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Abstract There are mainly three types of gross primary production (GPP), including light use efficiency
(LUE) model, rectangular hyperbolic model (RHM), and process-based model (PBM). RHM is not widely
used because its parameters, namely, quantum yield (α) and maximum photosynthetic rate (Pm), vary
temporally with temperature and spatially with vegetation type under natural conditions. In the study, we
present a temperature- and vegetation-type-adapted RHM by linking it to the Baldocchi’s model to obtain the
relationship between α-Pm and Vcmax,25-temperature to overcome the shortcomings of traditional RHM.
The modified RHM (MRHM) coupled with a two-leaf upscaling strategy makes it possible to accurate and fast
estimation of GPP at large scale. Twenty-two CO2 eddy-covariance sites with different vegetation types, including
evergreen needleleaf forest, deciduous broadleaf forest, grassland, and evergreen broadleaf forest, are used
to evaluate the performance of MRHM for GPP estimation. The comparisons of the simulated GPP using MRHM
with measured and Boreal Ecosystem Productivity Simulator-simulated GPP demonstrate that the MRHM can
simulate GPP as accurately as PBM and in the meantime with the advantage of simplicity as LUE model. These
results show the promising potential of MRHM for accurately simulating GPP with relative high computational
efficiency, providing an ideal alternative tool for large-scale and long time series GPP simulations.

1. Introduction

Gross primary production (GPP), defined as the overall photosynthetic fixation of carbon per unit space and time,
plays a key role in understanding the carbon balance between the biosphere and atmosphere [Yang et al., 2013].
Global estimation and monitoring of GPP is critical for climate change research [Hilker et al., 2008]. Although
flux networks with more than 500 towers covering a wide range of biomes have been set up across the globe
to continually measure the dynamics of CO2 flux [Law et al., 2000; Baldocchi et al., 2001], each site represents a
small area with records available for only a limited period [Coops et al., 2009]. So the modeling of GPP is still a
primary way to study ecosystem carbon balance at landscape, regional, and global scales. During recent decades,
a wide variety of models have been used to estimate GPP, these models can be classified into three broad
categories: Light use efficiency (LUE) model, hyperbolic model, and process-based model.

The LUE concept was initially proposed by Monteith [1972], who stated that carbon fixation is a function of
the incident photosynthetically active radiation absorbed by vegetation (APAR) and LUE (ε) which represents the
conversion efficiency of APAR. From then, a variety of LUE models were developed based on the LUE concept
[Potter et al., 1993; Prince and Goward, 1995; Xiao et al., 2005; Yang et al., 2013]. The ε is a key variable to be
determined in LUE models. It is often expressed as biome-specific constants, adjusted through globally
measurable meteorological variables representing canopy stresses, such as temperature and vapor pressure
deficit, and soil water content [Running et al., 2004]. A LUE model has the advantage of simplicity, and it
can be easily coupled with the remote sensing data to approximately address the spatial and temporal
dynamics of GPP. However, since it usually uses big-leaf strategy for spatial upscaling and multiday average
for temporal upscaling, the reliability of this approach in assessing GPP, in particular for spatial and temporal
scales beyond those used to derive the empirical relationships, has been questioned [Zhang et al., 2012]
due to the trade-off between ease of use and accuracy.
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Recent years, process-based models (PBM) have been widely used to simulate GPP at hourly to daily time
steps. PBM usually involves the mechanistic processes of photosynthesis, as described in the Farquhar’s
model [Farquhar et al., 1980] and its variants [Baldocchi, 1994]. In these models, the maximum carboxilation
rate at 25C° (Vcmax,25) is an important parameter, which determines the maximum carboxylation capacity for
a specific biome and is assumed to be a fixed value for each vegetation type. In general, PBMs are considered
to perform better than LUE models [Zhang et al., 2012], but PBMs have the disadvantage of complexity
because the large number of model parameters involved in these models result in a laborious and
time-consuming computation demand as well as the need to compile a large input data set, some of which
may not be available. Although these parameters are interpreted as being physically and biologicallymeaningful,
they greatly lower the computation efficiency.

