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The phenology of vegetation exerts an important control over the terrestrial ecosystem carbon (C) cycle. Remote
sensing of key phenological phases in forests (e.g., the spring onset and autumn end of growing season) remains
challenging due to noise in time series and the limited seasonal variation of canopy greenness in evergreen
forests. Using 94 site-years of C flux data from four deciduous broadleaf forests (DBF) and six evergreen
needleleaf forests (ENF) in North America, we examine whether growing season phenology can be remotely
sensed from mean vegetation indices (VIs) derived from spring (Apr.–May) and autumn (Sep.–Nov) observa-
tions. Five VIs were used based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, including
the normalized difference vegetation index (NDVI), the land surface water index (LSWI), the enhanced vegeta-
tion index (EVI), the wide dynamic range vegetation index (WDRVI) and the optimized soil-adjusted vegetation
index (OSAVI). Our results show that growing season transitions can be inferred frommean seasonal VIs, though
the different VIs varied in their predictive strength across sites and plant functional types. Widely used NDVI
and EVI exhibited limited potential in tracking growing season phenology of ENF ecosystems, while indices
sensitive to water (i.e., LSWI) or less influenced by soil (i.e., OSAVI) may have unrevealed powers in indicating
phenological transitions. OSAVI was shown to be a strong predictor of the end of the growing season in ENF
ecosystems, suggesting that this VI may offer a new strategy for modeling the phenology of ENF sites. We
conclude that combinations of multiple indices may improve the remote sensing of land surface phenology, as
evidenced by the good agreement between modeled and observed growing season transitions and its length in
our evaluation.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Phenology describes the timing of plant processes and is an im-
portant control on carbon (C) sequestration in terrestrial ecosystems
(e.g., Richardson et al., 2013; Wu et al., 2013). Remote sensing data
from satellites provide broad coverage of useful information on vege-
tation phenology for diverse ecosystems at various scales (Brown, de
Beurs, & Marshall, 2012; Hmimina et al., 2013; Karlsen et al., 2008;
Kross, Fernandes, Seaquist, & Beaubien, 2011; White et al., 2009).
Growing season phenology from remote sensing is determined by
detecting the seasonal dynamics of green vegetation using spectral
signals from sensors on satellite images or flux towers (Garrity,
Maurer, Mueller, Vogel, & Curtis, 2011; Melaas et al., 2013; Sonnentag
et al., 2012).
ote Sensing Science, Institute of
iences, Beijing 100101, China.
Time series of satellite remote sensing observations, e.g., the Mod-
erate Resolution Imaging Spectroradiometer (MODIS), are commonly
used to derive phenological metrics, with several vegetation indices
(VIs) having potential to indicate phenological transitions (Hmimina
et al., 2013). Commonly used VIs include the normalized difference
vegetation index (NDVI) and the enhanced vegetation index (EVI)
(Zhang & Goldberg, 2011; Zhang et al., 2003). Ground and satellite de-
rived NDVI and EVI successfully predict vegetation phenology in a va-
riety of forested ecosystems (Hmimina et al., 2013; Melaas, Friedl, &
Zhu, 2013; Zhang et al., 2003). Additional, less broadly used VIs have
also successfully inferred growing season transitions, including the
MERIS Terrestrial Chlorophyll Index (MTCI) (Atkinson, Jeganathan,
Dash, & Atzberger, 2012) and the perpendicular vegetation index
(PVI) (Guyon et al., 2011). Since each VI uses a unique suite of spectral
data to infer vegetation phenology, models that incorporate comple-
mentary information from multiple VIs and, additionally, climate may
better predict vegetation phenology (Brown et al., 2012; Gonsamo,
Chen, Wu, & Dragoni, 2012).
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Though substantial advances have beenmade in predicting growing
season phenology from remote sensing data, challenges remain that
limit the predictive strength of these tools. First, most contemporary
methods require remote sensing time series data at fine temporal scales
(from daily to 16 day), which increases the burden of data collection
and noise removal (Atkinson et al., 2012). Second, most analyses were
conducted in deciduous forests or crop ecosystems, but the same
methods are sometimes limited when applied to evergreen species
that show little seasonal variation in canopy greenness (Guyon et al.,
2011; Hufkens et al., 2012; Melaas, Friedl, & Zhu, 2013). For example,
Hmimina et al. (2013) showed that MODIS is unable to accurately
infer phenological patterns for evergreen forests. A third limitation
is modeling the end of the growing season, particularly for evergreen
forests, since the growing transition in autumn is difficult to detect
(Richardson et al., 2013). Lastly, most previous studies examined
the utility of a single index (e.g., either EVI or NDVI), but the potential
of various VIs that focus on different canopy characteristics (e.g., green-
ness, water) remains unknown.

