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Soil respiration (Rs) is of great importance to the global carbon balance. Remote sensing of Rs is challeng-
ing because of (1) the lack of long-term Rs data for model development and (2) limited knowledge of
using satellite-based products to estimate Rs. Using 8-years (2002–2009) of continuous Rs measurements
with nonsteady-state automated chamber systems at a Canadian boreal black spruce stand (SK-OBS), we
found that Rs was strongly correlated with the product of the normalized difference vegetation index
(NDVI) and the nighttime land surface temperature (LSTn) derived from Moderate Resolution Imaging
Spectroradiometer (MODIS) imagery. The coefficients of the linear regression equation of this correlation
between Rs and NDVI � LSTn could be further calibrated using the MODIS leaf area index (LAI) product,
resulting in an algorithm that is driven solely by remote sensing observations. Modeled Rs closely tracked
the seasonal patterns of measured Rs and explained 74–92% of the variance in Rs with a root mean square
error (RMSE) less than 1.0 g C/m2/d. Further validation of the model from SK-OBS site at another two
independent sites (SK-OA and SK-OJP, old aspen and old jack pine, respectively) showed that the algo-
rithm can produce good estimates of Rs with an overall R2 of 0.78 (p < 0.001) for data of these two sites.
Consequently, we mapped Rs of forest landscapes of Saskatchewan using entirely MODIS observations for
2003 and spatial and temporal patterns of Rs were well modeled. These results point to a strong relation-
ship between the soil respiratory process and canopy photosynthesis as indicated from the greenness
index (i.e., NDVI), thereby implying the potential of remote sensing data for detecting variations in Rs.
A combination of both biological and environmental variables estimated from remote sensing in this
analysis may be valuable in future investigations of spatial and temporal characteristics of Rs.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction as one of the most significant components of the global C balance
The interannual variability in net ecosystem production (NEP)
has been mainly attributed to the direct effects of climate variabil-
ity on CO2 assimilation through gross primary photosynthesis
(GPP) and CO2 loss through ecosystem respiration (Re) (Valentini
et al., 2000; Wu et al., 2013a). Soil respiration (Rs), the flux of
microbially- and plant-respired CO2 from the soil surface to the
atmosphere, is the second-largest terrestrial carbon (C) flux
(Bond-Lamberty and Thomson, 2010), and therefore is considered
(Högberg et al., 2001). Recent results of Wu et al. (2013a) even sug-
gest that respiration process might be more important than photo-
synthesis in determination of interannual variability of C balance
in forests.

Rs integrates several biological and physical processes, includ-
ing the production of CO2 by roots, mycorrhizal fungi, microorgan-
isms and soil fauna throughout the soil profile, and the subsequent
diffusion of CO2 to the soil surface (Bond-Lamberty and Thomson,
2010; Gaumont-Guay et al., 2014). Seasonal variation in the ratio
of Rs to Re is constrained by the interactions among (a) phenologi-
cal differences between aboveground and belowground plant tis-
sues, (b) mobilization and use of stored substrates within woody
plants, and (c) seasonal variation in photosynthate and litter sub-
strates (Davidson et al., 2006). The rate of Rs is influenced by many
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factors, which generally can be classified into abiotic (e.g., soil
water content, SWC) and biotic elements (e.g., canopy photosyn-
thesis). There is considerable evidence that Rs is tied to soil temper-
ature (Ts) across multiple spatial and temporal scales (Gaumont-
Guay et al., 2006; Jassal et al., 2005; Jassal et al., 2012a). Conse-
quently, Ts plays an important role in many models of soil CO2 pro-
duction (Reichstein et al., 2003; Jassal et al., 2004; Ngao et al.,
2012). SWC is suggested to have a more complicated effect on Rs

due to its strong link with soil-respiratory processes (Gaumont-
Guay et al., 2006; Griffis et al., 2004). Although the effects of Ts

and SWC on Rs cannot always be separated easily, the relative
importance of the two factors may be different in various climate
conditions (Ekblad et al., 2005). As Rs depends on the availability
of organic substances respired by roots and microorganisms, pho-
tosynthetic activity supplying carbohydrates from leaves to roots
and rhizosphere is also recognized as a key driver of Rs (Moyano
et al., 2008; Kuzyakov and Gavrichkoa, 2010; Caquet et al., 2012).
This conclusion is supported by correlations between Re and GPP
across land cover types (Yuan et al., 2009) as well as between Rs

and photosynthesis-related vegetation indices (Huang et al.,
2012; Bond-Lamberty et al., 2012; Jassal et al., 2012a). Therefore,
these environmental and biological variables may potentially pro-
vide useful insights into modeling Rs.