Since the territorial carbon flux is so important in the global carbon cycle affecting the climate, there is a strong
need to estimate the carbon flux across spatial and temporal scales. Therefore, a model with both high accuracy
and computation efficiency is highly desirable for the purpose of producing long time series of GPP at high
spatial resolutions. Hyperbolic models (HM) have the potential to achieve this goal. HMs are empirical models
with simple forms, including rectangular hyperbolic models (HRM) [Saito et al., 2005; Xiao, 2006; Kanniah et al.,
2013] and nonrectangular hyperbolic models (NHRM) [Ide et al., 2010]; both types have the same two key
parameters, namely, maximum photosynthetic rate at light saturation (Pm) and apparent quantum yield (α)
defined as the initial slope of the light response curve [Xiao et al., 2005; Yan et al., 2009]. The hyperbolic models
have the potential to simulate GPP as well as PBMs [Pachepsky et al., 1996] and have been shown to accurately
simulate GPP at leaf level [Pachepsky et al., 1996] and canopy level [Yan et al., 2009]. HMs and PBMs are also
generally used as an effective method to fill gaps for missing values of net ecosystem CO2 exchange across CO2

eddy-covariance tower sites. However, compared to LUE models and PBMs, HMs are rarely used in long-term
large-scale GPP estimations because the two key parameters of HMs vary with temperature and vegetation type
or biome. To avoid the strong dependence of the two parameters on temperature, previous studies applied HMs
in temperature controlled experiments [Pachepsky et al., 1996;Whitehead and Gower, 2001] or in a short period of
time such as a week or 10 days [Suyker et al., 2004; Saito et al., 2005; Yan et al., 2009], in which temperature was
assumed to be invariant, to mitigate the seasonal effects [Ide et al., 2010]. To our knowledge, no effort has been
made to simultaneously take temperature and vegetation type into account in a hyperbolic model for GPP
estimation. And how temperature and vegetation type affect the two parameters of hyperbolic models remains
unknown. Therefore, the objectives of this study are (1) to present a modified leaf-level RHM by establishing the
relationships between the two parameters of RHM and temperature -Vcmax,25 of PBM and (2) subsequently to
upscale the estimated leaf-level GPP to canopy level using a two-leaf upscaling strategy to estimate canopy GPP
for different vegetation types. The overall goal of this study is to develop a new method for fast and accurate
simulation of GPP, which has the advantage of similar simplicity to LUEmodels and accuracy to PBM. In this study,
eddy-covariancemeasurements of CO2 and the concurrent measurements of meteorological variables at 22 sites
will be used to test the performance of modified RHM across different environmental condition and biomes.

2. Methodology
2.1. Description of Site and Data

The eddy-covariance (EC) data used here were downloaded directly from the AmeriFlux website
(http://ameriflux.ornl.gov) and the Canadian Carbon Program (CCP) website (http://fluxnet.ccrp.ec.gc.ca),
including 18 AmeriFlux sites and four Canadian sites, and the vegetation types include evergreen forests,
deciduous forests, and grasslands. These sites were selected based on the availability of key data sets such as
leaf area index (LAI), meteorology, and land surface C fluxes. To evaluatemodel performance with independent
data, all sites for each vegetation type were separated as calibration and validation data sets. For every
vegetation type, almost half of the sites are used for calibration, and the remaining sites are used for validation.
A complete list of these sites is given in Table 1.

At each site, global radiation or photosynthetically active radiation (PAR), precipitation, air temperature,
relative humidity, wind speed, and the CO2 flux were measured on a half-hourly basis. Net ecosystem
productivity (NEP) was calculated as NEP=�NEE, and GPP was calculated as the sum of daytime NEP and
daytime ecosystem respiration. Besides, data gaps of the half-hourly GPP associated with equipment failures
or unsuitable micrometeorological conditions were filled using the Artificial Neural Network (ANN) method
[Papale and Valentini, 2003] or Barr’s gap-filling method [Barr et al., 2004].
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2.2. A Modified Canopy-Level Rectangular Hyperbolic Model
2.2.1. Leaf-Level Vcmax,25-Temperature and α-Pm Relationship
The relationship between α-Pm and Vcmax,25-temperature is established through linking the Baldocchi’s [1994]
model and hyperbolic model using a regression technique. The procedure is described in detail as follows:

First, a series of GPPs are calculated using Baldocchi’s photosynthesismodel with a series of photosynthetic photo
flux density (PPFD) values as inputs for a combination of fixed temperature and Vcmax,25. In the Baldocchi’s model,
CO2 concentration is set to 380 ppm, and the leaf boundary layer conductance to CO2 is set to 1/48 m s�1.

Second, we regress PPFD on GPP to fit a rectangular hyperbolic model for a given combination between
temperature and Vcmax,25 to obtain the optimal two parameters of the rectangular hyperbolic model, α, Pm.

