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Plant phenology plays a significant role in regulating carbon sequestration period of terrestrial ecosystems.
Remote sensing of land surface phenology (LSP), i.e., the start and the end of the growing season (SOS and
EOS, respectively) in evergreen needleleaf forests is particularly challenging due to their limited seasonal vari-
ability in canopy greenness. Using 107 site-years of CO2 flux data at 14 evergreen needleleaf forest sites in
North America, we developed a new model to estimate SOS and EOS based entirely on the Moderate Resolution
Imaging Spectroradiometer (MODIS) data. We found that the commonly used vegetation indices (VI), including
the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), were not able to detect
SOS and EOS in these forests. The MODIS land surface temperature (LST) showed better performance in the es-
timation of SOS than did a single VI. Interestingly, the variability of LST (i.e., the coefficient of variation,
CV_LST) was more useful than LST itself in detecting changes in forest LSP. Therefore, a new model using the
product of VI and CV_LSTwas developed and it significantly improved the representation of LSPwithmean errors
of 11.7 and 5.6 days for SOS and EOS, respectively. Further validation at five sites in the Long Term Ecological
Research network (LTER) using camera data also indicated the applicability of the new approach. These results
suggest that temperature variability plays a previously overlooked role in phenological modeling, and a combi-
nation of canopy greenness and temperature could be a useful way to enhance the estimation of evergreen
needleleaf forest phenology of future ecosystem models.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Phenology is one of the most important controls of interannual var-
iability of gross/net ecosystem productivity (GEP/NEP) (Fu, Campioli,
Vitasse, et al., 2014; Gonsamo, Chen, Wu, & Dragoni, 2012; Jin et al.,
2013; Richardson et al., 2013; Sakamoto, Gitelson, & Arkebauer, 2013;
Wu, Chen, Black, et al., 2013; Zhang, Cheng, Lyapustin, Wang, Gao,
et al., 2014; Zhang, Cheng, Lyapustin, Wang, Xiao, et al., 2014). There-
fore, increasing efforts have been made to model phenological varia-
tions using remote sensing data, which is considered as the most
convenient and efficient way in understanding vegetation dynamics at
adi.ac.cn (D. Peng).
regional to global scales (Hmimina et al., 2013; Melaas, Richardson,
et al., 2013; White et al., 2009; Wu, Hou, Peng, Gonsamo, & Xu, 2016).

Growing season phenology from remote sensing is determined by
detecting the seasonal dynamics of vegetation greenness using spectral
signals from sensors onboard satellite platforms (Melaas, Friedl, & Zhu,
2013; Sonnentag et al., 2012; Wu, Gonsamo, Gough, Chen, & Xu,
2014). A widely used remote sensing-based phenological data source
is the Moderate Resolution Imaging Spectroradiometer (MODIS), and
several vegetation indices (VIs) were reported to have potential in indi-
cating phenological transitions (Friedl et al., 2010; Ganguly, Friedl, Tan,
Zhang, & Verma, 2010; Gonsamo, Chen, Price, Kurz, & Wu, 2012;
Hmimina et al., 2013; Jin & Eklundh, 2014; Sakamoto et al., 2010;
Xiao, Hagen, Zhang, Keller, & Moore, 2006; Zhang et al., 2003). For ex-
ample, both the normalized difference vegetation index (NDVI, Tucker
& Sellers, 1986) and the enhanced vegetation index (EVI, Huete et al.,
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2002) are extensively used in reconstructing phenological transitions
for various plant functional types, including forests, grasslands, and
croplands (Hmimina et al., 2013; Jeganathan, Dash, & Atkinson, 2014;
Wu et al., 2014; Zhang & Goldberg, 2011; Zhang et al., 2003). One of
themost widely used algorithm tomodel phenological changes is to de-
tect the local maxima/minima in the rate of change of curvature
(i.e., local inflection points) in a fitted curve from time-series of remote
sensing signals (Friedl et al., 2010; Ganguly et al., 2010; Zhang et al.,
2003; Zhang, Friedl, & Schaaf, 2006). More recently, signals from sea-
sonal (e.g., spring and autumn) mean VIs have been shown to be useful
in detecting changes in land surface phenology (Wu et al., 2014).

Forests are the most important ecosystems in terrestrial carbon
budget (Pan et al., 2011), and their phenology consequently has played
a significant role in explaining interannual variability of NEP
(Richardson et al., 2010, 2013; Wu, Chen, Black, et al., 2013). However,
there are several challenges in modeling forest phenology from remote
sensing data. The most confounding issue related to phenological
modeling to date is the limited potential of VIs to estimate LSP in
needleleaf forests because of small seasonal VI variation (Guyon et al.,
2011; Hufkens et al., 2012; Melaas, Friedl, et al., 2013; Shen, Tang,
Desai, et al., 2014). For example, Hmimina et al. (2013) showed that
MODIS is unable to accurately infer phenological patterns for needleleaf
forests. In comparison, with evident variations in canopy greenness,
changes in phenology of deciduous forests is much easier to detect
(Garrity, Maurer, Mueller, Vogel, & Curtis, 2011; Gonsamo, Chen, Price,
et al. 2012; Luo, Chen, Wang, Xu, & Tian, 2014; Melaas, Richardson,
et al., 2013; Melaas, Friedl, et al., 2013; Ryu, Lee, Jeon, Song, & Kimm,
2014;Wu et al., 2014). This problembecomesmore severe for detecting
the end of growing season (EOS) in autumn since this period sustains a
much longer and slower change of canopy greenness compared to that
of the start of growing season (SOS) in spring (Richardson et al., 2013;
White, Pontius, & Schaberg, 2014; Wu et al., 2014).

