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Testing the Top-Down Model Inversion Method of
Estimating Leaf Reflectance Used to Retrieve
Vegetation Biochemical Content Within

Empirical Approaches
Anita Simic, Jing M. Chen, Sylvain G. Leblanc, Andrew Dyk, Holly Croft, and Tian Han

Abstract—A top-down model inversion method of estimating
leaf reflectance from hyperspectral remote sensing measure-
ments has been tested with an empirical approach used to
estimate chlorophyll content. Leaf reflectance is obtained by
inverting a geometric-optical model, 5-Scale, validated using
hyperspectral AVIRIS data. The shaded scene fractions and the

factor, which includes both the multiple scattering effect
and the shaded components, are computed for inverting canopy
reflectance into leaf reflectance. The inversion is based on the
look-up tables (LUTs) approach. The simulated leaf reflectance
values are combined in hyperspectral indices for leaf chlorophyll
retrieval and compared against the measured leaf chlorophyll
content in the Greater Victoria Watershed District (GVWD),
British Columbia (BC). The results demonstrate that the mod-
eled canopy reflectance and AVIRS data are in good agreement
for all locations. The regressions of the modified simple ratio

and modified normalized
difference index
against chlorophyll content exhibit the best fit using second-order
polynomial functions with the root-mean-square errors (RMSE)
of 4.434 and 4.247, and coefficients of determination of 0.588 and
0.588, respectively. Larger RMSE are observed when the direct
canopy-level retrieval, using canopy-level generated vegetation
indices, is considered, suggesting the importance of the proposed
canopy-to-level reflectance inversion step in chlorophyll retrieval
based on hyperspectral vegetation indices. This approach allows
for estimation of leaf level information in the absence of leaf
spectra field measurements, and simplifies further applications of
hyperspectral imagery at the regional scale.

Index Terms—Chlorophyll, hyperspectral vegetation indices,
leaf area index, radiative transfer model.
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I. INTRODUCTION

L EAF CHLOROPHYLL content is an important indicator
of ecosystem health and sustainability [1], [2] and is the

key parameter for quantifying the photosynthetic rate of foliage,
and thus plant primary productivity [3], [4]. At fine spectral res-
olutions, hyperspectral data provide a unique way to retrieve
chlorophyll content [4]–[7]. With remote sensing data, two ap-
proaches are commonly applied to estimating chlorophyll con-
tent: 1) the empirical statistical approach and 2) the inversion of
physically based canopy and leaf reflectance models.
1) The empirical approach is based on correlations be-
tween hyperspectral indices, derived from reflectance at
leaf or canopy level, and chlorophyll content [4]–[10].
Such indices serve as indicators of vegetation stress,
senescence, and disease and have been widely used to
estimate chlorophyll content. In literature, the focus
is on evaluating the reflectance in narrowbands, band
reflectance ratios and combinations, and the character-
istics of derivative spectra. Different combinations of
narrow spectra are analyzed to reduce the effect of some
external vegetation parameters and to maximize sensi-
tivity to chlorophyll content. The empirical approach
is simple to use and the indices are easy to compute.
However, it is a site-, species-, and often, time-specific
approach, and it does not account for the complexity of
canopy structure. Although biochemical composition
controls leaf and canopy reflectance properties, canopy
structure [1], in particular, affects canopy reflectance
acquired by a sensor [4], [12]–[14]. Leaves in plant
canopies, especially in trees and shrubs, are generally
highly clumped. Because of canopy features such as
phyllotaxy, branch and shoot arrangement and crown
structure, forest leaves have more vertical overlap than
the case with a random leaf distribution. In literature,
statistical estimation of canopy-level chlorophyll con-
tent has been done through various methods. Some
studies employed the empirical approach, developing a
direct statistical relationship between ground-measured
chlorophyll content and canopy reflectance measured by
a sensor [10]. In other studies, the relationships between
reflectance and chlorophyll content were developed
at leaf level and scaled up to the canopy level [15],
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[16]. Reference [10] evaluated the relationship between
hyperspectral indices from imagery and leaf chloro-
phyll contents obtained from both model-inversion and
ground measurement. Reference [10] also compared
simulated and measured canopy reflectance to mea-
sured chlorophyll content. In any case of chlorophyll
retrieval at the canopy level, the canopy structure, soil
background, and sun-target-sensor geometry have to be
considered. For instance, canopy reflectances can differ
among plants that have the same canopy chlorophyll
content but different canopy structure [4]. Furthermore,
at all sun angles, the leaf clumping decreases the pro-
portion of sunlit leaves and increases the proportion
of shaded leaves, affecting the interaction between
radiation and vegetation [17]. Many hyperspectral in-
dices are traditional vegetation indices modified for
chlorophyll retrieval, which are proposed to minimize
the effects of leaf area index (LAI) and soil background
and maximize the spectral response to the chlorophyll
content [9]. The empirical relationship between leaf
reflectance and biochemical contents have been widely
used in the studies of [4] and [18]. However, such
empirical methods lack temporal and spatial continuity
as they have no clear mechanistic basis.