Large scale quantification of Rs is a major challenge albeit we
have long-term observations at many sites worldwide (Bond-
Lamberty and Thomson, 2010) and fine spatial landcover infor-
mation (Zhu and Toutin, 2013; Mitrakis et al., 2012). While a
large dataset can provide a unique insight into Rs patterns and
its changes with climate, it is still limited considering both tem-
poral and spatial heterogeneity in physical and biochemical prop-
erties. For example, observations of Rs from the dataset of Bond-
Lamberty and Thomson (2010) are at annual scale, making it
impossible to analyze fine temporal (e.g., daily, monthly and sea-
sonal) variations in Rs. Since an increasing number of global car-
bon cycling models include Rs as a model input (Blonquist et al.,
2006; Mahecha et al., 2011), it is important if Rs can be modeled
on the basis of remotely sensed data, which is also the most con-
venient way to investigate its spatiotemporal patterns. Such
knowledge is useful in modeling ecosystem C changes over time
and space (Trumbore, 2006; Bahn et al., 2010). Currently, there is
no report on the operational use of Rs modeling based on remote
sensing observations. One important reason is that long-term Rs

measurement requires a great amount of field work and such
long Rs record has not been accumulated sufficiently long to
ensure a robust testing of algorithms. Recent analysis of Huang
et al. (2012) show that the vegetation index derived from canopy
measurements may be a good proxy of Rs. However, a limitation
of these results is the inappropriate consideration of abiotic fac-
tors (e.g., temperature) that have been shown for long to have
effects on Rs. Therefore, new algorithms are needed with reason-
able parameterizations of both biotic and abiotic factors to esti-
mate Rs and such efforts would be helpful for analyzing spatial
and temporal patterns of Rs in future.

Using eight years (2002–2009) of soil CO2 efflux measurements
obtained with nonsteady-state automated chamber systems in a
boreal black spruce stand (Jassal et al., 2012b; Gaumont-Guay
et al., 2014), we propose a new approach to model Rs based entirely
on remotely sensed imagery from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS). We further applied the model at
other two forest sites (an evergreen needleleaf forest and a decid-
uous broadleaf forest) with independent chamber measurements.
Finally, we mapped Rs of forest landscapes of the whole province
using MODIS data and these efforts may serve as an important step
in the investigation of spatial and temporal variability of Rs in
future.
2. Materials and methods

2.1. Study sites

Three Boreal Forest Research and Monitoring Sites (BERMS)
were used in this study, including (1) a mature aspen stand (SK-
OAS, deciduous broadleaf forest), (2) a mature black spruce stand
(SK-OBS, evergreen needleleaf forest) and (3) a mature jack pine
stand (SK-OJP, evergreen needleleaf forest) (Black et al., 2000;
Barr et al., 2004; Dunn et al., 2007; Zhang et al., 2009; Gaumont-
Guay et al., 2009). These sites are located in the mid-boreal low-
land ecoregion in the boreal plain ecozone near Prince Albert, Sas-
katchewan, Canada (Fig. 1). The climate of the region is typified by
short, warm, dry summers and long, cold winters. These sites pro-
vide an opportunity to analyze Rs of contrasting species at different
sites. Detailed site characteristics for each site are provided in
Table 1.
2.2. MODIS data