Remote sensing of phenology using time-series of VIs is based on the
intra-annual changes of canopy greenness. Essentially, this is an exter-
nal expression of plant dynamics to plant growth determinants
(e.g., temperature, soil water content) which strongly regulate the
growth dynamics of boreal and temperate forests. For example, temper-
ature has been long recognized as a main driver of plant growth, and
spring air temperature was found to trigger the recovery of photosyn-
thesis in most boreal and temperate ecosystems (Barr, Black, &
McCaughey, 2009; Chen et al., 2003; Suni, Berninger, Vesala, et al.,
2003). Apart from temperature itself, it is also possible that the temper-
ature variability may have an unrecognized role on phenology and its
modeling. For example, Wheeler, Craufurd, Ellis, Porter, and Prasad
(2000) showed a strong evidence for the importance of variability in
temperature, independent of any substantial changes in mean seasonal
temperature, for the yield of annual crops. In particular, seed yields are
particularly sensitive to brief episodes of hot temperatures if these coin-
cide with critical stages of crop development. Furthermore, Reyer et al.
(2013) indicates that distinguishing between impacts of changing
mean climatic conditions and changing climatic variability on terrestrial
ecosystems is generally underrated in current studies. They found that
phenology is largely affected by changing mean climate but also that
impacts of climatic variability are much less studied. The problem is
that how temperature, in particularly remote sensing based observa-
tions (e.g., MODIS Land Surface Temperature product (LST)), can be in-
corporated to better depict evergreen needleleaf forest phenology? For
example, Gonsamo, Chen, Wu, et al. (2012) has shown that the combi-
nation of remotely sensed VI and LST is a good indicator of the start and
end of net positive carbon uptake period of broadleaf forests. Therefore,
using continuous CO2 flux measurements at 14 evergreen needleleaf
forests and five additional PhenoCam sites in North America, this
study explores the potential of a new model that incorporates MODIS
VIs and LST products to estimate the boreal and temperate evergreen
needleleaf forest phenology. The questions we address include: (i) can
MODIS NDVI and EVI be used to model SOS and EOS of needleleaf
forests?; (ii) Is temperature variability more important than average
temperature itself in detecting plant greenness dynamics?; (iii) if so,
does the combination of MODIS VI and LST improve the accuracy of
modeled SOS and EOS?

2. Methods

2.1. Flux sites and CO2 flux data

To support the phenological analysis of this study, we used CO2 flux
data from 14 evergreen needleleaf forest (ENF) flux tower sites in North
America from the AmeriFlux and Canadian Carbon Program (CCP) for-
merly known as Fluxnet-Canada networks with at least 5 years of com-
plete data with less than 20% gap-filled in each year (Fig. 1). Detailed
descriptions of these sites are given in Table 1.

Half-hourly CO2 fluxes were continuously measured at each site
using the eddy-covariance technique (Baldocchi et al., 2001). Regional
flux networks adopt several standard procedures to partition the direct-
ly measured net ecosystem exchange (NEE) into gross primary produc-
tivity (GPP) and total ecosystem respiration (Re). Because these study
sites belong to two different regional flux networks within North
America, gap-filling and NEE partitioning approach is different. For
CCP sites, the NEE portioning was conducted using the network's stan-
dard approaches described in Barr et al. (2013). For the AmeriFlux
sites, the Artificial Neural Network (ANN) method (Papale & Valentini,
2003) and/or the Marginal Distribution Sampling (MDS) method
(Reichstein et al., 2005) were adopted to conduct level-4 products
that contain gap-filled and u* filtered records of CO2 fluxes at varying
time intervals. Though various flux networks applied different decom-
position techniques to flux data, they generally have a negligible impact
on modeled GPP (Desai et al., 2008; Wu, Chen, Black, et al., 2013; Wu,
Chen, Desai, Lafleur, & Verma, 2013).

2.2. Canopy phenology from PhenoCam network

Digital repeat photography makes consistent visual assessment of
phenology possible over broad geographic ranges and has played an im-
portant role in phenological analysis recently (Sonnentag et al., 2012;
Klosterman et al., 2014). The PhenoCam network is a continental-scale
phenological observatory, spanning a wide range of biogeoclimatic
zones and vegetation types, across the northeastern US and adjacent
Canada (Imagery and data products are available at the PhenoCam
website http://phenocam.sr.unh.edu/webcam/). Over the thirteen geo-
graphically distinct research sites in PhenoCam network, we identified
five sites dominated by the evergreen forests species that are suitable
for our analysis (Table 2).

2.3. MODIS data

In this study, we used two MODIS land surface products acquired
from the Oak Ridge National Laboratory Distributed Archive Center
(DAAC) website (http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_
viz.html). The first product was the 8-day Terra MODIS Surface Reflec-
tance product (MOD09A1, 500 m, quality control was done for cloud,
view angle, and aerosol), which was used to compute NDVI and EVI in
this study. For each site, both NDVI and EVI were extracted from 3 × 3
MODIS pixels centered on the flux tower similar to the approach used
by Sims et al. (2008). The 3 × 3 MODIS pixels method was also
confirmed to represent each site with respect to both footprints (flux-
tower fetch) (~1 km) and land cover (Chen et al., 2011).

The second product is the MODIS 8-day Land Surface Temperature
(LST) and Emissivity product (MOD11A2, 1 km) derived by applying
the generalized split-window algorithm. In the split-window algorithm,
emissivity in spectral bands 31 and 32 is estimated from land cover
types, and atmospheric column water vapor and lower boundary air

http://phenocam.sr.unh.edu/webcam/
http://daac.ornl.gov/cgiin/MODIS/GR_col5_1/mod_viz.html
http://daac.ornl.gov/cgiin/MODIS/GR_col5_1/mod_viz.html


Fig. 1. Spatial distribution of the 14 flux tower sites ( ) and 5 PhenoCam sites ( ) in North America used in this study.
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surface temperature are separated into tractable sub-ranges for optimal
retrieval (Wan, 2008).