2) The inversion of physically based canopy and leaf
reflectance models is another approach to estimate
chlorophyll content. In this study, we will focus on
inversion of a canopy model. Canopy models use ra-
diative transfer schemes that include a description of
canopy architecture. Most sophisticated canopy mod-
eling techniques, used to simulate the radiation transfer
regime in a heterogeneous scene such as open forest
canopies, are 1) 3-dimensional numerical models such
as ray tracing (Flight, Sprint-2, Raytran, and Drat), dis-
crete ordinate (DART), and radiosity models (RGM);
and 2) 3-dimensional geometric optical/hybrid models,
such as GORT, SGORT, LIM, 5-Scale, and FRT [19],
[20]. [20] reported that some 3-dimensional numerical
models have matured to the point that they have been
successfully validated against field measurements and
provide similar results.

Geometric-optical (GO) models are particularly suitable for
forest canopies due to their ability to capture structural vegeta-
tion parameters. GOmodels are developed with emphasis on the
effects of canopy architecture on radiative transfer [21], where
a canopy is represented as a collection of discrete crown enti-
ties that cast shadows onto another crown or/and the background
[11], [22]. Multiple scattering is a phenomenon that involves re-
flected radiance after the first collision of light with foliage or
background [21], and the simulation of multispectral scattering
is an important part of some RT models. This gives rise to hy-
brid models [21]–[23]. In recent years, a number of GO/hybrid
models have been developed to estimate shadow components,
canopy reflectance, and bidirectional function (BRDF) (summa-
rized by [24]). Reference [25] combined the G-function and Hot
SpoT (GHOST) model to simulate the BRDF of a boreal forest
and to describe the canopy geometry based upon the hotspot

signature. The Four-Scale Linear Model for Anisotropic Re-
flectance (FLAIR), a linear kernel-like model based on 4-Scale,
has been developed by [26] and used in the studies of [27].
The Forest Reflectance and Transmittance (FRT) model [23], a
hybrid directional multispectral model, was combined with the
PROSPECT and MCRM models and successfully used in the
studies of [28] and [29].
Inversion of the geometric models commonly employs the

look-up table (LUT) approach [30]–[32]. The GORTmodel was
successfully inverted to estimate forest cover density [33]. This
model was shown to work well for coniferous forests on flat ter-
rain [34]. [35] and [36] successfully inverted 5-Scale in order to
calculate leaf reflectance. Reference [25] effectively employed
the GOSTmodel in the process of inverting from canopy to leaf.
The main purpose of this study is to test the model inver-

sion approach for the Douglas fir forest in the Greater Victoria
Watershed District (GVWD), British Columbia (BC), Canada.
This is a top-down approach of estimating leaf reflectance from
hyperspectral remote sensing measurements. The simulated leaf
reflectances are combined in different hyperspectral indices and
correlated with measured chlorophyll content to explore the po-
tential of empirical relationship. This combined model-based-
empirical approach considers both chlorophyll content and re-
flectance at leaf level; it reduces possible uncertainties due to
1) LAI variations when chlorophyll content is upscaled to the
canopy and/or 2) mixed signals within a pixel when canopy re-
flectance is often considered as a proxy of leaf reflectance. The
leaf reflectance was obtained by the inversion of the 5-Scale
model. The top-down approach of estimating leaf reflectance
from 5-Scale based on hyperspectral remote sensing data was
proposed by [35] and refined by [36]. The intermediate objec-
tives are as follows:
1) to show performance of the geometric-optical 5-Scale
model, emphasizing the importance of canopy architec-
ture and multiple-scattering scheme in simulations of
canopy reflectance [37]; the performance of the 5-Scale
model and the top-down approach of estimating leaf re-
flectance are tested using the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) data;

2) to validate the developed concept of inversion of the
canopy reflectance model to compute foliage (leaf) re-
flectance;

3) to examine the relationship between measured leaf
chlorophyll content and reflectance indices derived
from the simulated leaf reflectance to explore the va-
lidity of the concept at leaf level when the impact of
canopy structure is removed;

4) to examine the importance and advantage of the
canopy-to-leaf reflectance inversion concept over the
direct canopy-retrieval approach in the chlorophyll
retrieval process based on the empirical approach.

This top-down model inversion approach can be further
incorporated into a leaf-model inversion process to estimate
chlorophyll content as described by [35] and [36]. For the pur-
pose of better understanding the overall model-based approach,
we have included the description of the theoretical approach
from [36] as follows.
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II. THEORETICAL APPROACH

The 5-Scale model is a geometric-optical radiative-transfer
model with emphasis on the structural composition of forest
canopies at different scales. The model can be used to simulate
both closed and open canopy vegetation reflectance, and, thus,
it is useful for forests. A general description is as follows (more
detailed information about the model can be found in [37]).
1) Tree crowns are simulated as discrete geometrical ob-
jects: cone and cylinder for conifers, and spheroid for
deciduous species. The nonrandom spatial distribution
of trees is simulated using the [38] type A distribution.

2) Inside the crown, a branch architecture defined by a
single inclination angle is included [39]. A branch is, in
turn, composed of foliage elements (individual leaves in
deciduous and shoots in conifer canopies) with a given
angle distribution pattern [40].

3) The hotspot is computed both on the ground and on the
foliage with gap size distributions between and inside
the crowns, respectively.

4) The tree surface created by the crown volume (cone and
cylinder, or spheroid) is treated as a complex medium
rather than a smooth surface so that shadowed foliage
can be observed on the sunlit side and sunlit foliage on
the shaded side.

5) A multiple scattering scheme utilizing view factors is
used to compute the “shaded reflectivity.” This scheme
is essential for hyperspectral calculations because it au-
tomatically computes a spectrum of the wavelength-de-
pendent multiple scattering factor under given canopy
geometry. This makes the 5-Scale truly unique for hy-
perspectral applications.