To address these issues, herewe use 94 site-years of C flux data from
10 forest sites inNorth America to evaluatewhether the growing season
phenologies (i.e., onset of spring and end of autumn) of deciduous and
evergreen forests can be predicted by several different spectral indices
derived from MODIS data. The underlying assumption for an expected
relationship between the phenological transition dates of growing sea-
son and seasonal mean VI is the reported impacts of spring and autumn
seasonality on annual vegetation productivity. For example, interannual
variations in spring (Black et al., 2000; Chen et al., 2003) and autumn
(Piao et al., 2008; Wu et al., 2012) climate are important determinants
of annual carbon sequestration. Our specific objectives are to: (1) deter-
mine whether longer, less data intensive mean seasonal signatures
(i.e., meanVIs for spring and autumn) derived fromMODIS data capture
growing season phenology in deciduous broadleaf and evergreen
needleleaf forests, (2) compare this method with the traditional
approach of deriving phenological indicators from more temporally
detailed seasonal patterns of EVI, and (3) compare the capabilities of
different VIs in tracking phenology of canopy photosynthesis.
Fig. 1. Spatial distribution of ten flux tower sites of this study. DBF ( ) and ENF ( ) re
2. Materials and methods

2.1. Study sites

We identified ten forest ecosystems in North America flux net-
works (AmeriFlux and Fluxnet-Canada) that report at least 8 years
of complete data with less than 20% gap-filled in each year. Data
from these sites covered a variety of forest ecosystems in North
America that are classified broadly into two plant functional types
(PFT): deciduous broadleaf forests (DBF, n = 4 sites) and evergreen
needleleaf forests (ENF, n = 6 sites) (Fig. 1). Detailed descriptions of
these sites are given in Table 1.

2.2. Flux measurements and data processing

Half-hourly CO2 fluxes were continuously measured at each site
using the eddy-covariance technique (Baldocchi et al., 2001). Standard
procedures were applied to partition net ecosystem exchange (NEE)
into gross primary productivity (GPP) and total ecosystem respiration
(Re) (Barr et al., 2004; Reichstein et al., 2005). Because these sites be-
long to two different regional flux networks within North America,
gap-filling and NEE partitioning approaches differ. For Fluxnet-Canada
sites, GPP and Re estimation, and gap-filling were conducted using the
network's standard approaches described in Barr et al. (2004). For the
AmeriFlux sites, level-4 products were used which contain gap-filled
and u* filtered records of C fluxes at varying time intervals using the
Artificial Neural Network (ANN) method (Papale & Valentini, 2003)
and/or the Marginal Distribution Sampling (MDS) method (Reichstein
et al., 2005).

Desai et al. (2008) suggested that though different decomposition
techniques are applied to flux data from various flux networks, they
generally have a moderate impact on modeled GPP (i.e., most methods
tended to cluster on similar results to within 10%). Therefore, it is rea-
sonable to use sites from multiple networks in this study, which also
agrees with other flux analyses reported on sites from global Fluxnet
dataset (Lasslop et al., 2010; Wu et al., 2013).
present deciduous broadleaf forest and evergreen needleleaf forest, respectively.



Table 1
Detailed description of study sites in this study.

Site_ID Site_name Latitude
(degrees)

Longitude
(degrees)

Altitude
(m)

Time range Land cover References

CA-OAS SSA Old Aspen 53.63 −106.20 530 2000–2009 DBF Barr et al. (2004)
US-UMB Michigan Biological Station 45.56 −84.71 234 2000–2011 DBF Curtis et al. (2002)
US-MMS Morgan Monroe State Forest 39.32 −86.41 275 2000–2008 DBF Dragoni, Schmid, Grimmond, and Loescher (2007)
US-WCR Willow Creek 45.80 −90.08 520 2000–2006

2011–2012
DBF Cook et al. (2004)

CA-OBS Old Black Spruce 53.99 −105.12 629 2000–2010 ENF Barr et al. (2004)
CA-TP4 Mature White Pine 1939 42.71 −80.36 184 2003–2010 ENF Arain, Yaun, and Black (2006)
CA-OJP SSA Old Jack Pine 53.92 −104.69 579 2000–2008 ENF Coursolle et al. (2006)
CA-MAN Old Black Spruce 55.88 −98.48 259 2000–2008 ENF Dunn, Barford, Wofsy, Goulden, and Daube (2007)
US-HO1a Howland Forest (main tower) 45.20 −68.74 60 2000–2008 ENF Hollinger et al. (2004)
US-NR1 Niwot Ridge Forest 40.03 −105.55 3050 2000–2007 ENF Monson et al. (2005)

DBF and ENF represent deciduous broadleaf forest and evergreen needleleaf forest, respectively.
a Data for 2005 was replaced by the US-HO2 site, 800 m away of an identical forest, due to a damaged instrument for several months in the spring of 2005.
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2.3. Deriving growing season transitions from flux data