2.4. Determination of land surface phenology from daily GPP

We adopted a negative exponentialmodel, using polynomial regres-
sion and weights computed from the Gaussian density function to de-
rive smoothed curves for daily GPP observations for each site. The SOS
and EOS were then defined as the dates when smoothed curves of
daily GPP first and last reached 10% of the seasonal maximum GPP, re-
spectively (Wu et al., 2012). Compared with most contemporary
methods (e.g., 0.5–2 g C/m2/d in Richardson et al., 2010), a varied GPP
threshold derived SOS and EOS effectively allows for variation in pheno-
logical events to be quantified and compared both inter-annually and
spatially (Wu et al., 2012; Wu, Chen, Black, et al., 2013; Wu, Chen,
Desai, et al., 2013). Fig. 2 illustrates the schematic example of thepheno-
logical transition dates from daily GPP data at SK-OBS site for year 2005.

We used seasonal mean seasonal VIs for the estimation SOS and EOS
in this study since it has been shown that this approach might be more
useful than the inflection points in indicating SOS and EOS (Wu et al.,
2014). The modeling strategy was that we correlated SOS with spring
Table 1
Descriptions of flux sites in this study.

Site_ID Site_name Latitude (°) Longitude (°) Alti

SK-OBS Sask.- SSA Old Black Spruce 53.99 −105.12 62
ON-TP39 Turkey Point 1939 Plantation White Pine 42.71 −80.36 18
ON-TP74 Turkey Point 1974 Plantation White Pine 42.71 −80.35 18
ON-TP89 Turkey Point 1989 Plantation White Pine 42.77 −80.46 21
ON-TP02 Turkey Point 2002 Plantation White Pine 42.66 −80.56 26
SK-OJP SSA Old Jack Pine 53.92 −104.69 57
MB-OBS BOREAS NSA — Old Black Spruce 55.88 −98.48 25
BC-DF00 Clearcut Douglas-fir stand 49.87 −125.29 30
BC-DF49 British Columbia — 1948 Douglas-fir stand 49.87 −125.33 30
US-HO1 Howland Forest (main tower) 45.20 −68.74 6
US-HO2 Howland Forest (west tower) 45.21 −68.75 9
US-HO3 Howland Forest (harvest site) 45.21 −68.73 6
US-NR1 Niwot Ridge Forest (LTER NWT1) 40.03 −105.55 305
US-ME2 Metolius-intermediate aged ponderosa pine 44.45 −121.56 125
data (VI and LST in March–May) and EOS with autumn data from Sep-
tember to November. Then, based on the correlations between SOS
(and EOS) and VI, and LST, we proposed that a combination of VI and
LST could improve the modeled SOS (and EOS). To investigate the po-
tential of a single VI in modeling SOS and EOS, we used both NDVI and
EVI. For LST, we calculated the mean seasonal data of LST and its vari-
ability, i.e., coefficient of variation (CV_LST, %), because it has a better
potential to indicate variability when the mean temperature can vary
substantially among sites from different regions.

2.5. Phenological transitions from PhenoCam observations

To quantify phenological status of the forest canopy over time, green
chromatic coordinate (GCC) within the region of interest (ROI) for each
image from average red (R), green (G), and blue (B) pixel digital num-
bers (DNs) were calculated, where GCC is defined as

GCC ¼ G= R þ Gþ Bð Þ: ð1Þ

According to previous studies (Klosterman et al., 2014; Zhang et al.,
2003), we used a sigmoid-based method to fit the time-series of GCC
tude (m) Data period References

9 2000–2010 Barr et al. (2004)
4 2003–2013 Arain, Yaun, and Black (2006)
4 2003–2007 Arain et al. (2006)
2 2003–2007 Arain et al. (2006)
5 2003–2007 Arain et al. (2006)
9 2000–2008 Barr et al. (2004)
9 2000–2007 Dunn, Barford, Wofsy, Goulden, and Daube (2007)
0 2002–2009 Jassal, Black, Spittlehouse, Brümmer, and Nesic (2009)
0 2002–2009 Jassal et al. (2009)
0 2000–2008 Hollinger et al. (2004)
1 2000–2009 Hollinger et al. (2004)
1 2004–2008 Hollinger et al. (2004)
0 2000–2007 Monson et al. (2005)
3 2002, 2004–2007 Thomas et al. (2009)



Table 2
Descriptions of PhenoCam sites in this study.

Sites Latitude Longitude Elevation (m) Data range References

Chibougamau 49.69 −74.34 380 2008–2010 Bergeron, Margolis, Coursolle, and Giasson (2008)
Groundhog 48.22 −82.16 350 2008–2011 McCaughey, Pejam, Arain, and Cameron (2006)
Howland (main tower) 45.20 −68.74 60 2010–2012 Hollinger et al. (2004)
Niwot Ridge Forest (LTER NWT1) 40.03 −105.55 3050 2008–2011 Monson et al. (2005)
Wind River 45.82 −121.95 371 2011 Wharton, Falk, Bible, Schroeder, and Paw (2012)
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(see Eq. (2)), and to calculate the SOS and EOS as local extrema in the
rate of change of curvature k in Eq. (3) (Fig. 3):