6) If canopy and background spectra are available, 5-Scale
can output the bidirectional hyperspectral reflectance at
any combination of sun and view geometries [40]–[42].

In addition to sunlit foliage and ground components respon-
sible for the reflectance of the canopy under direct solar beam as
the sole source of illumination, the model computes shaded fo-
liage and ground components to account for the diffuse radiation
from the sky and the multiple scattering. Model parameters are
separated into three groups [41] as follows: 1) site parameters-
domain-size equivalent to the size of a pixel, LAI, tree density,
solar zenith angle (SZA), viewing angle, and relative azimuth
angle; 2) tree architecture parameters-crown radius and height,
apex angle, needle-to-shoot ratio, foliage clumping index, and
typical size of tree foliage; and 3) foliage reflectance and trans-
mittance and background reflectance spectra or band-specific
reflectances and transmittance for multispectral simulations. In
several studies, the 5-Scale model is presented as an advanced
and reliable approach [17].
1) Inversion of 5-Scale Model: The inversion of 5-Scale is

based on the multiple scattering scheme incorporated into the
model as explained below [35], [36]. As explained by [21], this
scheme is based on view factors between sunlit and shaded com-
ponents of canopy reflectance, including both foliage and back-
ground, which allows for the second and higher-order scattering
simulations.
The total simulated canopy reflectance is a collection

of four reflectivity components. They are sunlit foliage and

background reflectances ( and shaded foliage and
background reflectances . These reflectances are
weighted by the fractions/probabilities of viewing the four parts
of scenes in the following manner [21]:

(1)

where , , , and are fractions/probabilities
of viewing (from a remote sensor) sunlit tree crown, shaded
tree crown, sunlit background, and shaded background, respec-
tively.
The multiple-scattering scheme is the most challenging mod-

eling component. Generally, it causes errors mainly in the NIR
regions due to low absorption and high reflectance within veg-
etation components. The multispectral module within 5-Scale
is based on the probability of viewing sunlit and shaded leaves
and background using view factors, considering first-, second-
and higher order scattering. As described in detail in [21], this
scheme is based on various view factors between sunlit and
shaded components of both foliage and background which di-
rectly depends on the canopy geometry. The multiple scattering
scheme incorporates diffuse radiation from the sky. The model
includes Rayleigh scattering and default simulations for the at-
mosphere with noMie scattering (low aerosol content) allowing
for adjustment of the diffuse component (in percent of the di-
rect illumination), which can be estimated with an atmospheric
model and added to the default scattering. The 5-Scale model
assumes blue sky and minimal atmospheric effects.
Each component (sunlit and shaded reflectance in (1) in-

cludes multiple scattering effects. In addition, each component
can be treated as a separate entity allowing for the multiple
scattering affect to be additive when multiplied with probability
factor. This additive nature of the equation allows us to form a
factor that incorporates and replaces some or all components,
depending on the level of complexity that we choose. As two
components are easily measured (sunlit leaf and background),
we decided to include shaded components within the factor.
This factor does not represent multiple scattering but rather
shaded components of the overall canopy reflectance as shown
in (1). In addition to the shaded components (1), the factor
includes the second- and higher orders of reflectivity that affect
sunlit foliage (crown).
The sunlit foliage elements can be affected by the second

order of scattering from four sources: 1) other sunlit foliage;
2) shaded side of sunlit leaves; 3) sunlit background; and
4) diffused light from the sky. If there is no second-order
scattering for the white leaves scenario, the sunlit foliage
reflectance would equal measured leaf reflectance, which is
then considered in the (2). With this in mind, the factor is a
multiplying factor that contains all these reflectance of second-
and higher order of sunlit foliage, in addition to the shaded leaf
and background components from (1) [as shown in (2) and (3)].
Thus, the main goal of this approach is to combine, in one

factor, all second- and higher order scattering components,
which are handled by the model but yet are hard to measure
and separate in a given setting. Two sunlit components, sunlit
leaf (first-order scattering) and sunlit background, which can
be easily measured, are included in the equation to support the
concept and to simplify the proposed LUT approach.
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In this case, (1) can be expressed as

(2)

By rearranging (2), the following equation is derived to calcu-
late the factor [35]:

(3)

where is the canopy-level total reflectance simulated by
5-Scale and is measured leaf reflectance, which is an input
value.
Other factors in (3) are derived using the 5-Scale model;

canopy reflectance can be remotely measured, and forest
sunlit background reflectivity is known.
An important change from (1) to (3) is the substitution of

with . is the reflectance of sunlit crown, while is
the sunlit leaf reflectance as measured, for instance, in the in-
tegrating sphere in the laboratory. As the sunlit crown surface
is complex at different angles to the sun, these two reflectances
differ. In the 5-Scale model, the sunlit crown reflectance is cal-
culated based on leaf reflectance, leaf-sun angle, and the prob-
ability of viewing the shaded leaves on the sunlit side. To make
the inversion simple and feasible, the difference between
and is absorbed into the factor. This factor was cal-
culated for each LAI combination, and the LUTs were gener-
ated for each land cover type (conifer, deciduous, and regener-
ating forest). For each LAI combination, the LUTs contained the
factor, total canopy-level reflectance (which was replaced

by AVIRIS reflectance in the leaf reflectance estimation; see
(4)), sunlit background reflectance, and the viewing fractions
for sunlit foliage and background.
Given that the model-driven canopy reflectance closely

resembles remote sensing data and that the factor
for a forest is provided based on (3), then the following equation
can be used to estimate leaf reflectance of a pixel representing
a forest stand:

(4)

The main goal of this study is to show the validity of this
approach of using the factor and the two sunlit fractions in
estimating leaf reflectance from stand-level remote sensing.