Finally, we repeat the above procedures for all the combinations of temperature from 1°C to 40°C and Vcmax,25

from 20 to 180 μmol m�2 s�1 to obtain a matrix of α and Pm.

A number of experiments have proved that RHM can better describe response of GPP to radiation at a
constant temperature [Pachepsky et al., 1996]. So good regression results can be expected. Figure 1 shows the
R2 of all fitted RHM for all combinations between temperature and Vcmax,25. Because there are two variables,
temperature and Vcmax,25, all the R2 values construct a matrix, called R2 distribution map. Similarly, we can
also get the α and Pm distribution map shown in the results section. As shown in Figure 1, when the R2 values
close to 1, the minimum value of R2 distribution map occurring at the highest temperature and the largest
Vcmax,25 value. This result indicates that modified rectangular hyperbolic model (MRHM) can track the GPP
response to PPFD as good as mechanistic process-based model and can further expect the outstanding
performance of MRHM to simulate response of GPP to radiation for a fixed temperature.
2.2.2. A Leaf-Level Temperature- and Vcmax,25-Adapted Rectangular Hyperbolic Model
Since the two parameters, α and Pm, of MRHM can be dynamically determined according to the values of
temperature and Vcmax,25, they can be used in MRHM to model GPP under different radiation and temperature
conditions. The leaf-level temperature-adapted gross carbon assimilation can be calculated as follows:

GCAleaf Vcmax;25; T
� � ¼ α Vcmax;25; T

� ��Pm Vcmax;25; T
� ��APAR

Pm Vcmax;25; T
� �þ α Vcmax;25; T

� ��APAR

where GCAleaf is the leaf-level gross carbon assimilation at temperature T for a vegetation type with a fixed
Vcmax,25, α, and Pm are the quantum yield and the maximum photosynthetic rate at light saturation condition,

Table 1. The Description of Sites Used in This Study

Vegetation Type Site ID Longitude Latitude Year Category References

Evergreen needleleaf
forest

US_NR1 �105.546 40.033 2005 Calibration Monson et al. [2005]
US_Ho2 �68.747 45.209 2004 Calibration Richardson and Hollinger [2005]
Ca_DF49 �125.335 49.869 2008 Calibration Jassal et al. [2009]
US_Ho1 �68.740 45.204 2004 Validation Hollinger et al. [2004]
US_Wrc �121.952 45.821 2004 Validation Falk et al. [2008]
Ca_DF88 �124.900 49.535 2008 Validation Chen et al. [2009]
Ca_ HBS75 �74.571 49.760 2008 Validation Payeur-Poirier et al. [2012]

Deciduous broadleaf
forest

US_MOz �92.200 38.744 2007 Calibration Gu et al. [2007]
US_MMS �86.413 39.323 2004 Calibration Schmid et al. [2000]
Ca_OA �106.198 53.629 2008 Calibration Barr et al. [2004]
US_Bar �71.288 44.065 2006 Validation Jenkins et al. [2007]
US_Ha1_ �72.172 42.538 2004 Validation Urbanski et al. [2007]
US_UMB �84.714 45.560 2004 Validation Curtis et al. [2002]
US_WCr �90.080 45.806 2004 Validation Cook et al. [2004]

Grassland US_Var �120.951 38.407 2005 Calibration Baldocchi [2003]
US_Aud �110.509 31.591 2005 Calibration Krishnan et al. [2012]
US_Goo �89.874 34.255 2004 Calibration Wilson and Meyers [2007]
US_Dk1 �79.093 35.971 2001 Validation Oren et al. [2006]
US_Fwf �111.772 35.445 2007 Validation Dore et al. [2010]
US_IB2 �88.241 41.841 2006 Validation Allison et al. [2005]

Evergreen broadleaf
forest

BR_Sa1 �54.959 �2.857 2004 Calibration Wick et al. [2005]
BR_Sa3 �54.9714 �3.018 2002 Validation Goulden et al. [2006]
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varying with temperature Tand Vcmax,25. In the above equation, APAR instead of incident or intercepted PAR is
used because that leaves respond to absorbed radiation, not incident or intercepted radiation.

Compared to traditional RHMs which usually treat α and Pm as a constant for a period of time or entire
growing season, the proposed MRHM not only responds to radiation variation but also to temperature
variation for a given vegetation type. So in this way, the shortcoming of traditional hyperbolic model is
solved, and it can be used to accurately estimate GCA of vegetation across vast temporal and spatial scales.
Since we do not consider the effect of relative humidity when establishing the leaf-level relationship between
Vcmax,25-temperature and α-Pm, a scalar of vapor pressure deficit (VPD), f(VPD), is used to downregulate the
GCA in MRHMunder unfavorable conditions of high VPD, whichmake the temperature- and Vcmax,25-adapted
RHM suitable for more environmental conditions.