f tð Þ ¼ m1 þ m2−m7tð Þ
� 1

1þ exp m3−tð Þ=m4ð Þ−
1

1þ exp m5−tð Þ=m6ð Þ
� �

ð2Þ

k ¼ f ″ tð Þ
1þ f 0 tð Þ� �2� �3

2

: ð3Þ

2.6. Analysis strategy

To compare the performance of single seasonal VI (both NDVI and
EVI), LST and its variability, and the new model (i.e., NDVI/
EVI × CV_LST) in the estimation of SOS and EOS, we used least-
squares linear regression to calculate root mean square error (RMSE),
coefficients of determination (R2) and p-value. To determine the cor-
rectness of modeled SOS and EOS from NDVI/EVI × CV_LST for flux
and PhenoCam sites, we used the leave-one-out cross-validation ap-
proach (Gonsamo, Chen, Wu, et al., 2012; Wu et al., 2014). We further
used the analysis of variance (ANOVA) technique (Duncan's multiple
range test, p = 0.05) to analyze whether the reduction in residual
sum of squares between these models is statistically significant or not
with SPSS software (SPSS v19.0, IBM Corp, 2010).

3. Results

3.1. Temporal patterns of GPP, NDVI/EVI and monthly air temperature

We analyzed the temporal patterns of GPP, NDVI, EVI and monthly
air temperature (Ta) for each flux site (Fig. 4). We observed that Ta
Fig. 2. The schematic representation for calculating land surface phenology (start and end
of growing season, SOS andEOS, respectively) fromdaily gross primary productivity (GPP)
at SK-OBS in 2005.
increased over time in spring and decreased in autumn. Monthly GPP
exhibited the same trend. Though canopy NDVI and EVI had a small dy-
namic range for evergreen species, we still showed a clear pattern for
both NDVI and EVI. Overall, all four variables followed the same tempo-
ral pattern, suggesting that at the monthly temporal scale, GPP is quite
sensitive to both Ta and vegetation indices and there does not seem to
have an evident time lag atmonthly or seasonal temporal scale between
productivity and temperature.
3.2. Modeling SOS from VI, LST and models

Wecompared the performance of remote sensing based estimates of
SOS with corresponding reference measure from GPP based phenology
estimates. Table 3 shows the relationships between SOS and single VI,
LST (CV_LST) in spring and the products of NDVI/EVI × LST/CV_LST for
each site. Temperature has been suggested as an important controller
of plant phenology and this was confirmed in our analysis. To propose
a model using entirely satellite data, the MODIS LST product was used
as a substitute of air temperature. Apart from LST, we also introduced
the variability of LST (its coefficient of variation, CV_LST) for phenolog-
ical modeling.

NDVI was correlated with SOS for the ON-TP39 (R2 = 0.63, p =
0.003) and US-NR1 (R2 = 0.67, p = 0.012) sites. EVI demonstrated rel-
atively low potential that EVI was not significantly correlated with SOS
for any sites. For spring LST-based SOS estimates, statistically significant
correlations were found for seven sites (SK-OBS, ON-TP39, SK-OJP, MB-
OBS, BC-DF00, US-HO1 and US-HO2) with the highest correlation for
ON-TP39 with an R2 of 0.64 (p = 0.003). CV_LST was demonstrated to
have an improved potential as an indicator of SOS, with significant cor-
relations found for ten sites (SK-OBS, ON-TP39, ON-TP74, ON-TP89, SK-
OJP, MB-OBS, BC-DF00, BC-DF49, US-HO1 and US-HO2). Basically, the
product of NDVI/EVI and LST did not have high potential for SOS
Fig. 3. Illustration of determining the start and end of growing season (SOS and EOS) from
observed green chromatic coordinate (GCC) using camera data at US-HO1 in 2011. Local
extrema in the rate of change of curvature k were used to identify SOS and EOS in spring
and autumn, respectively.



Fig. 4. Temporal patterns of gross primary productivity (GPP), air temperature (Ta), normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) for each flux site.
Error bars represent the standard deviations over the study period for each site.
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modeling that we found that NDVI × LST provided significant SOS esti-
mates at three sites (ON-TP39, MB-OBS and US-NR1) while EVI × LST
can only predict reliable SOS at MB-OBS site.

We found that the product of NDVI × CV_LST and EVI × CV_LST can
improve the accuracy of modeled SOS compared to a single VI-based or
VI × LST approaches formost sites. NDVI ×CV_LST significantly correlat-
ed with SOS for the SK-OBS, ON-TP39, ON-TP74, SK-OJP, MB-OBS, BC-
DF00, BC-DF49, US-HO1 andUS-HO3 sites. In particular, the highest cor-
relation was found for the US-HO3 and BC-DF00 sites using
NDVI × CV_LST (both R2= 0.86, p b 0.001). EVI × CV_LST also exhibited
relatively high potential as an indicator of SOS with significant relation-
ships found for the SK-OBS, ON-TP39, ON-TP74, ON-TP89, SK-OJP, MB-
OBS, BC-DF00, BC-DF49, US-HO1 and US-HO2 sites. The highest R2 of
Table 3
The predicting performances (in terms of R-square) of start of growing season (SOS) using NDV
Mar–May. NS represents that the correlation is not significant. * and ** denote correlation signifi
among all indicators. For regression equations, Y and x indicate SOS and model variable, respe

