to minimize yield

losses during the growing season summer months.

Unlike a single meteorological variable, teleconnec-

tion patterns control heat, moisture and momentum

balances through their effects on temperature, precip-

itation and solar radiation reaching the Earth’s sur-

face (Fig. S9), the latter through changes in

cloudiness. The water vapour loading due to telecon-

nections also affects humidity and leaf-to-air vapour

pressure deficit within the soil-plant-atmosphere con-

tinuum. The recent stronger role of teleconnection

indices on the interannual variabilities of temperature

and precipitation (Fig. S9) could be explained by rel-

atively eased, possibly saturated, recent anthro-

pogenic forcing on interannual climatic variability

compared to those caused by natural ocean-

atmosphere variations (Kosaka & Xie, 2013; England

et al., 2014; Meehl et al., 2014). This however remains

to be verified.

Our results indicate that teleconnection patters may

continue to be an important aspect of future regional

terrestrial ecosystem productivity given that the anthro-

pogenic global changes in climate is expected to ease

several critical climatic constraints to plant growth

(Zhao & Running, 2010). New evidence is emerging

that suggests external forcing precursors, including

aerosols and greenhouse gas forcing, may intensify

internal climatic variations (Knudsen et al., 2014). How-

ever, challenges remain in separating the long-term rel-

ative roles of natural climatic variation and

anthropogenic forcing on vegetation productivity, and

Earth system models do not always capture the role of

internal variability.

The lack of significant trends in regionally averaged

CCSM4 mean NPP values (Fig. S8) shows that CCSM4

simulations do not capture the productivity responses

to recent growth enhancing changes in meteorological

variables. The CCSM4 simulations in this study were

forced using the measured historic meteorological vari-

ables. Although the unforced CCSM4 simulations

resulted in comparable carbon flux variability to the

observations at the Harvard Forest eddy covariance

flux tower site (Lombardozzi et al., 2014), several Earth

system models are not developed to capture the global

ocean-atmosphere system variations. Given the ubiqui-

tous control of teleconnections on vegetation productiv-

ity (Figs 2 and 3) through their impact on regional

meteorological variables (Fig. 4), representation of

internal climatic variations in CCSM4 can be improved

by using the observed vegetation response patterns to

guide further model development.
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