GCAactual ¼ GCAleaf� f VPDð Þ

where the GCAactual is GCA adjusted by VPD. And the f(VPD) is calculated as follows:

f VPDð Þ ¼
0 VPD ≥ VPDmax

VPDmax � VPD
VPDmax � VPDmin

VPDmin ≤ VPD≤VPDmax

1 VPD ≤ VPDmin

8>><
>>:

where VPDmax, VPDmin are the parameters dependent on vegetation types (Table 2).
2.2.3. Two-Leaf Upscaling Strategy From Leaf Level to Canopy Level
The canopy-level GPP (GPPcanopy) can be obtained as the sum of the total GPP of sunlit and shaded leaf
groups [Chen et al., 1999, 2012]:GPPcanopy = GCAsunlit × LAIsunlit + GCAshaded × LAIshadedwhere the subscripts
“sunlit” and “shaded” denote the sunlit and shaded components of GCA and leaf area index (LAI). This two-leaf
formulation is based on the estimation of the GCA of a representative sunlit leaf (GCAsunlit) and a
representative shaded leaf (GCAshaded). The GCAsunlit and GCAshaded are calculated using the above

Table 2. Parameters Used for MRHM and BEPSa

Parameters Unit ENF DBF GRA EBF References

Vcmax,25 μmol m�2 s�1 55 63 90 30 Kattge et al. [2009]; Groenendijk et al. [2011]
Ω / 0.5 0.8 0.95 0.85 Liu et al. [1997]; Chen et al. [2012]
m / 8 8 8 8 Ball [1988]; Leuning et al. [1995]
b mol m�2 s�1 0.0011 0.0011 0.0011 0.0011 Ball [1988]; Leuning et al. [1995]
VPDmax, pa 4100 4100 4100 4100 He et al. [2013]
VPDmin pa 930 930 930 930 He et al. [2013]

aENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, GRA: grassland, and EBF: evergreen broadleaf forest.

Figure 1. R2 distribution map of rectangular hyperbolic models for different temperatures and Vcmax,25.
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temperature- and Vcmax,25-adapted RHM. The APAR of sunlit and shaded leaves for the temperature-
and Vcmax,25-adapted RHM are calculated using the methods of Chen et al. [1999].

The total LAI is separated into sunlit and shaded LAI using the original formulation of Norman [1982] with
consideration of a foliage clumping index proposed by Chen et al. [1999] and assuming the canopy being
spherical leaf angle distribution:

LAIsunlit ¼ 2 cosθ 1� e�0:5ΩLAI= cos θ
� �

LAIshaded ¼ LAI� LAIsunlit

where θ is the solar zenith angle andΩ is the clumping index which characterizes the leaf spatial distribution
pattern in terms of the degree of its deviation from the random case and influences radiation interception
by the canopy at a given θ as described by Beer’s law. The typical values of Ω are 0.5–0.7 for conifer forests
and 0.7–0.9 for broadleaf forests [Liu et al., 1997; Chen et al., 1999]. For dense grass and shrub, Ω is found
to be close to unity [Liu et al., 1997].

2.3. Model Evaluation and Intercomparison

Eddy-covariance (EC) measurements of CO2 fluxes made at sites in Table 1 are used to evaluate the
performance of MRHM. The half-hourly measurements are first summed to daily values, and then the daily
values are used for model evaluation

The hourly Boreal Ecosystem Productivity Simulator (BEPS) [Ju et al., 2006; Liu et al., 1997] are also used for
further intercomparison of MRHM. The BEPS model is a process-based ecosystem process model with a
canopy energy balance module [Chen et al., 2007]. The GPP simulated by BEPS will be used as a standard data
to compare with GPP simulated by MRHM. The key biochemical and biophysical parameters used for the
four vegetation types in the hourly BEPS and MRHM are given in Table 2.