Site_ID NDVI EVI LST CV_LST NDV

SK-OBS NS NS Y = −2.7x + 864,
R2 = 0.56**

Y = 3.9× + 83,
R2 = 0.61**

NS

ON-TP39 Y = −157x + 171,
R2 = 0.63*

NS Y = −3.3x + 1039,
R2 = 0.64**

Y = 10.3x + 48,
R2 = 0.62**

Y =
R2 =

ON-TP74 NS NS NS Y = 4.2x + 69.3,
R2 = 0.80*

NS

ON-TP89 NS NS NS Y = 21.2x − 2.9,
R2 = 0.78*

NS

ON-TP02 NS NS NS NS NS
SK-OJP NS NS Y = −3.1x + 978,

R2 = 0.50*
Y = 4.8x + 91.2,
R2 = 0.52*

NS

MB-OBS NS NS Y = −2.8x + 879,
R2 = 0.52*

Y = −9.5x + 150,
R2 = 0.56*

Y =
R2 =

BC-DF00 NS NS Y = −5.2x + 1558,
R2 = 0.55*

Y = −36x + 175,
R2 = 0.74**

NS

BC-DF49 NS NS NS Y = −8.9x + 37,
R2 = 0.52*

NS

US-HO1 NS NS Y = −3x + 939,
R2 = 0.55*

Y = 9.2x + 56.4
R2 = 0.60**

NS

US-HO2 NS NS Y = −3.1x + 971,
R2 = 0.43*

Y = 9.3x + 54,
R2 = 0.41*

NS

US-HO3 NS NS NS NS NS

US-NR1 Y = −127x + 148,
R2 = 0.67*

NS NS NS Y =
R2 =

US-ME2 NS NS NS NS NS
0.88 (p = 0.019) was observed between EVI × CV_LST and SOS for
ON-TP74.

3.3. Modeling EOS from VI, LST and models

Table 4 shows the predictive strength of indicators and models for
EOS modeling. For EOS, NDVI only had significantly correlation at two
sites: ON-TP74 (R2 = 0.85, p = 0.025) and US-NR1 (R2 = 0.54, p =
0.032) while EVI showed a comparable potential with significant corre-
lations also for two sites, namely ON-TP39 (R2 = 0.61, p = 0.004), SK-
OJP (R2 = 0.50, p = 0.034) and BC-DF00 (R2 = 0.36, p = 0.085). We
found that the AVE_LST was significantly correlated with EOS for the
ON-TP39 (R2 = 0.46, p = 0.023), US-HO1 (R2 = 0.45, p = 0.049) and
I, EVI, LST, CV_LST, VI × LST and VI × CV_LST for each site. LST is theman average of LST in
cant at the 0.05 and 0.01 p-value level, respectively. Bold font shows the highest correlation
ctively.

I × LST EVI × LST NDVI × CV_LST EVI × CV_LST

NS Y = 6.0x + 85.9,
R2 = 0.61**

Y = 15.3x + 85.1,
R2 = 0.62**

−0.53x + 168,
0.67

NS Y = 34x + 17.3,
R2 = 0.64**

Y = 36x + 43.3,
R2 = 0.63**

NS Y = 13x + 61.8,
R2 = 0.87*

Y = 22x + 58.5,
R2 = 0.88*

NS NS Y = 99x − 32.3,
R2 = 0.80*

NS NS NS
NS Y = 11x + 75.7,

R2 = 0.50*
Y = 29x + 69.4,
R2 = 0.53*

−0.55x + 165,
0.44*

Y = −2.3x + 243,
R2 = 0.49*

Y = −19x + 141,
R2 = 0.57*

Y = −50x + 158,
R2 = 0.58*

NS Y = −37x + 139,
R2 = 0.86**

Y = −122x + 179,
R2 = 0.80**

NS Y = −25x + 56.7,
R2 = 0.58*

Y = −53x + 65.5,
R2 = 0.63**

NS Y = 15.7x + 55.7,
R2 = 0.66**

Y = 74.4x + 55.1,
R2 = 0.72**

NS NS Y = 24x + 56.0,
R2 = 0.57*

NS Y = 13x + 65.6,
R2 = 0.86*

NS

−0.45x + 148,
0.86**

NS NS NS

NS NS NS



Table 4
The predicting performances (in terms of R-square) of end of growing season (EOS) using NDVI, EVI, LST, CV_LST, VI × LST and VI × CV_LST for each site. LST is the man average of LST in
Sep.-Nov. NS represents that the correlation is not significant. * and ** denote correlation significant at the 0.05 and 0.01 p-value level, respectively. Bold font shows the highest correlation
among all indicators. For regression equations, Y and x indicate EOS and model variable, respectively.