III. METHOD AND DATA

A. Data Description

All data used in this study, except for leaf and background
spectra, were provided by the Pacific Forestry Centre (PFC),
within the Natural Resources Canada (NRCan). PFC collected
both the field and remote sensing measurements over the
Greater Victoria Watershed (GVWD) study site. The leaf and
background spectra data were collected by the University of
Toronto (U of T) within the Campbell River region, located
near the study region. Both GVWD and the Campbell River
region are situated on Vancouver Island, BC, Canada, within

Fig. 1. AVIRIS image for the Greater Victoria Watershed District (GVWD)
and given plot locations.

the same eco-region, and it has been assumed that they do not
differ significantly in respect to Douglas fir forest and back-
ground vegetation species and their structure. The predominant
forest species in the study site is Douglas fir (Pseudostuga
menziesii var.Menziesii) [45]. Other species in the area include
western hemlock (Tsuge heterophylla), western white pine
(Pinus monticola), lodgepole pine (Pinus Contorta), red alder
(Alnus Rubra), western redcedar (Thuja Plicata), and arbutus
(Arbutus menziessi) [45]. The predominant understory species
in the study site is salal (Gaultheria shallon).
Remote sensing data included an AVIRIS reflectance image

for the GVWD region (Fig. 1). The 20-m airborne hyperspectal
AVIRIS data were acquired over the GVWD on September 10,
2001. The data were first atmospherically corrected with the at-
mospheric correction modeling tool Fast Line-of-sight Atmo-
spheric Analysis of Spectral Hypercubes (FLAASH). The at-
mospheric corrections were followed by geometric correction
and orthorectification with the rational function model. Indi-
vidual scenes from the flight lines were assembled into a contin-
uous single mosaic image. To eliminate the remaining effects on
the spectra, not modeled by the atmospheric correction process,
a spectral calibration was performed by forcing the AVIRIS
spectra to fit the ground measured spectra at the corresponding
locations. Then, the obtained gain and offset were applied to all
pixels of the image [45].
The field data provided by PFC were stored in two vector

files: a vector point file, containing 54 GVWDplot locations and
their extensions (3 3 pixels), and a polygon file, which pro-
vided the age and height of trees within each polygon (Fig. 1).
The test site boundary was 15 km 23 km (Fig. 1). In addition
to forest structural parameters, raw LAI measurements, chloro-
phyll content, and leaf spectra datasets were provided by PFC
for 28 plots (Fig. 1). Treetop foliar samples were collected from
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Fig. 2. (a) Chlorophyll content measurements for 21 plot locations. (b) LAI
values for 28 plot locations computed by applying the equations of [46] to LAI-
2000 raw data.

a helicopter. Ten samples were collected per plot and used for
organic analysis, including analysis on chlorophyll a and b, total
chlorophyll, moisture percentage of dry weight, and nitrogen
percentage for each sample. The organic chemistry analysis was
conducted at PFC. Field chlorophyll data [Fig. 2(a)] were used
for correlation of reflectance indices and chlorophyll content.
LAI-2000 raw data were used to calculate LAI values of plot
areas [Fig. 2(b)]. Both chlorophyll and LAI data were collected
in summer 2000. More detailed information on the sampling
procedure can be found in [45].
The leaf spectra were measured by the Analytical Spectral

Devices (ASD) ground spectrometer. The suite of leaf measure-
ments was chosen based on the height and size of trees (dom-
inant, co-dominant, and suppressed), and shoot samples were
chosen from three different heights of trees (top, middle, and
low) [46]. The analysis included mostly the measurements from
the top of a “dominant” tree; it was assumed that they were rep-
resentative of the forests in the GVWD given that the average
height of trees in this area was 33 m, and trees were approx-
imately 55 years old with an average LAI of 6.9 m m [47].
Following the processing of the ASD measurements, foliage re-
flectance and transmittance were calculated and used in the anal-
ysis. PFC also provided spectra from Douglas fir branch stacks;
three sets of data were used for comparison with foliage spectra
used in the analysis (both are shown in the results section).

Fig. 3. Major method steps.

B. Description of the Method

Fig. 3 represents the main flow of methods used in this anal-
ysis. The two following paragraphs explain the method in more
detail.
1) ForwardModeling: The spectral field data fromCampbell