Fig. 2 illustrates how growing season phenology was determined
from daily GPP data for the CA-OAS site in 2005. Our analysis identified
the growing season onset (GPP onset, day of year) and end (GPP end,
day of year). A negative exponentialmodel, usingpolynomial regression
and weights computed from the Gaussian density function, was
adopted to derive smoothed curves for daily GPP observations from
each site. The GPP onset and end dates were defined as the dates
when smoothed daily GPP first and last reached 10% of the seasonal
maximumGPP, respectively (Wu et al., 2012). The time period between
GPP onset and end is the growing season length (GSL, days). It has
demonstrated that unlike a fixed GPP threshold in previous studies
(e.g., 1 g C/m2/d, Richardson et al., 2010), our approach effectively
allows for variation in phenological events to be quantified and com-
pared both interannually and spatially (Wu, Chen, et al., 2012; Wu
et al., 2013).

2.4. MODIS surface reflectance product and vegetation indices

We used the 8-day composite MODIS Surface Reflectance Atmo-
spheric Correction Algorithm Product (MOD09A1, 500 m, collection 5)
to derive five commonly used VIs. Surface reflectance is computed
from seven MODIS Level 1B bands (centered at 648 nm, 858 nm,
Fig. 2. A description of photosynthesis phenology in this study using daily gross primary
productivity (GPP) data at CA-OAS in 2005. Onset and end of photosynthesis (GPP
onset and GPP end, both in day of year) were determined as the dates when smoothed
daily GPP reaches 10% of seasonal maximum in spring and in autumn, respectively. The
time duration between GPP onset and end was calculated as the growing season length
(GSL, days).
470 nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm, respectively) after
the removal of cloud contaminated pixels (Vermote et al., 1997).
Based on the geo-location information (latitude and longitude) of the
flux tower sites, reflectance was extracted from 3 × 3 MODIS pixels
(~1.5 km × 1.5 km) centered on the flux tower footprint (Wu, Niu, &
Kuang, 2010). The five VIs adopted in this study to evaluate the perfor-
mance of MODIS data in tracking growing season phenological transi-
tions included NDVI, the land surface water index, (LSWI), EVI, the
wide dynamic range vegetation index (WDRVI) and the optimized
soil-adjusted vegetation index (OSAVI). Detailed descriptions of these
indices are provided in Table 2.

Unlike previous studies that derived phenological metrics based
on the seasonal pattern of a VI, we focused on mean seasonal values of
these VIs for modeling growing season phenology. Since the growing
season onset and end occur in spring and in autumn, respectively, we
selected spring months (April–May, Wang et al., 2011) and autumn
months (September–November,Wu, Gonsamo, et al., 2012) to calculate
the mean values of each VI (i.e., mean values of VIs during the spring
and autumn months were used to model growing season phenology).

2.5. Deriving phenological metrics from seasonal patterns of EVI

We also derived conventional phenological measures at each site
using seasonal patterns of EVI for comparison with our seasonally
averaged metrics. Logistic models are commonly used to determine
the transition dates from local maxima and minima in the fitted func-
tion (Melaas, Friedl, & Zhu, 2013; Zhang, Friedl, & Schaaf, 2006, Zhang
et al., 2003). Recent analysis from Beck, Atzberger, Høgda, Johansen,
and Skidmore (2006) suggested that a double logistic function can
more accurately describe duration of the growing season by effectively
removing outliers. Hird and McDermid (2009) similarly showed that a
double logistic function optimally reduces noise in remote sensing
time series data (Gonsamo, Chen, Price, Kurz, & Wu, 2012). In this
analysis, we used a double logistic function to fit the time series of EVI
data for each year:

f t; x1; x2; x3; x4ð Þ ¼ 1

1þ exp
x1−t
x2

� �− 1

1þ exp
x3−t
x4

� � ð1Þ

where x1 and x3 represent the positions of the left (i.e., growing season
onset date) and right (i.e., growing season end date) inflection points
and x2 and x4 determine the rates of changes at these inflection points
(Fig. 3).

2.6. Statistical analysis and modeling procedure

To compare the potential of various VIs to estimate the phenology of
GPP, we correlated VIs with GPP transitions (both GPP onset and end)



Table 2
Descriptions of the vegetation indices (VIs) used in this study.