Site_ID NDVI EVI LST CV_LST NDVI × LST EVI × LST NDVI × CV_LST EVI × CV_LST

SK-OBS NS NS NS NS NS NS NS NS
ON-TP39 NS Y = −103x +

368, R2 = 0.61*
NS Y = −9.2x +

359, R2 = 0.46*
NS Y = −0.36x +

366, R2 = 0.61*
Y = −13.7x +
358, R2 = 0.57*

Y = −18x + 351,
R2 = 0.67*

ON-TP74 Y = −25x +
350, R2 = 0.85*

NS NS NS Y = −0.08x +
349, R2 = 0.77*

NS NS NS

ON-TP89 NS NS NS NS NS NS NS NS
ON-TP02 NS NS NS NS NS NS NS NS
SK-OJP NS Y = −177x +

344, R2 = 0.50*
NS NS NS Y = −0.6x + 341,

R2 = 0.46*
Y = −7.4x +
318.4, R2 = 0.53*

Y = −20.5x +
323, R2 = 0.72**

MB-OBS NS NS NS NS NS NS NS NS
BC-DF00 NS NS NS NS NS Y = 1.4x + 174,

R2 = 0.44*
NS NS

BC-DF49 NS NS NS NS NS NS Y = −16x + 377,
R2 = 0.38*

Y = −34x + 377,
R2 = 0.40*

US-HO1 NS NS Y = 2.1x − 277,
R2 = 0.45*

Y = −6x + 345,
R2 = 0.47*

NS NS Y = −6x + 341,
R2 = 0.63*

NS

US-HO2 NS NS NS Y =−12x + 363,
R2 = 0.60*

NS NS Y = −12x + 357,
R2 = 0.60*

Y = −24x + 355,
R2 = 0.63*

US-HO3 NS NS NS NS NS NS NS NS
US-NR1 Y = 116x + 239,

R2 = 0.54*
NS Y = 5.1x − 1118,

R2 = 0.82**
Y =−11x + 345,
R2 = 0.65*

Y = 0.4x + 239,
R2 = 0.58*

NS Y = −22x + 351,
R2 = 0.61*

Y = −47x + 349,
R2 = 0.88**

US-ME2 NS NS NS NS NS NS NS NS

Fig. 5. Comparison between observed start of the growing season (SOS) and model
outputs from (a) the product of normalized different vegetation index (NDVI) and the
coefficient of variation of land surface temperature (LST) (i.e., NDVI × CV_LST) and
(b) the product of enhanced vegetation index (EVI) and CV_LST (i.e., EVI × CV_LST) at
sites for which significant correlations were observed (see Table 3).

157Y. Liu et al. / Remote Sensing of Environment 176 (2016) 152–162
US-NR1 (R2 = 0.82, p = 0.002) sites. Compared with AVE_LST, CV_LST
showed high potential as an indicator of EOS with significant relation-
ships found for the US-HO1 (R2 = 0.47, p = 0.039), US-HO2 (R2 =
0.60, p = 0.005) and US-NR1 (R2 = 0.65, p = 0.016) sites.

We found that NDVI × LST can predict EOS at two sites thatwere sig-
nificantly correlatedwith observations (ON-TP74, R2=0.77, p=0.048,
and US-NR1, R2 = 0.58, p = 0.027). In comparison, three sites were
identified to have significant EOS estimates using EVI × LST (ON-TP39,
R2 = 0.61, p = 0.004, SK-OJP, R2 = 0.46, p = 0.048, BC-DF00, R2 =
0.44, p = 0.044). Better estimates of SOS and EOS were observed with
NDVI/EVI × CV_LST than using single VI, LST, and CV_LST.
NDVI × CV_LSTwas significantly correlatedwith EOS at six sites, includ-
ingON-TP39 (R2=0.57, p=0.007), SK-OJP (R2=0.53, p=0.026), BC-
DF49 (R2 = 0.38, p = 0.044), US-HO1 (R2 = 0.63, p = 0.016), US-HO2
(R2 = 0.60, p = 0.008) and US-NR1 (R2 = 0.61, p = 0.022). For
EVI × CV_LST, there were five sites showing significant relationships,
namely ON-TP39 (R2 = 0.67, p = 0.002), SK-OJP (R2 = 0.72, p =
0.004), BC-DF49 (R2 = 40, p = 0.039), US-HO2 (R2 = 0.63, p =
0.013) and US-NR1 (R2 = 0.88, p b 0.001).

3.4. Predictive capability of NDVI/EVI × CV_LST in modeling SOS and EOS

To show the predictive capability of NDVI/EVI × CV_LST inmodeling
SOS and EOS, we used the leave-one-out cross validation for sites where
significant correlations were found. Strong correlation was found be-
tween observed and modeled SOS for ten sites using NDVI × CV_LST
with overall R2 of 0.85 (p b 0.001) and RMSE of 10.6 days (Fig. 5). Com-
parable resultswere also foundwith EVI× CV_LST (R2=0.77, p b 0.001,
RMSE= 13.4 days). For EOS, NDVI × CV_LST produced quite promising
results for six sites with R2 of 0.89 (p b 0.001) and RMSE of 5.7 days for
the overall dataset (Fig. 6a). EVI × CV_LST showed comparable result
with R2 of 0.91 (p b 0.001) and RMSE of 5.4 days.

3.5. Validation at PhenoCam sites and phenology mapping

We also validated our approach at PhenoCam sites using
EVI × CV_LST and the results were also promising (Fig. 7). An R2 of
0.59 (p = 0.006) was found between ground observed and modeled
SOS and the respective RMSE was 15.7 days. Similarly, predicted EOS
was also significantly correlated with ground observations (R2 = 0.60,



Fig. 6.Comparison between observed end of the growing season (EOS) andmodel outputs
from (a) the product of normalized different vegetation index (NDVI) and the coefficient
of variation of land surface temperature (LST) (i.e., NDVI × CV_LST) and (b) the product of
enhanced vegetation index (EVI) and CV_LST (i.e., EVI × CV_LST) at sites for which signif-
icant correlations were observed (see Table 4).

Fig. 8. Spatial distribution of the start (a) and end (b) of growing season from MODIS EVI
and LST product over the study area in 2013.
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p = 0.004, RMSE = 15.9 days). With the good results from two com-
bined datasets, we mapped the SOS and EOS using MODIS EVI and LST
over the study area in 2013 (Fig. 8). Overall, the modeled SOS was in
the range between DOY 40 and 160 and there was an evident increase
trend along the latitude gradient. Mountainous areas in west regions
Fig. 7. Comparison between observed and modeled land surface phenology at PhenoCam
sites with EVI CV_LST using leave-one-out cross-validation approach. SOS ( ) and EOS
( ) represent the start and end of growing season, respectively.
had later SOS, probably due to high elevation and low temperature.
Most pixels had EOS later than DOY of 220, and also exhibited a clear in-
crease pattern from south to north and from east to west.