Three land surface MODIS products were used and they were
downloaded from the Oak Ridge National Laboratory’s Distributed
Active Archive Center (DAAC) website (http://www.modis.ornl.-
gov/modis/index.cfm). The first is the 8-day Terra MODIS surface
reflectance product (MOD09A1, 0.5 km) that provides surface
reflectance for seven wavelength bands (centered at 648, 858,
470, 555, 1240, 1640, and 2130 nm, respectively). Each pixel con-
tains the best possible observation during an 8-day period as
selected on the basis of high observation coverage, low viewing
angle, the absence of clouds or cloud shadow, and aerosol loading
(Justice et al., 2002). The reflectance for the first two wavelength
bands were used to calculate the normalized difference vegetation
index (NDVI) as,

NDVI ¼ ðRNIR � RRedÞ=ðRNIR þ RRedÞ ð1Þ

where RNIR and RRed represent the reflectance for the near-infrared
(MODIS band 2) and red (MODIS band 1) wavelength bands (nm),
respectively.

The second MODIS product is the 8-day Land Surface Tempera-
ture (LST) (MOD11A2, 1 km) derived by applying the generalized
split-window algorithm (Wan, 2008). In the split-window algo-
rithm, emissivities in bands 31 and 32 are estimated from land
cover types, and atmospheric column water vapor and lower
boundary air surface air temperature are separated into tractable
sub-ranges for optimal retrieval (Wan, 2008). Both daytime and
nighttime LST (referred as LSTd and LSTn, respectively, hereafter)
were used in this study.

The third MODIS product is the 8-day leaf area index (LAI) prod-
uct (MOD15A2, 1 km). LAI is defined as the one-sided green leaf
area per unit ground area in broadleaf canopies and as half the
total needle surface area per unit ground area in coniferous cano-
pies (Chen et al., 1997). The MODIS LAI product is derived from
the surface reflectance, the land cover type, and ancillary informa-
tion on surface characteristics such as background (Myneni et al.,
2002).

Based on the geo-location information of the site, NDVI was
extracted from the 3 � 3 pixel area with its center point close to
the flux tower (Xiao et al., 2004; Wu et al., 2011, 2014). For the
LST (both LSTd and LSTn) and LAI products, we also used the values
for the 3 � 3 pixels considering the seasonal variations of the flux
footprints reported for these sites (>3 km2, Chen et al., 2011) and
previous C fluxes modeling approaches (Sims et al., 2008; Wu
et al., 2012).

http://www.modis.ornl.gov/modis/index.cfm
http://www.modis.ornl.gov/modis/index.cfm


Fig. 1. Description of the study sites with land cover data and photos of ground measurements at SK-OBS site.

Table 1
Descriptions of site characteristics in this study.

Sites Old black spruce (SK-OBS) Old aspen (SK-OA) Old jack pine (SK-OJP)

Location 53.99 N, �105.12 W 53.63 N, �106.20 W 53.92 N, �104.69 W
Plant functional type Evergreen needle-leaf forest Deciduous broad-leaf forest Evergreen needle-leaf forest
Data range 2002–2009 2003 2003
Data usability Modeling Independent validation Independent validation
Stand age (2012) 133 93 83
Dominant species Black spruce, jack pine, tamarack Trembling aspen, hazelnut Jack pine, alder, lichen
Drainage� Imperfect to poor Well to moderately well Very well
Mineral layer Sandy clay Loam to clay Fine sand
Stand density (trees ha-1) 4330 980 1320
Tree height (m) 7.2 20.1 12.7
DBH (cm) 7.1 20.5 12.9

� Data from Gaumont-Guay et al. (2009).
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2.3. Soil CO2 efflux measurements

Similar nonsteady-state automated chamber systems were used
to continuously measure soil CO2 efflux at these three sites. Other
variables such as near-surface soil temperature (Ts, 5-cm depth),
volumetric soil water content (SWC, 7.5-cm depth) and radiation,
were also measured. All chambers, which had a volume of approx-
imately 60 L, were randomly located within a 25-m radius of tem-
perature-controlled housings (TCHs) containing an infrared gas
analyzer, pumping and data logging equipment. Each chamber
consisted of a moveable transparent lid attached by hinges to a
fixed collar inserted between 3 and 4 cm into the soil. The lids were
kept open when the chambers were not in use to allow rain, snow
and litter to fall into the collar area.