River were processed using ASD ViewSpecPro version 3.03.
Foliage reflectance and transmittance were calculated and then,
together with the background reflectance data, used as inputs to
the model. Although 5-Scale was modified to calculate foliage
reflectance from a leaf model imbedded in the model, avail-
ability of the filed measurements allowed us to bypass the leaf
model at this stage and, thus, produced more accurate results.
The foliage spectra data for Campbell River was compared with
the stack spectra of the GVWD region to ensure that the re-
flectance differences between the two areas were not significant.
LAI values of plot areas were calculated using the method of
[24] [Fig. 2(a)].
The initial parameterization of the model was based on

measurements within the Campbell River site as described by
[47]. The parameters were calibrated against a benchmark plot
location (Location #14, UTM 10, northing 5381979, easting
449947), which was carefully chosen from the vector data. Both
vector data (point and polygon) were overlaid on the AVIRIS
data, and the plot location was chosen based on the GIS query
to be in accordance with the characteristics of the Campbell
River site. The average height of trees was between 30 and
40 m, aged between 40 and 60 years, with an LAI value of 7.0
at the chosen point. These specifications were used in the initial
parameterization. In addition, clumping index, needle-to-shoot
ratio, and foliage thickness/width ratio, also measured in the
Campbell River region, were averaged and used as input
parameters for the model. Solar zenith angle for the area was
based on the AVIRIS overpass time, and it was calculated to
be 33 . Validation between canopy reflectance and AVIRIS
spectra for the same point was then performed. The model was
also run for each reflectance component separately (sunlit and
shaded foliage and ground reflectance) to show the contribution
of each scene component to the canopy reflectance. The unique
fine-tuning of the parameters was then performed over the rest
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of the points for which LAI values were provided (28 points).
This was done in order to produce the LUTs. Based on this
unique parameter file and calculated LAI values, the validation
of canopy reflectance for these points was undertaken.
Sensitivity analysis was performed for total canopy re-

flectance and for sunlit foliage and sunlit ground components
and their fractions. The purpose of this analysis was to see
how canopy reflectance and its components changed with LAI
(1–10) and SZA (10–70).
2) Inverse Model: The factor, based on the canopy and

leaf reflectance as demonstrated in (3), was calculated for the
benchmark location first. Estimated leaf reflectance was com-
puted in the next step using AVIRIS data and the factor in
the fashion described in (4). Validation of this process for the
benchmark location warranted the inverse canopy model ap-
proach. Further validation (for the rest of the points) was per-
formed based on the LUTs, which were produced in the form of
text files. The validation was done for all points of interest for
given LAI values and SZA of 33 . Some values were interpo-
lated from the LUT.
The first LUT was derived based on sensitivity analysis of the

fractions of viewing the four components. It was based on the
unique parameter file for LAI ranging from 0.1 to 10 with incre-
ments of 0.1 and SZA from 10 to 70 with increments of 10 .
Based on this LUT, canopy reflectance modeled for each com-
bination of LAI and SZA, and leaf reflectance measurements,
we developed the second LUT, which provides the factor
for given wavelengths for each LAI and SZA combination. The
later LUT was created for LAI ranging from 1 to 10 with incre-
ments of 1 and SZA from 10 to 70 with increments of 10 . For
each combination of LAI and SZA, the wavelength ranges from
400 to 1600 nm with increments of 1 nm. The primary purpose
of these LUTs is to invert the hyperspectral remote sensing data
in each pixel (treated as a stand) into leaf area reflectance. This
approach allows for estimation of leaf level information in the
absence of leaf spectra field measurements and simplifies fur-
ther applications of hyperspectral imagery at a regional scale.
A further step included the computation of leaf reflectance

based on AVIRIS data for each point location (3 3 pixels)
using the two LUTs. Sunlit background reflectance, in addition,
was calculated from the forward mode of the model. Valida-
tion of estimated leaf reflectances for all given points was then
performed using the given measured leaf reflectance dataset.
Table I shows the parameters used for the LUTs. The overall
validation of 28 points was shown in the results section. Sensi-
tivity analysis of the factor was also shown in the results as
a function of SZA and LAI.
We explore a number of reflectance indices, including the

modified Simple Ratio index (mSR), the modified Normal-
ized Difference index (mND) [48], the Double Difference
index (DD), the first derivative-based indices (BmSR and
BmND) [9], the Transformed Chlorophyll Absorption in Re-
flectance Index (TCARI) [49], and the Modified Chlorophyll
Absorption in Reflectance Index (MCARI) [50] (see Table II
for the reflectance regions included in the equations). Both
mSR and mND are modified Simple Ratio
and Normalized Difference ( m

TABLE I
MAJOR PARAMETERS OF A SINGLE PARAMETER FILE USED TO PRODUCE

LOOK-UP FOR DOUGLAS FIR STANDS

TABLE II
RELATIONSHIP BETWEEN SIMULATED LEAF SPECTRAL INDICES (CANOPY

SPECTRAL INDICES) AND MEASURED CHLOROPHYLL CONTENT

where an additional spectral range is added in the equation
(see Table II) [9]. MCARI was originally designed for canopy
cover and generally derived poor results when used at the
leaf level; however, we decided to use it in this study [9]. DD
index is the difference of the integral of reflectance derivatives.
This index is computationally simple and has the advantage
to keep the characteristics of hyperspectral indices based on
second derivatives [9]. BmSR and BmND are indices based on
reflectance derivatives based on mSR and mND [9]. TCARI
is a hyperspectral index based on the green spectral region in
addition to the red/red edge region [49]. Wavelengths employed
in the equations of the indices are commonly the neighboring
regions of the chlorophyll absorption maxima (e.g., in the 550
or 700 nm region) as reflectances within these regions are more
sensitive to high chlorophyll concentration [9].
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Fig. 4. (a) Input data: Processed leaf spectrum ASD integrating sphere mea-
surements for the Campbell River region. (b) Douglas fir stack spectra (re-
flectance) for GVWD.