3. Results and Analysis
3.1. Relationship Between α and Temperature-Vegetation Type
3.1.1. Distribution Pattern of the α Map
By linking Baldocchi’s photosynthesis model and RHM, we obtain the quantum yield distribution map with
temperatures varying from 1°C to 40°C and Vcmax,25 from 20 to 180 μmol m�2 s�1 depending on vegetation
types (Figure 2). It can be seen from Figure 2 that the α values range from 0.059 to 0.105 with an average
of 0.868. The α values remain similar for different Vcmax,25 values while they decrease with increasing
temperature for a given Vcmax,25. The lowest value of α occurs at the highest temperature, and the highest
value occurs at the lowest temperature. After averaging the α over Vcmax,25, we find that the average α
decrease monotonically with increasing temperature and the variation coefficient is very small with the
maximum value being less than 2% (Figure 3), which further proves that α is independent of Vcmax,25.

Figure 2. Quantum yield (α) distribution map for different air temperatures and Vcmax,25.
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This indicates that the α is not be
affected by vegetation types. Similar
results have been reported by a
number of literatures [Sands, 1995;
Saito et al., 2005]. Saito et al. [2005]
reported that the quantum yields
obtained by fitted half-hourly GPP
and APAR for six periods of a rice
field varied from 0.109 to 0.046 for
different growth stages, which had a
similar variation range with that in
our study. Whitehead and Gower
[2001] compared α in a hyperbolic
photosynthesis model for 11 species

representing the dominant trees, understory shrubs, herbaceous plants andmoss species in an old black spruce
boreal forest ecosystem, and found that α values were similar for most species (0.078–0.080 μmol CO2 μmol�1),
which is consistent with results from this study. Vourlitis et al. [2004] also found that quantum yields are
relatively constant (0.07 μmol CO2 μmol�1) over seasonal time scales for a tropical forest eddy CO2 flux
station, that is because temperature variation is small for the tropical forest station.
3.1.2. Variations of α Across Vegetation Types
Following the variation ranges of Vcmax,25 from Kattge et al. [2009], we calculated the average and standard
deviation (SD) of quantum yield among different vegetation types. Since the minimum temperature in
tropical region usually is above 20°C, the α values under this condition are used to calculate average and SD
values for tropical trees (Table 3). The differences in the average and SD of quantum yield are small for
different vegetation types although they may have different leaf nitrogen contents. So, we can infer that α
is independent of leaf nitrogen content, which is in agreement with Sands [1995]. The average α values are
the same for the tropical trees (oxisols) and tropical trees (nonoxisols), so are SD values. Furthermore, the α
and SD values are very similar to each other for the rest of vegetation types, and they are almost equal. The
SD value of data per vegetation type is about 10–14% of the corresponding average, suggesting small
variation of α relative to the large temperature variation range from 1 to 40°C.

3.2. Relationship Between Pm and Temperature-Vegetation Type
3.2.1. Distribution Pattern of the Pm Map
The Pm distribution map is determined in a similar ways as the quantum yield (α) map, which is shown in
Figure 4. Compared to α, Pm varies not only with temperatures but also with vegetation types (i.e., Vcmax,25),
ranging from 1.17 to 68.09 μmolm�2 s�1. For a given Vcmax,25, Pm increases with increasing temperature from
1 to 25°C. The maximum Pm occurs at 25°C, and after then Pm decreases sharply with increasing temperature

Table 3. Average and Standard Deviation of Quantum Yield (α) and Maximum Photosynthetic Rate (Pm) Corresponding
to Different Vegetation Types With Different Vcmax,25

a

Vegetation Types

Vcmax,25 α Pm

Avg SD Avg SD Avg SD

Tropical trees (oxisols) 29.00 7.70 0.078 0.008 6.81 3.09
Tropical trees (nonoxisols) 41.00 15.10 0.078 0.008 10.28 4.91
Temperate evergreen broadleaf trees 61.40 27.70 0.087 0.012 13.84 7.35
Temperate deciduous broadleaf trees 57.70 21.20 0.087 0.012 12.99 6.51
Evergreen needleleaf trees 62.50 24.70 0.087 0.012 14.09 7.18
Deciduous needleleaf trees 39.10 11.70 0.088 0.012 8.31 4.09
Evergreen shrubs 61.70 24.60 0.087 0.012 13.84 7.09
Deciduous shrubs 54.00 14.50 0.087 0.012 12.14 5.73
C3 herbaceous 78.20 31.10 0.087 0.012 17.86 9.03
C3 crops 100.70 36.60 0.087 0.013 23.27 11.38