4. Discussion

4.1. The role of temperature variability in detecting plant phenology

Temperature has long been considered as the main determinant of
phenology in many ecosystems (Chen et al., 2003; Garrity et al., 2011;
Jeganathan et al., 2014; Richardson et al., 2013; Suni et al., 2003). Our re-
sults confirmed that temperature has evident influence on phenology,
while the vegetation surface temperature as estimated by MODIS LST
may be a proxy indicator of changes in land surface phenology. Howev-
er, the potential of LST in indicating EOS in needleleaf forests is not ev-
ident as only two sites (US-HO1 and US-NR1) showed significant
relationshipswith LST. This could be explained by abrupt change of veg-
etation in spring than autumnwhich can be capturedwell inMODIS LST
which indicates both air and land surface skin temperature. One of the
most useful finding of this study is that temperature variability is
more important than average temperature itself inmodeling phenology
of needleleaf forests, as shown by improved correlation between
CV_LST and SOS than between LST and SOS. This is applicable to EOS
as well, but with poor performance. We showed that temperature vari-
ability (i.e., CV_LST) could provide a useful way for phenologymodeling
if we compare LST vs. CV_LST, NDVI × LST vs. NDVI × CV_LST and
EVI × LST vs. EVI × CV_LST.

Modeling phenology from remote sensing is challenging and it is
particularly difficult to develop a model that is universally workable in
all situations. The practical way is to derive a model which is workable
for most sites in this study. From Tables 3 and 4, we found that most
bold font (i.e., best results) were in the model we newly proposed,
and the new model is able to give much higher R2 for most sites. The
ANOVA technique using Duncan's multiple range test showed that
CV_LST showed significant better results for phenology modeling than
LST for both SOS and EOS (Fig. 9). Similarly, adding CV_LST to NDVI/
EVI also significantly improved the accuracy of modeled SOS/EOS com-
pared with either NDVI/EVI alone or NDVI/EVI × LST, suggesting a con-
sistent helpful role of CV_LST played in modeling phenology.

The physical reasons for a better performance of temperature vari-
ability is not fully clear at present, but here we provided some clues



Fig. 9. Analysis of variance (ANOVA) technique using Duncan's multiple range test on the R-square between the start and end of growing season (SOS and EOS) using different predictive
models. Different letters indicate significant level at p = 0.05.
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for these results. We found a negative correlation between the CV_LST
and themean LST (Fig. 10a). It shows that higher CV_LSTwas associated
with lower temperature in both spring and autumn, which in turn
would delay SOS in spring and advance EOS in autumn with current
knowledge (Black et al., 2000; Chen et al., 2003; Wu, Chen, Black,
et al., 2013; Wu, Chen, Desai, et al., 2013). Therefore, the positive corre-
lation between CV_LST and SOS and negative correlation between
CV_LST and EOS were both consistent with previous understanding on
the role of temperature on phenology. Second, relationship between
CV_LST and mean LST exhibited a nonlinear form which indicates that
they have different sensitivity at two sides. For example, CV_LST had a
higher sensitivity at lower temperature end (it decreased quickly at
low temperature) but lower sensitivity at the high end. Mean LST
showed opposite patterns. This might be an important reason for the
better performance of CV_LST for LSPmodeling since it ismore sensitive
to low temperature change, which is typically the case at the SOS (tem-
perature starts to increase) and EOS (temperature starts to decline)
stages when temperature starts to change greatly. Finally, we further
explored the correlation between LST/LST_CV and NDVI, because NDVI
had been considered as a proxy of biomass and growth stages of vegeta-
tion (Fig. 10b, c). We found that LST_CV (both in spring and in autumn)
had a better potential in capturing changes in NDVI, and this might be
the underlying reason for a better performance in its modeling phenol-
ogy across plant functional types.

4.2. Performances of NDVI and EVI

NDVI and EVI have been the most commonly used VIs in modeling
land surface phenology over the past two decades (Gonsamo, Chen,
Price, et al., 2012; Piao, Fang, Zhou, et al., 2006; Shen et al., 2014; Wu
et al., 2014; Zhang & Goldberg, 2011; Zhang et al., 2003). White et al.
(2014) showed that EVI derived from Landsat TM data provided better
SOS estimates than that of NDVI in deciduous forests, possibly because
of EVI being less sensitive to high biomass than NDVI. Similarly, Wu
et al. (2014) found that EVI is a stronger predictor of both SOS and
EOS than NDVI at four boreal deciduous forest sites. However, for
needleleaf or conifer forests, EVI was not found to have better potential
for phenological modeling than NDVI (Wu et al., 2014). Our results
using data from 14 flux tower sites showed that neither NDVI nor EVI
alone can provide consistent and robust estimates of SOS or EOS,
which is consistent with previous findings (such as Hmimina et al.,
2013; Shen et al., 2014).

Our newly derived phenology model based on the product of
VI × CV_LST showed better performance in estimating SOS and EOS
compared to NDVI or EVI. Previous analysis of White et al. (2014) sug-
gests that EVI may have better potential than NDVI for phenological
modeling for deciduous forests, and the main underlying reason being
that EVI is its less sensitivity to high biomass. However, our results for
the needleleaf forest sites showed that there is no evidence of better
performance of EVI over NDVI for needleleaf forests as both showed sta-
tistically significant relationship for comparable number of sites for SOS
and EOS. More interestingly, NDVI had significantly better performance
for both SOS and EOS modeling compared with that of EVI (Fig. 9). We
argue that for estimating SOS and EOS for needleleaf forest, the satura-
tion of NDVI may not be a serious problem since green biomass will
not attain its maximum value in early spring and autumn, which are
critical periods for estimating SOS and EOS from remote sensing signals.