Vegetation indices Abbreviations Wavebandsa Equations References

Normalized difference vegetation index NDVI 1, 2 NDVI = (RNIR − RRED)/(RNIR + RRED) Rouse, Haas, Schell, Deering, and Harlan (1974)
Land surface water indexb LSWI 2, 5 LSWI = (RNIR − RSWIR)/(RNIR + RSWIR) Xiao et al. (2002)
Enhanced vegetation index EVI 1, 2, 3

EVI ¼ 2:5� RNIR−RRED

1þ RNIR þ 6� RRED−7:5� RBLUE

Huete et al. (2002)

Wide dynamic range vegetation index WDRVI 1, 2 WDRVI = (0.2RNIR − RRED)/(0.2RNIR + RRED) Gitelson (2004)
Optimized soil-adjusted vegetation index OSAVI 1, 2

OSAVI ¼ 1þ 0:16ð Þ � RNIR−RRED

RNIR þ RRED þ 0:16
Rondeaux et al. (1996)

NIR and SWIR represent near infrared and shortwave infrared, respectively.
a Wavebands refer to the MODIS standard settings and see text for details.
b Also called normalized difference water index (NDWI) as stated in Gao (1996).
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using least-squares linear regression. Coefficients of determination (R2)
and p-value were used to assess their performance. For each site, VIs
that showed the highest R2 with GPP onset or end were considered op-
timal candidates for predicting GPP transitions using the leave-one-out
cross-validation approach (Gonsamo, Chen, Wu & Dragoni, 2012; Shao,
1993). After GPP transitions were modeled, GSL was calculated as the
difference between modeled GPP end and GPP onset, and root mean
square error (RMSE) and R2 were adopted as indicators of model accu-
racy for each plant functional type.

3. Results

3.1. Growing season transitions of DBF sites

We found substantial variation in the ability of seasonally averaged
VIs to track the growing season phenology of individual DBF sites
(Table 3). Spring NDVI was negatively correlated with GPP onset at
CA-OAS (R2 = 0.69, p = 0.003) and US-UMB (R2 = 0.67, p = 0.001)
sites. Spring LSWI was significantly correlated (negatively) with GPP
onset at CA-OAS (R2 = 0.52, p = 0.018) and US-MMS (R2 = 0.60,
p = 0.015) sites. Spring EVI demonstrated relatively high potential
as an indicator of GPP onset, with significant negative relationships
found at three of four sites examined (CA-OAS, US-UMB and US-
WCR). ForWDRVI andOSAVI,we found significant negative correlations
at CA-OAS (R2 of 0.83 and 0.72, respectively) and US-UMB (R2 of 0.83
and 0.87, respectively) sites. An R2 of 0.80 (p b 0.001)was observed be-
tween spring WDRVI and the GPP onset for the overall dataset of these
Fig. 3. An example of determining growing season onset and end from seasonal patterns
of EVI with data at CA-OAS for 2005. A double logistic function was fitted to the 8-day
EVI data and the inflection positions in the left and right sides of the curve were taken
as the onset and end of a growing season. Time duration between these two positions
was calculated as the growing season length.
four DBF sites. Fig. 4 shows VIs that correlated significantly (all
negative) with GPP onset during the spring at individual sites. When
considering phenological metrics derived from seasonal patterns
of EVI (EVI_SP), we found significant positive correlations at three indi-
vidual sites (CA-OAS, US-UMB, US-MMS), with an R2 of 0.67 (p b 0.001)
for the overall dataset.

We also related GPP end during autumn at DBF sites with each of
the five VIs, with none of the indices performing well across all DBF
sites. None of the indices correlated with GPP end at US-WCR. Autumn
NDVI was only significantly (positively) correlated with GPP end at
US-MMS site (R2= 0.85, p b 0.001). Autumn LSWI and EVI were signif-
icantly correlated with GPP end at CA-OAS, US-UMB, US-MMS,
and WDRVI and OSAVI with GPP end at US-UMB and US-MMS (all
correlations were positive). Autumn LSWI showed the highest positive
correlation with GPP end at CA-OAS site, but autumn OSAVI and
WDRVI were the best measures (positive) of GPP end for US-UMB and
US-MMS, respectively (Fig. 4). Conventional phenological indicators of
GPP end developed from seasonal patterns of EVI did not exhibit better
results than the seasonally averaged VIs, with significant positive corre-
lations only at two sites (CA-OAS and US-MMS).

3.2. Growing season transitions of ENF sites

Comparedwith themixed significant correlations found at DBF sites,
the five seasonally averaged VIs had very limited potential to track
GPP onset at ENF sites (Table 4). Spring NDVI (negatively) and LSWI
(positively) were only significantly correlated with GPP onset at
US-NR1 (R2 = 0.67, p = 0.012) and CA-TP4 (R2 = 0.42, p b 0.001), re-
spectively. For EVI, no significant correlation was found with GPP onset
at any site. WDRVI both negatively correlated with GPP onset at CA-OJP
(R2 = 0.58, p = 0.017) and US-NR1 sites (R2 = 0.64, p = 0.017).
Spring OSAVI showed greater potential for GPP onset modeling
and it showed significant correlations with GPP onset at three sites
(CA-OBS (positive), CA-MAN (positive), and US-NR1 (negative),
Fig. 5). Analyzing seasonal patterns of EVI only gave a significant posi-
tive measure of GPP onset at US-NR1 site (R2 = 0.65, p = 0.015).