For SK-OBS site (modeling site), a long-term dataset was
obtained during 2002–2009 (Gaumont-Guay et al., 2014). Two
identical chamber systems were used during the eight years; the
first system was used from 2002 to 2003 and the second system
from 2004 to 2009. The total number of chambers used during
the periods of 2002–2003, 2004–2006 and 2007–2009 were 5, 7
and 6, respectively. The forest-floor vegetation during the first
measurement period contained the feather moss, herbaceous,



Fig. 2. Relationships between soil respiration (Rs) and (a) normalized difference vegetation index (NDVI), (b) daytime land surface temperature (LSTd), (c) nighttime land
surface temperature (LSTn), and (d) product of the NDVI and LSTn (NDVI � LSTn) from 2002 to 2009. Each point is an 8-day average. The solid lines are the regression lines
(equations shown in each panel) and the dashed lines are the 95% confidence intervals of mean prediction.
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and hollow. Additional forest-floor vegetation, such as sphagnum,
lichen, and mineral soil, were included during the second measur-
ing period. For both SK-OA and SK-OJP, four soil chambers were
used throughout 2003. For SK-OA, herbaceous plants growing in
the collar area were clipped regularly to expose only the bare soil.
For SK-OJP, three of the four chambers were used to represent the
lichen community and the remaining one represented the mixed
feather moss and lichen area. More detailed descriptions of ground
measurements and instruments can be found in Gaumont-Guay
et al. (2009).

Half-hourly soil CO2 efflux, Fcs (lmol CO2 m�2 s�1), was calcu-
lated as:

Fcs ¼ qa
Ve

A
dsc

dt
ð2Þ

where qa is the molar density of dry air (mol m�3), Ve is the effective
volume of the chamber (m3), A is the area of ground covered by the
chamber (m2), dsc

dt is the time rate of change in the CO2 molar mixing
ratio (lmol CO2 mol�1 dry air s�1) following lid closure, and t is the
time (s).

Half-hourly measurements from all chambers were averaged to
obtain representative half-hour values and were then summed to
acquire daily totals (Griffis et al., 2004; Gaumont-Guay et al.,
2009). Considering that the remote sensing data provide observa-
tions at ecosystem scale (i.e., 1 km resolution), a scaling-up algo-
rithm was used to scale the component fluxes of chamber
measurements to ecosystem level according to the percent cover-
age of the forest-floor communities as descried in Bisbee et al.
(2001) and Gaumont-Guay et al. (2014). In particular, previous
results of Gaumont-Guay et al. (2014) at SK-OBS site showed that
the data-scaling algorithm is independent on the time of data
acquisition and did not introduce significant inaccuracies in the
model development for Rs estimation.
2.4. Partitioning soil CO2 efflux into Rs and Pff at SK-OBS and SK-OJP

Considering the lids of chambers for soil CO2 efflux measure-
ments were transparent, which would allow radiation to reach
the forest floor covered by a thick mat of feather and sphagnum
mosses, for SK-OBS and SK-OJP, the half-hourly measured soil
CO2 efflux is the net forest-floor CO2 exchange, which represents
the balance between Rs (autotrophic (roots and mosses) and het-
erotrophic (microbial) respiration) and moss photosynthesis. For
SK-OA, no contribution of forest-floor photosynthesis (Pff) was
observed since the chambers only included bare soil (Gaumont-
Guay et al., 2009). Therefore, for the two evergreen needleleaf for-
est stands (SK-OBS and SK-OJP), procedures were needed to parti-
tion Fcs into Rs and Pff.

To separate Rs from Fcs, we used the method proposed by
Gaumont-Guay et al. (2014). Briefly, an exponential equation relat-
ing surface soil temperature (Ts, 5-cm depth) and the nighttime
(below canopy PAR1m < 5 lmol m�2 s�1, Pff equals to zero) half-
hourly measured soil CO2 efflux (i.e., nighttime soil respiration)
was used to estimate daytime Rs,

Fcs ¼ R10Q ðTs�10Þ=10
10 ð3Þ

where Q10 and R10 represent the temperature sensitivity coefficient
and the base soil respiration at 10 �C (lmol m�2 s�1), respectively.
These parameters together with daytime Ts were used to model
daytime Rs, and Pff was then determined as the difference between
measured Fcs and the modeled daytime Rs.