aAvg: average values; SD: standard deviation; oxisols or nonoxisols denotes that trees are grown on oxisols or
nonoxisol soils.
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Figure 3. Variation of average quantum yield and its variation coefficient
with temperature.
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once the temperature is above 25°C (Figure 4). For all Vcmax,25 from 20 to 180 μmol m�2 s�1, the Pm all
reach its maximum value at 25°C. Therefore, we can deduce that Pm may vary remarkably over the annual
period in regions with distinct seasonality, whereas Pm may be kept constant over the annual period in
regions without obviously seasonal variations in temperature. With respect to the effect of Vcmax,25 on Pm, we
can see that the Pm value increases linearly with increasing Vcmax,25 with the maximum Pm occurring at
the highest Vcmax,25. At the same time, the average Pm over the temperature range from 1 to 40°C is also
linearly correlated with Vcmax,25 (Figure 5a). The standard deviation of Pm increases with Vcmax,25, while the
variation coefficients of Pm are almost the same for all Vcmax,25 with the average value of 43.27% (Figure 5a).
3.2.2. Variations of Pm Across Vegetation Types
Since Pm is linearly correlated with Vcmax,25, the variation ranges of Pm for different vegetation types
depend on those of Vcmax,25. Among vegetation types [Kattge et al., 2009], the maximum average of Pm
is highest for C3 crops, reaching 23.27 μmol m�2 s�1 with largest SD of 11.38, while the minimum average of Pm
is 6.81 μmol m�2 s�1 for tropical trees (oxisols) with the smallest SD of 3.09 μmol m�2 s�1 (Table 3). There is
nearly a fourfold range in average Pm among different vegetation types. That is because, in these vegetation
types, the high Pm value of C3 crops is attributable to the large Vcmax,25 value and the small Pm value of tropical
trees (oxisols) is associated with the small Vcmax,25 value. The differences in the average values of Pm are very
small for temperate evergreen broadleaf and deciduous trees, evergreen needleleaf trees, evergreen shrubs, and
deciduous shrubs, with the average value of about 13 μmol m�2 s�1, but temperate evergreen broadleaf trees
have the largest SD among all vegetation types (Table 3). Whitehead and Gower [2001] reported a midsummer
peak value of Pm of 12.6 μmol m�2 s�1 to 15 μmol m�2 s�1 for a tree species, Populus tremuloides, this is
consistent with the average Pm of 12.99 μmol m�2 s�1 for temperate deciduous broadleaf trees found in our
study. Ellsworth et al. [2004] compared Pm for 16 plant species of herb, tree, and shrub growth forms, andmost of
their Pm values fall in the range of Pm presented in this study (Table 3).

Figure 4. Maximum photosynthetic rate (Pm) distribution map for different temperatures and Vcmax,25.
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3.2.3. Relationship Between Pm,25 and Vcmax,25

Both Vcmax,25 and maximum Pm at 25°C(Pm,25) are parameters depicting photosynthesis capacity. We found
that the Pm,25 is linearly related to Vcmax,25 (Figure 5b). Vcmax,25 is an important parameter in Farquhar’s
mechanistic photosynthesis model, which is used in process-based GPP models. However, Vcmax,25 cannot be
measured directly but must be inferred by model inversion from photosynthesis measurements [Kattge et al.,
2009]. Compared to Vcmax,25, Pm,25 has been measured much more frequently under favorable natural
conditions. We can infer that Vcmax,25 can be obtained indirectly frommeasurements of Pm,25. Since a number
of studies have pointed out that Pm is correlated with leaf nitrogen level [Sands, 1995; Wright et al., 2004;
Kattge et al., 2009], Pm,25 could be estimated at large scale using remotely sensed data through establishing
the relationship between remote sensing proxies such as vegetation indices and leaf nitrogen content
[Martin et al., 2008]. Therefore, it is possible to derive Vcmax,25 using remotely sensed data at large spatial
scales. Here we provide an alternative way to estimate Vcmax,25.

3.3. Evaluation of Modified RHM Using Measurements

The hourly modeled results are aggregated to daily values, which are used to compare with measured daily
GPP (Figure 6). The RMSE and R2 values of the calibration data set are calculated for all four vegetation types, i.e.,
ENF, DBF, GRA, and EBF. As seen, for ENF, DBF, and GRA sites, the modeled GPP values agree well with those
ofmeasured GPPwith the R2 of 0.87, 0.88, and 0.93 andwith the RMSE of 1.71, 1.43, and 1.02 g Cm�2 d�1 for ENF,
DBF, and GRA sites, respectively. For EBF site, the modeled and measured GPP shows a bad agreement with R2

of 0.26. However, given the small variation range of GPP in the tropical evergreen forest, MRHM performs
acceptably well in tracing the seasonal variation of GPP with a RMSE of 1.20 g C m�2 d�1.