Better results were observed for modeling GPP end than spring
onset in ENF sites. Autumn NDVI was significantly (positively) cor-
related with GPP end at US-NR1. LSWI significantly predicted GPP
end at CA-OJP (R2 = 0.60, p = 0.014, negative), US-HO1 (R2 = 0.51,
p= 0.031, positive) and US-NR1 (R2= 0.56, p= 0.033, negative). Sea-
sonally averaged EVI in autumn, however, was significantly correlated
with GPP end only at CA-OJP site (R2 = 0.50, p = 0.034, negative).
For autumn WDRVI, we found significant positive correlations at
both CA-MAN and US-NR1 (R2 = 0.58, p = 0.018 and p = 0.029, re-
spectively). Surprisingly, the best results were observed for OSAVI,
which was positively correlated with GPP end at five of six sites
(R2 ranged from 0.44 (p = 0.048) at CA-MAN to 0.67 (p = 0.007) at
US-HO1). Phenological indicators from seasonal patterns of EVI showed
somewhat moderate results that GPP end of two sites can be explained
(CA-OJP and US-HO1, both correlations were positive).

image of Fig.�3


Table 3
Coefficients of determination (R2) between gross primary productivity onset (GPP onset) and end (GPP end) and spring (April–May) and autumn (September–November) phenological
metrics at deciduous broadleaf forest sites.

Phenology transitions Site_ID Phenological metrics

NDVI LSWI EVI WDRVI OSAVI EVI_SP

GPP onset
(Day of year)

CA-OAS (n = 10) 0.69 (−), p = 0.003 0.52 (−), p = 0.018 0.81 (−), p b 0.001 0.83 (−), p b 0.001 0.72 (−), p = 0.002 0.76 (+), p b 0.001
US-UMB (n = 12) 0.67 (−), p = 0.001 NS 0.83 (−), p b 0.001 0.83 (−), p b 0.001 0.87 (−), p b 0.001 0.60 (+), p = 0.003
US-MMS (n = 9) NS 0.60 (−), p = 0.015 NS NS NS 0.55 (+), p = 0.015
US-WCR (n = 9) NS NS 0.52 (−), p = 0.027 NS NS NS
All data (n = 40) 0.76 (−), p b 0.001 NS 0.78 (−), p b 0.001 0.80 (−), p b 0.001 0.79 (−), p b 0.001 0.67 (+), p b 0.001

GPP end
(Day of year)

CA-OAS (n = 10) NS 0.58 (+), p = 0.010 0.49 (+), p = 0.025 NS NS 0.48 (+), p = 0.033
US-UMB (n = 12) NS 0.44 (+), p = 0.018 0.62 (+), p = 0.002 0.60 (+), p = 0.003 0.63 (+), p = 0.002 NS
US-MMS (n = 9) 0.85 (+), p b 0.001 0.72 (+), p = 0.004 0.84 (+), p b 0.001 0.91 (+), p b 0.001 0.89 (+), p b 0.001 0.65 (+), p b 0.001
US-WCR (n = 9) NS NS NS NS NS NS
All data (n = 40) 0.75 (+), p b 0.001 0.31 (+), p b 0.001 0.72 (+), p b 0.001 0.78 (+), p b 0.001 0.80 (+), p b 0.001 0.56 (+), p b 0.001

Note:+ and− represent positive and negative correlations, respectively. NS represents no significant correlationwas found. See text for details of site_ID. LSWI, EVI,WDRVI andOSAVI are
land surface water index, enhanced vegetation index, wide dynamic range vegetation index and optimized soil-adjusted vegetation index, respectively. EVI_SP represents results of phe-
nological metrics derived from seasonal patterns of EVI using the double logistic function. Bold formats indicate the highest correlations among indices when they are related to GPP onset
or end for each site.
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3.3. Modeling growing season transitions and GSL using optimal VIs

In this section, three DBF (CA-OAS, US-UMB and US-MMS) and five
ENF sites (CA-OAS, CA-TP4, CA-OJP, CA-MAN and US-NR1)were chosen
to test the potential of these VIs in modeling both growing season
transitions (GPP onset and end) and GSL using the cross validation
approach. The reason for selecting these sites is that both GPP onset
and end are significantly correlated with at least one of the five VIs so
that we can continue to model the GSL after these transitions are
being estimated.