Fig. 3. Relationships between (a) the slope of the Rs-NDVI � LSTn regression (a) and
the annual maximum leaf area index (LAI) and (b) between the intercept of the
Rs�NDVI � LSTn regression (b) and the annual average LAI from 2002 to 2009. The
dashed lines show the 95% confidence intervals of mean prediction for the
regression line.

Fig. 4. Comparison between the coefficients of determination (R2) before and after
calibration, i.e., without and with parameterizing a (i.e., the slope) and b (i.e., the
intercept) using statistics of LAI.

84 C. Wu et al. / ISPRS Journal of Photogrammetry and Remote Sensing 94 (2014) 80–90
Gaps in the – Pff record were filled using a rectangular hyper-
bolic function (Gaumont-Guay et al., 2009),

Pff ¼
aPffmaxPARbelow

aPARbelow þ Pffmax
ð4Þ
where a, Pffmax, PARbelow represent the apparent quantum use effi-
ciency, the horizontal asymptotic value of Pff and the below canopy
radiation, respectively.

2.5. Modeling strategy

The objective of our analysis is to develop a new model that
estimates Rs entirely based on MODIS data and to validate the
model at independent sites. Since much longer dataset was avail-
able at SK-OBS site, we mainly focused on this site to develop
the model and measurements from other two sites were then used
for independent validation. Therefore, we first explored MODIS-
derived NDVI and LST (both LSTd and LSTn) in their strength to
explain Rs variations using 8 years of records at SK-OBS site. The
evaluation was conducted considering that Rs was controlled by
both biotic (e.g., photosynthesis) and abiotic factors (e.g., temper-
ature). We then also calibrated the model, i.e., determining coeffi-
cients of regression, using MODIS observations (i.e., statistics of
time series of LAI) to ensure that all inputs are from remote sensing
data. In addition, we tested the general applicability of the model
derived at SK-OBS site at another two sites of both deciduous
broadleaf and evergreen needleleaf forests with independent mea-
surements. Finally, we mapped Rs of forest landscapes (forest pix-
els were identified from the 2005 North American Land Cover at
250 m spatial resolution, http://www.cec.org/naatlas/) of the
whole province of Saskatchewan with the algorithm using entirely
MODIS data to show the spatial and temporal patterns of Rs. Since
the MODIS LSTn had the lowest spatial resolution among all inputs
of the algorithm (MODIS reflectance, LST and LAI products), the
final Rs map was produced at 1 km spatial resolution monthly,
which was summed from each 8-day simulation.
3. Results

3.1. Relationship between Rs and MODIS NDVI, LSTd and LSTn

We found that NDVI was an important driver of Rs explaining
82% of the variance in Rs in the black spruce stand, confirming
the connection between belowground processes and photosyn-
thetic activity (Fig. 2a). However, this connection seemed time
dependent as NDVI was only useful in predicting Rs during the
growing season, i.e. for NDVI > 0.4. For NDVI < 0.4, Rs was relatively
constant, probably due to low respiratory activity at low tempera-
tures and thus cannot be captured by variations in NDVI. Further-
more, there were also significant relationships between Rs and
MODIS-derived LST and LSTn was found to be a stronger predictor
of Rs (Fig. 2b and c). Based on these results, we hypothesized that
predicting Rs using the product of NDVI and LSTn would be suc-
cessful. We found that 8-day-averaged Rs was highly correlated
with NDVI � LSTn with R2 = 0.86, p < 0.001 (Fig. 2d). In particular,
a linear relationship between Rs and NDVI � LSTn would be helpful
for improving Rs modeling both at its low and high ends as,

RS ¼ aðNDVI� LSTnÞþb ð5Þ

where a is the slope and b is the intercept.