For the validation data set, similar results to calibration data set are obtained for the four vegetation types
(Figure 7). The relative large R2 values are obtained with RMSE of 1.95, 1.81, and 1.39 g C m�2 d�1 for ENF,
DBF, and GRA sites, respectively. The R2 for EBF site is still small, same to that of calibration set, with a
RMSE of 1.71 g C m�2 d�1, this may be caused by two possible reasons. One reason is the flaw of the MRHM.
Although the MRHM is based on Baldocchi’s model, there are still some mechanisms to be explored to
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Figure 6. Scatterplots of GPP simulated by themodified rectangular hyperbolic model versus measured GPP for the calibration
sites of (a) evergreen needleleaf forest, (b) deciduous broadleaf forest, (c) grassland, and (d) evergreen broadleaf forest. Diagonal
lines are the 1:1 lines.

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002596

WANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1392



improve the ecosystem model capacity because of the complexity of ecosystem processes [Mo et al., 2012].
Another reason may come from measurement error, considering the maximum of 30% uncertainty in eddy-
covariance measurements [Anthoni et al., 2004].

3.4. Comparison Between Modified RHM and BEPS

A process-based model, the BEPS model, is also used to evaluate the performance of modified RHM (MRHM),
because the BEPS and the MRHM are both based on the Baldocchi’s photosynthesis model [Baldocchi, 1994].
Since the same key parameters are used for the two models, the intercomparison between the BEPS model
and the MRHM will eliminate the effect of discrepancies between the modeled and measured GPP and
explicitly demonstrates whether MRHM has the potential to accurately simulate GPP as a process-based
model. The intercomparison results show that the distribution of the data points in Figure 8 is much closer to
diagonal lines than those data points in Figures 6 and 7. Simulated daily GPP values from MRHM were
regressed on GPP values simulated by the BEPS model for the four vegetation types. Slopes close to 1 and
intercepts close to 0 indicate good agreements between the GPP values simulated by MRHM and the BEPS
model. However, MRHM tends to slightly underestimate daily GPP compared to the BEPS model for all the
four vegetation types (Figure 8), which may be caused by the differences of the two models in considering
the effect of humidity on photosynthesis.

A distinct feature of MRHM is that the two parameter, α and Pm, of MRHM vary with temperature. In order
to illustrate the importance of temperature adjustments of the two parameters in MRHM, a comparison
between a rectangular hyperbolic model without temperature adjustments (RHM-NoTemp, in which the
temperature-averaged α and Pm are used), and the BEPS are performed with the GPP values from the BEPS as
the standard data (Figure 9). The results show RHM-NoTemp either overestimates or underestimates daily
GPP, depending on temperature values used for the simulation. If the temperature was higher than the
temperature corresponding to the temperature-averaged α or Pm and lower than 25°C, then the GPP by
RHM-NoTemp would be underestimated, and vice versa. From the Figure 9, we can see that the data points
are deviated from the diagonal lines and are far more scattered than those in Figure 8 although the relatively
large R2 are obtained for all four vegetation types.
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Figure 7. Scatterplots of GPP simulated by the modified rectangular hyperbolic model versus measured GPP for the
validation sites of (a) evergreen needleleaf forest, (b) deciduous broadleaf forest, (c) grassland, and (d) evergreen broad-
leaf forest. Diagonal lines are the 1:1 lines.
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4. Discussion
4.1. Improvement of Modified RHM Over Traditional RHM

Traditional RHM is usually used by keeping the two parameters, α and Pm, constant or through fitting RHM for
a period of time such as a week, 10 days or a month and so on, in which temperatures varies in small ranges
and hence is assumed to be constant. Saito et al. [2005] divided the 2002 growing season of rice into 23
periods, and determined α and Pm for the respective periods by fitting a rectangular hyperbolic function of
incident PAR against GPP using the least squares method. Yan et al. [2009] applied a traditional RHM to a
period of 10 days. Kanniah et al. [2013] estimated α and Pm on a monthly basis. These procedures were
laborious and time consuming, and the derived α and Pm were data set dependent. The reason they made
these partitions for a growing season is that the α and Pm are variable for different temperatures and
vegetation types, as Ide et al. [2010] reported that α and Pm show clear seasonal changes accompanying
phenological stages. In the study, we present a modified temperature- and vegetation-type-adapted MRHM,
which can dynamically determine the α and Pm according to environmental conditions when MRHM is
applied. Therefore, the MRHM overcomes the weakness of traditional RHMs.