The growing season transitions for each site were modeled with a
combination of two VIs displaying the strongest correlations with
growing season onset and end. For example, GSL at CA-OAS was in-
ferred as the difference between modeled GPP onset from WDRVI
and modeled GPP end from LSWI. Growing season onset of DBF sites
was well predicted and R2 of 0.91 (p b 0.001) was observed for the
overall dataset with RMSE of 3.6 days (Fig. 6a). However, results for
ENF sites showed lower accuracy with an R2 of 0.59 (p b 0.001) and
RMSE of 7.2 days (Fig. 6b). Growing season end of all considered sites
was successfully modeled with R2 higher than 0.90 (p b 0.001) for
both the overall dataset and for each plant functional type (RMSE with-
in 4 days). GSL was well predicted for both plant functional types, with
R2 of 0.96 (p b 0.001) and 0.89 (p b 0.001) observed between modeled
and observed GSL for DBF and ENF, respectively (Fig. 6c). Furthermore,
the correlations were both close to the 1:1 line, with an RMSE of 3.4
and 7.3 days for DBF and ENF sites, respectively. RMSE of 6.4 days
was found for the overall dataset that included the two plant functional
types.

Results for individual sites were also promising, with the RMSE of
GPP onset for three deciduous sites ranging from 3.4 days at US-MMS
to 3.8 days at CA-OAS site. Similar results were found for the GPP end
of DBF sites (RMSE within 3.3 days). Phenological transitions for each
ENF site were predicted with slightly less certainty, with RMSE of GPP
onset ranging from 3.4 days for CA-TP4 to 9.5 days at CA-MAN. GPP
end in ENF sites was better constrained as the largest RMSE was 4.6
days for US-NR1. The RMSE of GSL for individual DBF sites was between
3.5 (US-UMB) and 5.4 (CA-OAS) days while the value for each ENF site
was from 4.3 days at CA-TP4 to 8.2 days at CA-MAN.

4. Discussion

4.1. Seasonal vegetation indices for phenology analysis

Instead of using relatively fine temporal scale metrics derived from
daily to 16-day time series of remote sensing data, we used in our
analysis seasonal (spring and autumn) indices that have much longer
temporal resolutions. As a comparison with our approach, we also
used conventional phenological metrics derived from seasonal patterns
of EVI. Our findings show that seasonal signatures may be as robust as
standard methods in tracking the growing season phenology of forests,
though the potential varies among VIs and plant functional types. Phe-
nological metrics derived from seasonal patterns of EVI correlated
with observationsmoderatelywell at DBF sites though it did not explain
the GPP onset at US-WCR or the GPP end at US-UMB and US-WCR.
Similar to other studies, this standard approach showed limited poten-
tial to track ENF growing season transitions, only explaining GPP onset
at one site (out of six, US-NR1) and GPP end at two of six sites. Further-
more, for all sites seasonally averaged VIs correlatedmore stronglywith
GPP onset and end than did seasonal patterns of EVI.

Our results indicate that seasonally averaged VIs may perform as
well or better than standard approaches to remote sensing phenology,
while substantially reducing data frequency requirements. This is espe-
cially important for regions where cloud cover has significant effect
on data frequency. Furthermore, averaging seasonal data eliminates
artifacts caused by complicated curve fitting or data smoothing, which
may result in substantial differences in derived phenology metrics
(Atkinson et al., 2012).

4.2. The potential of various VIs for phenology analysis

Vegetation indices differed substantially in their ability to track
growing season phenology. NDVI andEVI are among themost common-
ly used VIs to indicate vegetation phenology (Melaas, Friedl, & Zhu,
2013; Zhang & Goldberg, 2011; Zhang et al., 2003). However, our eval-
uation suggests that neither NDVI nor EVI is superior over the other
three VIs examined in tracking growing season phenology. For these
twowidely used VIs, only in one case did each exhibit the highest corre-
lation with growing season transitions (NDVI vs. GPP onset at US-NR1
and EVI vs. GPP onset at US-WCR). Limited potential in NDVIwas partic-
ularly acute for ENF sites for which this metric significantly explained
GPP onset and end at one of six sites. EVI was similarly limited,
exhibiting a correlation with GPP end only at CA-OJP site. The better
performance of EVI than NDVI for growing season phenology modeling
of DBF sites was found, possibly due to the improved sensitivity of
EVI in reducing residual atmospheric effects and influence of soil
and background as explained by Huete et al. (2002). The “water”
index, LSWI, was significantly correlated with GPP onset at two DBF
sites and one ENF site, and GPP end at six (three DBF and three ENF)
sites. These observations are consistent with previous evaluations that
show LSWI is closely related to phenology (Xiao et al., 2004; Jin et al.,
2013). WDRVI also had better potential than NDVI and EVI to track
growing season phenology. The best results were observed for OSAVI,



Fig. 4. Relationships between growing season phenological variations (gross primary productivity onset, GPP onset, day of year; gross primary productivity end, GPP end, day of year) and spring (April–May) and autumn (September–November)
vegetation indices for deciduous broadleaf forests. WDRVI, OSAVI, LSWI, and EVI are wide dynamic range vegetation index, optimized soil-adjusted vegetation index, land surface water index and enhanced vegetation index, respectively. Solid and
dash lines represent regression and 95% confidence level for mean prediction, respectively.
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Table 4
Coefficients of determination (R2) between gross primary productivity onset (GPP onset) and end (GPP end) and spring (April–May) and autumn (September–November) phenological
metrics at evergreen needleleaf forest sites.