3.2. Model calibration using site specific indicators

We calibrated this algorithm, i.e., determining the parameters, a
and b in Eq. (5), using site specific indicators. For each year, we cor-
related 8-day average Rs with NDVI � LSTn using annual data and
obtained yearly values of a and b for 2002–2009. Results showed
that while the annual value of a was linearly correlated
(R2 = 0.73, p = 0.007) to annual LAImax, the annual value of b was
linearly correlated (R2 = 0.74, p = 0.005) to annual LAIave (Fig. 3).

http://www.cec.org/naatlas/


Fig. 5. Relationship between the modeled and measured soil respiration (Rs) at SK-OBS for the years 2002–2009. The dashed lines show the 95% confidence intervals of mean
prediction for the regression line.
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Therefore, the new model of Eq. (5) with calibration coefficients
can be further written as,

RS ¼ aðNDVI� LSTnÞþb

a ¼ 0:09LAImax � 0:01
b ¼ 1:98LAIave � 0:43

ð6Þ
3.3. Modeled soil respiration validation

As expected, a comparison of using Eqs. (5) and (6) to calculate
Rs values for each year showed that Eq (6) described the measure-
ments better for each year (Fig. 4). Accordingly, relationships
between measured and modeled values of Rs for each year using
Eq (6) are shown in Fig. 5. The highest correlation between mod-
eled and measured Rs was observed in 2006 with an R2 of 0.92
(p < 0.001) and the lowest correlation was found for 2004 and
2005 both with an R2 of 0.74 (p < 0.001). For the remaining years,
values of R2 were greater than 0.80, indicating a good performance
of this model. The root mean square error of the modeled values
varied between 0.6 g C m�2 d�1 in 2006 and 1.0 g C m�2 d�1 in
2005.

Model validation using independent measurements at SK-OA
and SK-OJP sites was also promising (Fig. 6). We found that for
both sites, modeled Rs was significantly correlated with measure-
ments with R2 of 0.82 (p < 0.001) and 0.73 (p < 0.001) for SK-OA
and SK-OJP, respectively. RMSE for each site was also reasonable.
For the combined data of two sites, a significant correlation was
found between model estimates and measurements that the model
can explain 78% of Rs variance using entirely MODIS data with an
RMSE of 1.5 g C m�2 d�1.
3.4. Spatial and temporal patterns of mapped Rs

Based on above evaluations, we mapped monthly Rs using
entirely MODIS data for forest landscapes of the whole province
in 2003 (Fig. 7). Temporal patterns of Rs were well captured that
modeled Rs showed clear seasonal evolutions with relatively low
simulations in the dormant season (November–March). Rs

increased quickly after the start of the growing season and maxi-
mized in summer months and then underwent an evident decrease
since autumn. Spatial patterns of Rs were also well simulated that
broadleaf deciduous forests showed higher Rs than that of the ever-
green needleleaf forests. A general decrease patter in Rs was also
found from south to north regions, probably because of lower tem-
perature as latitude increases.
Fig. 6. Comparison between modeled and measured Rs at SK-OA (d) and SK-OJP (N)
sites using the algorithm proposed at SK-OBS site. The dashed lines show the 95%
confidence intervals of mean prediction for the regression line.
4. Discussion

4.1. The role of nighttime LST

The impact of soil temperature on Rs has been intensively inves-
tigated. Here we found that the MODIS LST product could be used
in models predicting Rs. Our data suggest that LSTn has a greater
potential in explaining variations in Rs than LSTd. A possible reason
from all data at SK-OBS site is that LSTn is much more resistant to
various residual noise components (Fig. 8). We calculated standard
deviations of both LSTd and LSTn (i.e., sdLSTd and sdLSTn) from 2002
to 2009 and found that sdLSTn was much lower than sdLSTd, imply-
ing the former will reduce noise in the calculated temporal course
of Rs. These results may also imply that LSTn could be a better esti-
mate of the baseline temperature that regulates plant phenology
(Sims et al., 2008).
4.2. Implications of calibration