IV. RESULTS AND DISCUSSIONS

Fig. 4(a) shows the trend of the input data into the model
over the wavelength span from 400 to 1600 nm. Although the
AVIRIS data provides spectra up to 2400 nm, due to noise and
uncertainties during the field measurements, the analysis in this
study is limited to 1600 nm. This range satisfies the purpose of
this study. Foliage spectra exhibit maximum values of about
0.6 and 0.25 for reflectance and transmittance, respectively.
Background spectra exhibit a somewhat higher reflectance
value 0.4 . However, it was found in this study that
the model is more sensitive to variations of foliage reflectance
than to variations of foliage transmittance and ground re-
flectance. For illustration, Fig. 4(b) shows stack spectra for
Douglas fir. It exhibits lower values of leaf reflectance for all
three measurements than the foliage spectrum shown
in Fig. 4(a). Mutual shadows between stacks of leaves may
explain the fact that stack reflectance spectra are lower than
the leaf spectra measured inside an integrating sphere. The
regions of low reflectance in the stack cases, within the spectral
regions 950–990 and 1100–1200 nm, are caused by multiple
scattering in the stack, which tends to enhance absorption due
to leaf water content. Atmospheric absorption has an additional
impact in these spectral regions. These differences suggest that
caution should be taken in using stack spectra.

Fig. 5. Agreement between canopy reflectance derived by 5-Scale model and
AVIRIS image for the benchmark location (primary location used for the model
parameters calibration).

Given that the benchmark location was used as a primary
location for the model calibration, Fig. 5 indicates very good
agreement of the canopy reflectance derived by the 5-Scale
model and extracted from the AVIRIS image for this location.
The relationship between the modeled (predictor) and extracted
reflectance (response) is defined by the linear regression func-
tion and the coefficient of determination

, and root-mean-square error (RMSE) is 0.009.
The canopy reflectance is considerably lower than the leaf
reflectance due to the shadowing effect of the canopy archi-
tecture. Thus, the foliage and AVIRIS acquired reflectances,
has a strong nonlinear relationship with larger
relative differences within the visible range (75% on average)
than within the NIR range of the spectrum (60% on average)
due to higher multiple scattering in the NIR range.
In addition, it is found that canopy reflectance (not shown) is

more sensitive to SZA than to LAI, and it exhibits the highest
values for small SZA in both the red and near infrared wave-
length ranges.
Good agreement between modeled canopy reflectance and

AVIRIS data are observed for other locations of interest as well
( ranges from 0.974 to 0.960; RMSE ranges from 0.011 to
0.022) (Fig. 6). Most discrepancies are due to underestimation
of the modeled canopy reflectance, particularly in the near in-
frared area, between approximately 750 and 950 nm. There is
no obvious connection of this trend with LAI values of the lo-
cations. The discrepancy can be due to differences in leaf chem-
istry, and input parameters, tree crown, and height, in particular.
As the main goal of this study was to standardize the LUTs

based on one all-location fit parameter file, heterogeneity of the
land cover may also cause some discrepancies. Although the
region contains 90 Douglas fir forest, it was observed on the
AVIRIS image that the cover types in the windows (3 3 pixels)
around some locations of interest were slightly variable. Both
average reflectance values of the nine pixels within a window
(variability among pixels) and the reflectance of the pixel itself
(variability within a pixel) can cause discrepancies at a given
spatial resolution.
Fig. 7 shows the reflectance components (sunlit and shaded

foliage and background reflectance) for low and high LAI. Due
to high open area, high values of sunlit background reflectance
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Fig. 6. Agreement between canopy reflectance derived by 5-Scale and AVIRIS
data for nine locations. At other locations, the agreements are similar ( ranges
from 0.974 to 0.960; RMSE ranges from 0.011 to 0.022).

Fig. 7. Variations of the canopy reflectance from various components (sunlit
foliage and background and shaded foliage and background) at low and high
LAI.

and low values of other reflectance components are seen for low
LAI. The sunlit foliage reflectance decreases and sunlit back-
ground reflectance increases with increasing LAI.
Fig. 8 indicates that both sunlit foliage and sunlit background

reflectance increases with decreasing SZA as the view becomes
closer to nadir view. The reciprocal trend of the two components
is seen for increasing LAI. As LAI increases, sunlit background
reflection decreases.

Fig. 8. Sunlit foliage reflectance for (a) different SZAs, for (b) different LAI
values. Sunlit background reflectance, for (c) different SZAs, and for (d) dif-
ferent LAI values.

This is directly related to the fractions or probabilities of
seeing the scene components (Fig. 9). Probability of seeing
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Fig. 9. Trends of the fraction (probability) of seeing (a) sunlit foliage and
(b) sunlit background.

sunlit foliage increases while the probability of seeing sunlit
background decreases with increasing LAI. Both fractions
decrease with increasing SZA.
At this level, the first LUT was produced representing the

probabilities of seeing each of the four components as functions
of LAI (0.1–10) and SZA (10–70) values.
Fig. 10(a) shows the factor for the benchmark location

based on (3). As factor incorporates shaded components, its
shape follows the general shape of the reflectance over the given
wavelength range. Leaf reflectance validation is a very critical
portion of this study.
As shown in Fig. 10(b), this approach to the inversion of

the canopy model using the factor is a corroborative ap-
proach to calculate leaf reflectance from canopy reflectance.
Very strong agreement can be seen between estimated and mea-
sured leaf reflectance across both the red and infrared spectral
ranges for the benchmark location [Fig. 10(b)]. The coefficient
of determination between two reflectances is and

. The modeled leaf reflectance is slightly un-
derestimated within the red edge spectrum.
With multiple scattering the absorption dips should get rel-

atively deeper, or in our factor, we should see low values
where absorption is strong and high values where reflection is
strong. In Fig. 10(a), we demonstrate this is the case. The fact
that the multiple scattering resembles leaf reflectance spectra
in shape demonstrates that we have at least captured the major
variance of the multiple scattering effects across the spectrum.