In addition, traditional RHMs usually treat the canopy as a big leaf, while the MRHM is based on a two-leaf
model, separating a canopy into sunlit and shaded leaf groups. Previous studies have proved that big-leaf
models may incorrectly estimate canopy GPP [Sprintsin et al., 2012] and fail to simulate its day-to-day
variations [Chen et al., 1999], because the quantum response of leaf photosynthesis is nonlinear and the use
of mean absorbed radiation in the big-leaf model will significantly overestimate the canopy photosynthesis
[Wang and Leuning, 1998], due to the variable large contribution from the shaded leaves. The two-leaf
approach is successful because it applies the separation of incoming radiation into its direct and diffuse
portions and considers the differences in APARs for sunlit and shaded leaves.

4.2. Limitation of the Modified RHM

Although RHM is an empirical model, the MRHM has the gene of Farquhar’s mechanistic model by establishing
the relationship between α-Pm and Vcmax,25-temperature. It means that the effects of radiation and temperature
on GPP with consideration of the underlying biological mechanisms have been included in the MRHM.
However, the VPD effect on GPP is based on an empirical function from Moderate Resolution Imaging
Spectroradiometer GPP algorithm, although including the VPD effect in the MRHM improves the modeled
GPP derived from the hyperbolic light response curve.

In this study, soil moisture is not taken into account, so under the condition of very dry season, the method
proposed here may incur considerable errors in GPP estimation. A possible solution to the problem is to
introduce a soil water scalar into the MRHM by considering the soil water effect on GPP as some studies did.
Vourlitis et al. [2004] used a logistic function of relative water content to consider the effect of water
availability on GPP estimation. A previous study has found that water indices that are based on near-infrared
and shortwave-infrared bands are sensitive to changes in equivalent water thickness at leaf and canopy
levels [Ceccato et al., 2001]. So in some studies, water indices derived from remote sensing data were
employed to construct a downregulation function to reduce GPP under conditions of deficient soil water
content [Xiao et al., 2005; Wu et al., 2010].

5. Conclusions

In this study, we present a two-leaf rectangular hyperbolic model for estimating GPP across vegetation types
and climate conditions. Themodel is build by coupling amodified RHMwith a two-leaf strategy. TheMRHM is
established by linking a rectangular hyperbolic model with a variant of Farquhar’s model, i.e., Baldocchi’s
model, to obtain the two parameters, α and Pm, as functions of temperature and Vcmax,25. We found that α is
almost invariant among different vegetation types under the same temperature conditions, whereas it
decreases with increasing of temperature from 1 to 40°C for a given Vcmax,25. Pm varies not only with
temperature but also with vegetation types with different Vcmax,25. For a given vegetation type, it usually
increases with increasing temperature, reaches its maximum values at 25°C, and then it decreases sharply
with further increase in temperature. Themaximum Pm at 25°C is highly linearly correlated with Vcmax at 25°C,
making their mutual conversion possible.
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The dynamic use of α and Pm according to temperature and Vcmax,25 in the MRHM can be expected to
substantially reduce the large uncertainty in GPP estimation using traditional RHMs. Twenty-two CO2 eddy-
covariance sites with four different vegetation types, i.e., evergreen needleleaf forest, deciduous broadleaf
forest, grassland, evergreen broadleaf forest, and a process-based model (BEPS model) are used to evaluate
the MRHM for GPP estimation. For daily GPP simulation, the MRHM explains 87%, 88%, and 93% of daily GPP
variance with RMSE of 1.71, 1.43, and 1.02 g C m�2 d�1 for ENF, DBF, and GRA sites, respectively. For EBF site,
the R2 value is only 0.26 with a RMSE of 1.20 g C m�2 d�1 due to the small dynamic range of GPP. As to the
comparison between MRHM and the BEPS model, the good agreements between the simulated GPP values
derived from MRHM and the BEPS model were proved by the high R2 values that nearly equal 1, and low
intercepts of regression equations that close to 0. The comparisons of the simulated GPP using the MRHM
with the measured and BEPS modeled GPP demonstrate that the MRHM can simulate GPP as accurately as
process-based model and in the meantime with the advantage of simplicity as LUE model. Therefore, the
MRHM can be expected to integrate with temporally continuous and spatially extensive satellite data to
monitor GPP dynamic at large scale.
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