We found that the slopes and intercepts of the Rs vs.
NDVI � LSTn relationship (i.e., a and b) could be expressed as func-
tions of seasonal LAImax and LAIave, respectively. The slopes should
ideally represent the rate at which Rs increases with per unit
NDVI � LSTn. Since Rs consists of both microbially and root-
respired C, it should be dependent directly on the input of carbon
from living plants (Moyano et al., 2008). This likely explains why a
was found to be significantly correlated with LAImax, since it partly
determines the amount of carbohydrates that are transferred from
leaves to the rhizosphere. This is consistent with the results of
Janssens et al. (2001) that productivity (LAI being a proxy for it
in this study) is tied to Rs since the availability of organic matter
(leaves, fine roots) for respiration depends on primary productiv-
ity. The value of b may not have specific physiological indications
and is simply the value of Rs at an LSTn of zero. One significant con-
tribution of our analysis is that the calibration approach (i.e., using
statistics of LAI to determine regression coefficients) works well for
the other two independent sites, suggesting the general suitability
of our algorithm to estimate Rs across plant functional types. This
probably could be a great advantage towards the exploration of
spatial patterns of Rs using remote sensing in future.
4.3. Factors influencing model performance

To better explain the interannual behavior of model perfor-
mance, using long-term data at SK-OBS site, we found that the
value of R2 between Rs and NDVI � LSTn was negatively correlated
with the standard deviation of SWC (sdSWC) while being positively
correlated with the standard deviation of LAI (sdLAI) (Fig. 9). The
relationship between R2 and sdSWC suggests that our model is
affected by soil water status, which has been recognized as a quite
challenging task from optical remote sensing (Albergel et al., 2012).
Larger values of sdSWC in SK-OBS appeared to be the result of
above-average precipitation during the growing season. For exam-
ple, a value of sdSWC of 14.3% was observed in 2004, when the
growing season precipitation was 30% above the 8-year average.
A similar condition was also observed in 2005 (sdSWC of 11.2%).
For these two years, NDVI � LSTn was only able to explain 71%
and 72% of the variance in Rs, respectively. For severe drought
years, e.g., 2003, NDVI � LSTn also had a moderate accuracy in esti-
mating Rs. The highest ability of NDVI � LSTn to explain Rs

(R2 = 0.92) was found in 2006, a year with slightly high annual pre-
cipitation (5% above average). These results imply that the SWC



Fig. 7. Simulations of monthly soil respiration (Rs) of forest landscapers of Saskatchewan, Canada using MODIS data in 2003.
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may have competing effects on model performance, so that our
algorithm still performed moderately well in capturing variations
in Rs under these conditions. A complicated relationship between
soil water status and ecosystem functioning will make modeling
Rs challenging in either extremely wet or droughty conditions
(Wu et al., 2013b). Analysis aimed at partitioning Rs into its auto-
trophic and heterotrophic components may be a potential way to
better understand the response of Rs to SWC (Moyano et al.,
2013). This agrees with findings reported in Gaumont-Guay et al.
(2014) that SWC alone was only able to explain 18% of Rs variations
and may also explain that even without considering water status in
the algorithm, our approach still has the potential to capture the
first order of spatial and temporal variations of Rs. Better model
performances for years with large variations in LAI may simply
be a reflection that the model would give better results under
favorable growth conditions because larger sdLAI is associated with
higher seasonal LAImax.

4.4. Temporal and spatial constrains of the model

Temporal and spatial constrains of the model should be high-
lighted to address its sensitivity with respect to sampling size
and temporal resolution. Our algorithm is proposed at 8-day tem-
poral scale, and this excludes the interface from seasonality. For



Fig. 8. Seasonal variations of the standard deviation (sd) of daytime (LSTd; grey dots
and dashed line) and nighttime (LSTn; black dots and dashed line) land surface
temperatures from 2002 to 2009. Also shown are smoothed lines for sd of LSTd