Phenology transitions Site_ID Phenological metrics

NDVI LSWI EVI WDRVI OSAVI EVI_SP

GPP onset
(Day of year)

CA-OBS (n = 11) NS NS NS NS 0.61 (+), p = 0.004 NS
CA-TP4 (n = 8) NS 0.73 (+), p = 0.007 NS NS NS NS
CA-OJP (n = 9) NS NS NS 0.58 (−), p = 0.017 NS NS
CA-MAN (n = 9) NS NS NS NS 0.46 (+), p = 0.043 NS
US-HO1 (n = 9) NS NS NS NS NS NS
US-NR1 (n = 8) 0.67 (−), p = 0.012 NS NS 0.64 (−), p = 0.017 0.57 (−), p = 0.031 0.65 (+), p = 0.015
All data (n = 54) NS NS NS NS NS NS

GPP end
(Day of year)

CA-OBS (n = 11) NS NS NS NS 0.54 (+), p = 0.010 NS
CA-TP4 (n = 8) NS NS NS NS 0.60 (+), p = 0.024 NS
CA-OJP (n = 9) NS 0.60 (−), p = 0.014 0.50 (−), p = 0.034 NS 0.45 (+), p = 0.048 0.55 (+), p = 0.017
CA-MAN (n = 9) NS NS NS 0.58 (+), p = 0.017 0.44 (+), p = 0.048 NS
US-HO1 (n = 9) NS 0.51 (+), p = 0.031 NS NS 0.67 (+), p = 0.007 0.58 (+), p = 0.018
US-NR1 (n = 8) 0.54 (+), p = 0.032 0.56 (−), p = 0.033 NS 0.58 (+), p = 0.030 0.47 (+), p = 0.048 NS
All data (n = 54) NS NS NS NS NS NS

Note:+and− represent positive and negative correlations, respectively. NS represents no significant correlationwas found. See text for details of site_ID. LSWI, EVI,WDRVI andOSAVI are
land surface water index, enhanced vegetation index, wide dynamic range vegetation index and optimized soil-adjusted vegetation index, respectively. EVI_SP represents results of phe-
nological metrics derived from seasonal patterns of EVI using the double logistic function. Bold formats indicate the highest correlations among indices when they are related to GPP onset
or end for each site.
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which significantly explainedGPP onset at five (twoDBF and three ENF)
sites and GPP end at eight (two DBF and all six ENF) sites.

There are several potential reasons for the strong performance
of OSAVI. First, most remote sensing based spectral indices are, to
some degree, contaminated by soil impacts but OSAVI was developed
to maximize the capability in resistance to soil impacts from the
SAVI family (Rondeaux, Steven, & Baret, 1996). Sensitivity analyses
(e.g., Vincini & Frazzi, 2011; Liu, Pattey, & Jégo, 2012) consistently
show that OSAVI is less influenced (only in 4–5% absolute difference)
by solar and viewing zenith angles, soil background, and atmospheric
visibility than other VIs (e.g., EVI) as reported in Sims, Rahman,
Vermote, and Jiang (2011). Second, land surface phenology from re-
mote sensing tracks seasonal dynamics of green vegetation and is there-
fore related to canopy chlorophyll content. The OSAVI consistently
demonstrates the greatest accuracy among VIs to detect chlorophyll
content because of the low interference from soils and atmosphere
(Haboudane, Tremblay, Miller, & Vigneault, 2008; Stuckens et al.,
2011; Wu, Niu, Tang, & Huang, 2008; Zarco-Tejada et al., 2005). These
results have important implications for phenology modeling using re-
mote sensing data. Present approaches may underestimate
the potential ofMODIS (or remote sensing) data in phenologymodeling
because most previous analyses only used one index (Hmimina et al.,
2013; Zhang et al., 2003). Instead, our results suggest that a combina-
tion of indices serving as proxies of different indicators of phenology
(e.g., water, greenness) may improve the accuracy of phenology
modeling. However, because a single pair of VIs did not emerge as su-
perior for all sites, additional investigation is required to determine
when and why combined indices most accurately predict phenology.