Fig. 10. (a) factor computed for the benchmark location. (b) Estimated
leaf reflectance for the benchmark location and its agreement with the leaf re-
flectance measurements ( ; ).

Although no model is perfect, we believe that 5-Scale per-
formed well in this study and that the inversion showed the
optimal results. We are very pleased with the results and rel-
atively strong regression as shown by the statistical measures.
It is not a surprise that the inversion is less perfect in the NIR
region, where models commonly show more uncertainties. Ac-
tually, the similar but opposite trend between the errors seen in
the validation of the model (at canopy level) and validation of
leaf reflectance suggest that the uncertainty are involved more
with the 5-Scale than with the inversion process itself.
The second LUT (for factor) was developed at this stage.

The LUT contains the factor values across the given spectra
range for each combination of LAI and SZA. Using both sets of
LUTs and AVIRIS data for each given location, leaf reflectance
estimation was performed for each site. In addition, the sunlit
background data generated by the model was used in the cal-
culations. This component can also be easily measured in the
field before being incorporated in the estimation. Fig. 11 shows
validation of estimated leaf reflectance for the set of chosen lo-
cations. In general, good agreement can be seen for most of
the points ( ranges from 0.955 to 0.994; RMSE ranges from
0.036 to 0.085). It is observed that discrepancies within the
leaf-reflectance validation (Fig. 11) have similar but opposite
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Fig. 11. Agreement between estimated and measured leaf reflectance for nine
locations. At other locations, the agreements are similar. ( ranges from 0.955
to 0.994; RMSE ranges from 0.036 to 0.085).

trends than discrepancies within the canopy reflectance valida-
tion (Fig. 6). This suggests that correct modeling of canopy re-
flectance is very important in the inversion process. In the vis-
ible spectral region, themodeled leaf reflectance is generally un-
derestimated (Fig. 11), while the modeled canopy reflectance is
slightly overestimated in most cases (Fig. 6). Variable biochem-
ical contents at canopy and leaf levels may cause these differ-
ences. The leaf reflectance is often underestimated within the
NIR spectral region, mainly within the water absorption bands.
These systematic differences, particularly within the water ab-
sorption band at 1450 nm suggest that the inversion approach
used in this study has to be improved to account for water con-
tent in leaves, and the impact of multiple scattering (within M
factor) on leaves with different water content should be explored
and corrected.
It should be noted that only one available set of measured leaf

reflectance has been used for both calculations of the factor
and validation. However, the errors are not considerable, and
we believe that LUTs created in this study provide a reasonable,
practical approach to estimating leaf reflectance for Douglas fir
forests. The negative leaf reflectances, which sometimes occur
at small wavelengths, were observed in cases when AVIRIS re-
flectance data were higher than sunlit background reflectance.
More research should be done to see whether the processing of
AVIRIS data has an impact on this error.
Fig. 12 shows a trend of factor as a function of SZA. It

was found that the factor varies more with LAI (not shown)
than SZA values in this study. As has been well described in
literature, the various reflectance indices have been correlated
with measured chlorophyll content.
Table II shows the result of the regression between different

indices used in this study and measured chlorophyll content.
The best fits are reached by using mSR and mND [Fig. 13(a)
and (b)], for which the root-mean-square errors are 4.434 and
4.247, and coefficients of determination are 0.588 and 0.588
for polynomial models (second order), respectively. Slightly
stronger relationships have been observed using power models
for the two indices; however, the difference is not significant,
and the polynomial models were chosen to keep the consistency

Fig. 12. Variation of the factor at various SZAs.

with other indices. Reference [51] found a very strong correla-
tion between these indices and chlorophyll content for decid-
uous forest. The correlations are somewhat better than those in
some studies where satellite reflectance is directly used in the
empirical approach. Reference [35] reported a stronger correla-
tion with the TCARI/OSAVI index . We did not
find significant difference when we incorporated OSAVI within
the TCARI/MCARI indices. The reason is that we are dealing
with simulated leaf reflectance where structural canopy effects
are mostly removed in the top-down approach. The study of
[49] and [7] shows a better relationship for the same index for
crop canopies and open forest canopies. Somewhat better re-
sults are observed between the MTCI index and canopy chloro-
phyll content as this index better incorporates LAI variations
[35]. However, the same relationship is poor when compared
with chlorophyll content at leaf level. In cases of open forest, a
strong influence of the vegetated understory is the main source
of errors [35]. [10] reported better correlation for TCARI and
MCARI indices ( 0.550 and 0.470, respectively) than the
results shown in this study ( 0.391 and 0.112, respec-
tively). There is no significant difference among RMSE of the
“modified” indices (mSR, mND, BmSR, and BmND) in this
study (Table II). This is in agreement with [9]; the wavelengths
of 434 or 502 nm used in the “modified” indices reduce the ef-
fect of differences between specular and internal components of
leaf reflectances [9]. However, reflectance derivatives (BmSR
and BmND) do not provide better results than their direct re-
flectance-based counterparts (mSR, mND) as observed in [9]
(Table II).
To validate the importance of this step, we compared the re-