(blue) and LSTn (red), respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Relationships between the coefficient of determination (R2), and (a) the
standard deviation of volumetric soil water content (sdSWC) and (b) the standard
deviation of leaf area index (sdLAI). The dashed lines show the 95% confidence
intervals of mean prediction for the regression line.
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example, the good model performance would be definitely influ-
enced by vegetation seasonality at monthly temporal scale. How-
ever, if we can demonstrate the model at 8-day period, such
concern can be resolved. For the spatial aspect, we only have vali-
dation data at flux tower sites and this limits the resolution to
1 km. Currently, it might be impossible to analyze the spatial sen-
sitivity since there is no ground data to support such experiment.
Therefore, the confidence of spatial patterns of Rs modeled is based
on the results shown in Figs. 5 and 6. Consequently, it is difficult to
show the areas with low correlations because of data availability.
Overall, our analysis is focused on the development of new models
for soil respiration modeling and to link the model with semi-
physical explanations. Technical issues related to computational
ability and algorithm portability are not concerned at present.
4.5. Potentials and implications for remote sensing of Rs

Remote sensing data provide a real opportunity to robustly test
predictions of Rs with respect to changes in controlling factors for
large spatial extent and sample size. We found that Rs was corre-
lated with NDVI. However, NDVI alone is not able to explain vari-
ations in Rs very well, especially considering the relatively constant
values of Rs for NDVI < 0.4 at SK-OBS site (Fig. 2a). This feature
potentially suggests that NDVI may only provide useful signals of
Rs during the growing season when photosynthesis is active. For
dormant seasons when photosynthesis is limited by low tempera-
ture, NDVI is no longer an indicator of Rs, which is largely con-
trolled by soil temperature. Thus, results of recently reported
relationships between Rs and spectral vegetation index in Huang
et al. (2012) should be viewed with caution because only measure-
ments of two crops during the growing season were included. Here
we showed high precision in predicting Rs by combining NDVI and
LSTn and the model also showed promising validation at indepen-
dent sites with different plant functional types. By combine both
NDVI and LSTn, our model still reasonably reproduced Rs both for
the growing season and the dormant season. Though there was
overestimation of Rs at its low range (Fig. 5), improvements can
be achieved compared with the NDVI-only estimation. By includ-
ing LSTn, we can partly mitigate the strong dependence on the
quality of NDVI. For example, even when NDVI is contaminated
by the presence of snow in winter, restriction from low LSTn can
still provide reasonable estimates of Rs. One potential way to solve
this problem would be the separation of growing and dormant sea-
sons, which might require a new module to determine the time of
growing season start and end. This might not be easily determined
using empirical approach of temperature because of large interan-
nual variability of growing season length reported at these sites
(Wu et al., 2013a). Furthermore, this may also lead to additional
variables that make our approach not entirely driven by remote
sensing observations.

Our results mainly contribute to our understanding in two
aspects. First, it confirms that belowground activities, to some
degree, can be linked to aboveground photosynthesis, supporting
the claim that Rs is an indicator of plant metabolism (Moyano
et al., 2008; Caquet et al., 2012). However, this linkage may be time
dependent and is only valid within the growing season. More
importantly, since NDVI and LSTn can be acquired by satellite data,
this method has the potential to be upscaled regionally or even
globally after rigorous calibrations among other plant functional
types (e.g., crops and grasslands). Therefore, it will provide a
unique way to analyze the response of Rs to climate change spa-
tially and temporally, considering the long term records of NDVI
going back to late the 70s of the last century.
5. Conclusions

The availability of automated soil respiration measurements
provides sub-hourly information to observe short-term variation
in soil respiration and allows for better understanding of the con-
trols of soil respiration across various temporal scales. An eight-
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year continuous soil CO2 efflux was measured at a boreal black
spruce stand and a new approach was proposed to predict 8-day
average Rs using solely MODIS observations. Additional validation
at other two sites of different plant functional types was also suc-
cessful, indicating high level of portability of the new model. Spa-
tial and temporal patterns of Rs for all forested areas in
Saskatchewan were well captured using the model we proposed,
representing a potential way to upscale Rs from site level measure-
ments to regional scale. These results suggest the close linkage
between the processes of photosynthesis and respiration. In partic-
ular, we have shown the potential of satellite data in the estima-
tion of Rs, which would be a valuable tool in the exploration of
the spatio-temporal characteristics of Rs in future climate change
scenarios. Further analysis would involve the application of this
model at more sites in diverse ecoregions and calibration across
various plant functional types (e.g., grasslands, savannas).
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