4.3. Differences between plant functional types

A common observation is that the phenology of DBF ecosystems is
more readily detected than that of ENF sites. This is likely because DBF
ecosystems require leaf production and expansion to activate photo-
synthesis and a coinciding spectral shift has a large evident effect on
canopy greenness. Similarly, leaf senescence and drop significantly
change greenness (Wu et al., 2013). For ENF ecosystems, however,
leaf expansion does not coincide with the start of GPP. In evergreen
plants, only the oldest and least-efficient foliage is discarded in autumn,
and the remaining leaves overwinter (Drenkhan, Kurkela, & Hanso,
2006; Xiao, 2003). Consequently, spectral signatures in evergreens
change less as seasons shift and are less coupledwith seasonal variation
in photosynthesis (Coursolle et al., 2006; Doi & Takahashi, 2008). Our
results generally support prior observations that GPP onset is more
successfully detected in DBF sites than in ENF sites. An unexpected re-
sult, however, is that GPP end of ENF sites was better modeled than
GPP onset, in particularwhen usingOSAVI. This suggests thatwhile can-
opy greenness is an adequate indicator of phenology in many remote
sensing phenology applications, OSAVI's removal of irrelevant spectral
signatures (e.g., background, soil) may improve the tracking of pheno-
logical transitions.
4.4. Limitations and challenges

Our results inform the application of sensors that have a similar de-
sign of spectral bands. For example, the requirement of red and near-
infrared bands to construct OSAVI can be met for most satellite sensors,
and historical variations of phenology may be reconstructed given the
long records accumulated from AVHRR and Landsat data over the past
three decades. The largest obstacle in applying these methods is that
the general relationship andpair of VIs that best explain patterns of phe-
nology are highly site dependent, varying both within and across plant
functional types. For example, OSAVI exhibits opposite relationships
with GPP onset within the ENF ecosystems (CA-OBS vs. US-NR1). As
another example, EVI was negatively correlated with GPP end at
CA-OJP and conversely positively correlated with three DBF sites. Fur-
thermore, none of the five indices were significantly correlated with
the GPP end of US-WCR and the GPP onset at US-HO1. These results
may also explain the non-significant correlations when VIs are used to
model phenology for the combined data of all ENF sites. Such observa-
tions on one hand indicate the limitations of our analysis, but on the
other hand they also demonstrate the difficulty of upscaling phenology
using remote sensing. The underlyingmechanisms explaining such high
divergence, particularly within plant functional types, are poorly char-
acterized at present, making it difficult to precisely determine the
diverse phenological variation across large scales (Wang et al., 2011)
as well as contrasting responses within a site (Cleland, Chiariello,
Loarie, Mooney, & Field, 2006). For an operational application, our
method using the mean seasonal VI may be limited by the latitude of
a region since remote sensing data can be potentially contaminated by
the presence of snow that VIs do not change significantly until late
May. In such case, the distribution of forestsmight be also strictly limited
(Pan, Birdsey, Phillips, & Jackson, 2013; Zhu & Toutin, 2013). Conse-
quently, identifying themechanisms responsible for observed variability
in the performance of VIs will greatly improve their application and help
identify which spectral information is broadly useful in detecting
phenology.



Fig. 5. Relationships between growing season phenological variations (gross primary productivity onset, GPP onset, day of year; gross primary productivity end, GPP end, day of year) and spring (April–May) and autumn (September–November)
vegetation indices for evergreen needleleaf forests. WDRVI, OSAVI, LSWI, and EVI are wide dynamic range vegetation index, optimized soil-adjusted vegetation index, land surface water index and enhanced vegetation index, respectively. Solid and
dash lines represent regression and 95% confidence level for mean prediction, respectively.
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Fig. 6. Relationships between (a) modeled gross primary productivity onset (GPP onset)
and observed GPP onset, (b) modeled gross primary productivity end (GPP end) and
observed GPP end, and (c) modeled growing season length (GSL) and observed GSL
for three deciduous broadleaf forests (DBF, ) (CA-OAS, US-UMB and US-MMS) and five
evergreen needleleaf forests (ENF, ) (CA-OBS, CA-TP4, CA-MAN, CA-OJP and US-NR1).
Solid and dash lines represent regression and 95% confidence level for mean prediction,
respectively.
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5. Conclusions

Using 94 site-years of flux data from ten forest sites in North
America, we explored the potential of MODIS-derived seasonal vegeta-
tion indices to track season phenology. Unlike previous analyses that
mainly focused on a single VI at a finer temporal scale, we examined
five seasonally averaged VIs that detect different properties of the forest
canopy (e.g., water, greenness). We have shown that commonly used
greenness indices (NDVI or EVI) had limited potential to track growing
season phenology of ENF ecosystems while less commonly employed
indices that remove background spectral noise may better detect
phenological variations. One of the most consistently high performing
VIs was OSAVI, which correlated strongly with GPP end at ENF sites,
suggesting a new way to predict the end of growing season for ENF
sites. Though none of the indices evaluated provided a consistent mea-
sure of phenology (both onset and end) across plant functional types,
our results demonstrate that a combination of multiple indices may
substantially improve the estimation of site-level phenology.
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