sults of the canopy-to-leaf inversion with the direct canopy-
level retrieval approach, where leaf- and canopy- level Vis are
correlated with measured chlorophyll content, respectively.
Larger RMSE are observed when the direct canopy-level re-

trieval, using canopy-level generated vegetation indices, is con-
sidered, suggesting the importance of the proposed canopy-to-
level reflectance inversion step in chlorophyll retrieval based on
hyperspectral vegetation indices (Table II; the values are placed
in the brackets).
The canopy-to-leaf inversion approach has the best regres-

sion measurement when leaf-based VIs are compared with the
leaf chlorophyll. The findings suggest that the inversion step is
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Fig. 13. Regression between two spectral indices and chlorophyll content
measurements.

an important in chlorophyll retrieval and that the canopy struc-
ture, which we incorporated in the inversion process, is an im-
portant step in the empirical approach of retrieving the chloro-
phyll content at leaf level. Although these preliminary findings
deserve additional validation for different study sites, they sug-
gest that the leaf-reflectance based VIs, are more reasonable and
more acceptable than the direct canopy-level retrieval using VIs.
The proposed combination of model-based and empirical ap-

proaches is an optimal solution to estimating leaf chlorophyll
content. Both simulated leaf reflectance and chlorophyll content
at leaf level are the best candidates for the empirical relationship
as the approach minimizes uncertainties introduced by canopy
reflectance that may be caused by LAI variability, background,
and observational geometry. The 5-Scale model can provide
reasonably good leaf reflectance from satellite imagery by set-
ting proper structural input parameters. The LUT approach con-
siders detailed canopy information and viewing geometry.
Further research should deal with the inversion of the leaf-

level model as done by [35] and [36]. Applying this approach,
we will be able to incorporate leaf structural components into
the estimation of leaf chlorophyll content for each location, and
explore whether using the inversion of leaf model for Douglas
fir would give a better estimation of chlorophyll content than
the results based on the empirical approach in this study. Ref-
erence [51] demonstrated that the empirical approach can pro-
vide better results than the original (non-modified for leaf thick-
ness) version of PROSPECT leaf model. Reference [35] mod-
ified PROSPECT for conifers to reach better results when the
inversion of leaf reflectance model PROSPECT was made. The
findings in this study show better correlation between the sim-
ulated leaf reflectance and chlorophyll content than findings in
[36], where the inversion of both canopy and leaf models was
performed, and estimated and measured chlorophyll compared.

Although it is hard to pinpoint what may cause this trend
in the results, it may be suggested that some additional mod-
ifications of the leaf model PROSPECT for conifers are re-
quired [35], [36]. Thus, there are several reasons for the pro-
posed combination of model-based and empirical approaches
to be considered as optimal in retrieving of chlorophyll content:
1) simulated leaf reflectance minimizes uncertainties introduced
by canopy reflectance often used in the empirical relationship
with the chlorophyll content at leaf level; 2) the process does
not involve the inversion of the leaf radiative transfer model
(e.g., PROSPECT), which may introduce additional uncertain-
ties; and 3) the approach allows the leaf level information to be
retrieved in the absence of leaf spectra field measurements.

V. CONCLUSION

The radiative transfer model inversion in this paper is based
on the 5-Scale model. We chose this model for several rea-
sons: 1) it is geometric model, and it accounts for the struc-
tural components of the canopy in addition to the BRDF ef-
fect. In many studies, it is found to be a very reliable model
and it provides a unique way for its inversion. We believe that
this approach is useful, as differences in the geometric proper-
ties of canopies commonly exert more control on the reflection
and absorption of radiation than the property of the individual
leaves. The top-down inversion of 5-Scale to generate leaf level
reflectance from canopy level reflectance performs well when
chlorophyll indices at leaf level are compared with leaf chloro-
phyll content. Leaf reflectance derived from canopy-to-leaf in-
version using remote sensing data is a preferable, if not required,
approach used in the empirical concept of estimating chloro-
phyll content at leaf level. In this paper, we demonstrated the
importance of the canopy-to-leaf inversion step in chlorophyll
content retrieval at leaf level using VIs.
Good agreement between AVIRIS data and modeled re-

flectance was found for all ground plots. Validation of the
measured and estimated leaf reflectance based on the LUTs
exhibited good agreement for most of the points. The accuracy
of estimated leaf reflectance largely depended on the agreement
between remote sensing data and modeled canopy reflectance.
Therefore, proper parameterization of the model is crucial for
the overall accuracy.
The relatively strong correlation between measured (leaf)

chlorophyll content and two spectral indices suggests that the
method of calculating leaf reflectance by using the inversion
of the canopy level model is a reliable chlorophyll-retrieval
method. This approach is advantageous over the direct
canopy-retrieval approach, suggesting the importance of the
canopy-to-leaf inversion step in chlorophyll retrieval based on
VIs. The main advantage of this approach is that it allows for
leaf level information retrieval in the absence of leaf spectra
field measurements. We expect that the LUTs created in this
study could also help remote sensing applications to other
conifer species, as the canopy-to-leaf inversions are similar
for different conifer species. The ability to estimate leaf level
information based on remote sensing data is a large step for-
ward in hyperspectral applications in forestry, including forest
health, resources management, and carbon cycle estimation.
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