4.3. Directly relating phenology with VI and LST

Wedirectly relatedGPP-derived phenology (i.e., SOS andEOS) to the
product of VI and LST variables. A potential uncertainty of this algorithm
is the time lag effect of plant productivity to temperature. For example,
one single cold daymay prevent the leaf out in the next a few days. Pre-
vious analyses showed that the time lag at themonthly scale of the veg-
etation responses to climate to generally be shorter than 0.25
(Anderson et al., 2010; Chen et al., 2014). In our analysis, we suggest
that it is reasonable to directly relate phenological transitions derived
from GPP to the product of VI and LST. First, we showed the monthly
temporal patterns of GPP, NDVI/EVI and temperature for all flux sites
(see Fig. 4) andwe found that for these evergreen needleleaf forest eco-
systems, there is no apparent time lag between productivity and tem-
perature at monthly temporal scale. Second, a recent study of Wu
et al. (2015) demonstrated that at the middle and high latitudes
(30N–90N, 30S–90S), vegetation productivity has the greatest correla-
tion with temperature in the same month and does not exhibit evident
lag effects. In particular, even at low latitudes, more than 70% of ever-
green forests do not have time lag effects between productivity and
temperature (Wu et al., 2015). Therefore, the variation of temperature
is reflected in both GPP (i.e., GPP derived SOS and EOS) and remote
sensing vegetation measures so that our algorithm could be useful for
most evergreen needleleaf forests over this region.

4.4. Comparison between SOS and EOS

It has been recognized that for most terrestrial ecosystems, the SOS
is more likely to be modeled at higher accuracy than EOS from remote
sensing observations (Guyon et al., 2011; Hufkens et al., 2012; Melaas,
Friedl, et al., 2013; Shen et al., 2014), and this is also confirmed in our
analysis. It because plants experience a much longer and slow change
of canopy greenness and thus photosynthesis during senescence as
compared to onset of canopy greenness in spring (Richardson et al.,



Fig. 10. Relationship between (a) the MODIS Land surface temperature (LST) and its
coefficients of variation (CV_LST) in spring and autumn, and between NDVI and LST/
LST_CV in (b) spring and (c) autumn for all sites.

Fig. 11. Comparison between flux measured (a) standard deviation (SD_SOS) and
coefficients of variation of start of growing season (CV_SOS) in spring an (b) standard
deviation (SD_EOS) and coefficients of variation of end of growing season (CV_EOS) in
autumn for all sites in this study.
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2013). Using flux tower measured GPP records, we found that for each
site, SD_SOS was significantly larger than SD_EOS using the two tail t-
test (p = 0.038) (Fig. 11). Coefficient of variation of SOS (CV_SOS)
was also significantly higher than CV_EOS (p = 0.030). For the overall
dataset, mean value of SD_SOS and CV_SOSwere 8.7 days and 18.2%, re-
spectively, both longer than that of SD_EOS (5.5 days) and CV_EOS
(1.7%).

4.5. Study limitations

We proposed a new model using MODIS-based VIs and LST to esti-
mate SOS and EOS of 14 North American needleleaf forest flux tower
sites. Additional validation was conducted using canopy-based camera
data at 5 sites. The results were promising with significant improve-
ments in modeled SOS and EOS as compared to previous methods
based on single VIs. Even though, there are several issues that might
be considered in its further applications. The new model, i.e., NDVI/
EVI × CV_LSTmight bemore appropriate in phenology studies in boreal
and temperate forests because temperature is a main determinant of
plant growth in these regions. Second, complicated interaction between
multiple climate variables and plant phenology makes it challenging to
derive a universal model that is able to depict interannual variability of
phenology for mountainous ecosystems, especially for US-NR1 in this
study (Monson et al., 2005;Wu, Chen, Black, et al., 2013). This issue re-
quires further investigation between plant phenology and other envi-
ronmental factors (e.g., soil temperature and water status) if the new
phenology model is to be included in ecosystem models. While the
GPP threshold method has been well demonstrated to be useful in de-
termining land surface phenology of forests (Garrity et al., 2011;
Richardson et al., 2010; Wu et al., 2014), confidence in this new model
will be enhanced ifmore data from various plant functional types are in-
cluded. The final aspect is the footprint of the MODIS observations that
we directly used the MODIS Surface Reflectance product. However, the
footprint sizes and locations of observations used to grid for the MODIS
grid cell vary with viewing geometries and they may be not necessarily
always have common area or overlap each other (Zhang, Cheng,
Lyapustin, Wang, Gao, et al., 2014; Zhang, Cheng, Lyapustin, Wang,
Xiao, et al., 2014). Therefore, a potential way to improve the accuracy
of modeled phenology may lie in the way that we consider the grid lo-
cation and grid size of MODIS observations.

5. Conclusions

Using continuousmultiple-year fluxmeasurements at 14 flux tower
sites for needleleaf forest in North America, we evaluated the potential
of MODIS land surface reflectance and temperature data for estimating
the start and the end of the growing season. We found that a single VI,
neither NDVI nor EVI, was not able to accurately predict SOS and EOS
because of the low intra-annual variations of canopy greenness for the
needleleaf or conifer forests. The MODIS LST might be a good proxy
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for SOSmodeling but not for EOS. A particularly importantfinding of our
results was that the land surface temperature variability is more useful
than average temperature itself in indicating plant phenology, which
might be overlooked in precious studies in literature. Based on these
findings, we proposed a new model that incorporated both a VI and
CV_LST, which showed improved estimates of both SOS and EOS with
RMSE within 11.7 days and 5.6 days, respectively. Additional validation
at five PhenoCam sites also demonstrated the usefulness of the model.
Further analysis might be necessary to extend our results for other bi-
omes or plant functional types (e.g., grasslands and shrub lands) and
for other regions (e.g., Mediterranean, arid ecosystems) which have
more complex interactions between climate and plant phenology.
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