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This paper examines the use of canopy reflectance for different units of measurements of carotenoids
estimation. Field spectral measurements were collected over cotton in different intensive field campaigns
organized during the growing seasons of 2010 and 2011. Three units of measurement were evaluated
carotenoids expressed as a mass per unit soil surface area (g/m2), a mass per unit leaf area (lg/cm2),
and a mass per unit fresh leaf weight (mg/g), respectively. Four methods were compared to retrieve
amount of carotenoids: stepwise multiple linear regression (SMLR), published spectral indices, band
combination indices, and partial least square regression (PLSR). Results show that maximum sensitivity
of reflectance to variation in different units of measurement of carotenoids was found in the green region
at 515–550 nm, and at 715 nm and 750 nm regions in the far-red wavelengths. The predictive accuracies
of Car (g/m2), Car (lg/cm2) and Car (mg/g) were tested on a validation data set and the results show that
the highest R2 values between estimations and observations were 0.468 for Car (g/m2), 0.563 for Car (lg/
cm2), and 0.456 for Car (mg/g), with relative root mean square error (RMSE%, RMSE/mean) of 48.72%,
22.07% and 21.07%, respectively. Compared to Car (g/m2) and Car (mg/g), the model performance indices
for Car (lg/cm2) show a high degree of consistency among the R2 values and RMSE% and MAE% values.
Further comparison were performed among the estimation accuracies of different unit carotenoids and
among the different approaches used in the study by a paired-t-test. The results indicate that although
the best estimation results for Car (lg/cm2) and Car (mg/g) were both obtained based on PLSR, they
can be estimated by all four adopted methods without significant differences (P > 0.1). Whereas for Car
(g/m2), the best estimation results were obtained based on published vegetation indices CIred-edge,
which were significantly better than the estimation results based on SMLR (P < 0.000). In summary,
the results of this study show that even the carotenoids expressed on concentration (mg/g) or content
(lg/cm2) basis at leaf level can be estimated with the same prediction accuracies to the carotenoids
expressed as a mass per unit surface area (g/m2) at canopy level using reflectance measurement at can-
opy level.

� 2014 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote
Sensing, Inc. (ISPRS).
1. Introduction total chlorophyll content (Cab) and carotenoids content (Car) has
Remote sensing techniques are a prominent tool for determin-
ing the plant physiological state (Zur et al., 2000). Leaf chemical
constituents are determining indicators of plant physiology and
other functional processes up to the ecosystem level. Among them,
plant pigments are the most studied traits (Blackburn, 2007; Ustin
et al., 2009). Carotenoids (Car) and chlorophylls (Chl) are the main
pigments of green leaves (Gitelson et al., 2002). Measurement of
many applications in agriculture, ecology, and Earth science. The
methods for remote estimation of chlorophylls a and b (Cab) have
been quite well established (Gitelson et al., 2009; Haboudane et al.,
2002; Le Maire et al., 2004, 2008; Malenovský et al., 2013; Schlerf
et al., 2010; Zarco-Tejada et al., 2004), However, for carotenoids
(Gitelson et al., 2002, 2006; Hernández-Clemente et al., 2012),
are still not well developed.

Carotenoids are also important photosynthetic pigments (Dem-
mig-Adams and Adams, 1992). Carotenoids have several physio-
logical functions associated with photosynthesis, including
structural role in the organization of photosynthetic membranes,
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participation in light harvesting, energy transfer, as well as
quenching of Chl excited states and photoprotection (Demmig-
Adams et al., 1996; Edge et al., 1997; Horton et al., 1996; Peterman
et al., 1997; Young and Frank, 1996).

During the last decade, some attempts have been undertaken to
develop nondestructive techniques for Car assessment (Asner and
Martin, 2008; Blackburn, 1998, 1999; Chappelle et al., 1992; Datt,
1998; Féret et al., 2008; Gitelson et al., 2002, 2006; Sims and Ga-
mon, 2002; Thomas and Gausman, 1977; Zur et al., 2000). In these
studies, different units have been used to express amounts of
carotenoids, e.g. nmol/cm2 (Gitelson et al., 2002), mg/cm2 (Datt,
1998), lg/cm2 (Hernández-Clemente et al., 2012; Zarco-Tejada
et al., 2013). Data has been expressed in units of area, or mass.
The most common three units of measurement were evaluated
cartenoids expressed as a mass per unit surface area (g/m2), a mass
per unit leaf area (lg/cm2), and a mass per unit fresh leaf weight
(mg/g). These three units of measurement are different but are of-
ten used in remote sensing.

Grossman et al. (1996) showed that band selection using step-
wise multiple linear regression, depended on whether the chemi-
cal data were expressed on a concentration (g/g) or content
(g/m2) basis. For a given chemical, similar bands were selected
on a concentration or a content basis less than 6%. Datt (1998) indi-
cated that the use of content (a mass per unit leaf area) rather than
concentration (a mass per unit leaf mass) has been found to be
more suitable for remote sensing applications because it is a better
representation of amount of matter interacting with light per unit
surface area. Furthermore, literatures also demonstrated that in or-
der to be compatible with remotely sensed canopy reflectance, the
leaf level chemical measurements were normally multiplied by
biomass or LAI to be upscaled to the canopy level, and the canopy
properties were expressed as a mass per unit surface area (g/m2)
(Homolová et al., 2013). However, it still remains unclear how sig-
nificant differences are when a chemical expressed on concentra-
tion (mg/g) or content (lg/cm2) basis at leaf level was estimated
using reflectance measurement at canopy level, and few efforts
have been made for comparing the accuracy of a chemical estima-
tion based on different unit expressions, concentration (mg/g),
content (lg/cm2) and density (g/m2), using experimental canopy
reflectance measurement.

Some previous studies have compared retrieval capability for a
given unit measurement of chemical at different remote sensing
scales. For instance, Bian et al. (2013) have established the rela-
tionships between the concentrations (mg/g) of some key bio-
chemical compounds of tea and the reflectance at three different
levels: powder, fresh leaf and canopy levels. But until now, the
relationships between the different units of measurement of
carotenoids or any other biochemical compounds and the reflec-
tance measurement at a given level (canopy-level in this study)
have not been well discussed.

Additionally, most of the algorithms or vegetation indices for
carotenoids reported in these literatures have been developed
using leaf reflectance measurements carried out on a few decidu-
ous and coniferous species from the northern hemisphere (Hernán-
dez-Clemente et al., 2012; Zarco-Tejada et al., 2013). Such
algorithms and vegetation indices need to be applied to other spe-
cies from different geographical and climatic regions of the world
to see if they are indeed general. The cotton in Xinjiang, China, is
different from the vegetation types usually described in remote
sensing literature for carotenoids, where carotenoids content and
chlorophyll content are relatively higher than forest sites. Further-
more, the continental arid climate of Xinjiang is characterized by
aridity, rich sunlight and rare rainfall. The previous studies have
proved that the photoprotection system plays a critical role in
plants adapted to high temperature, high irradiation levels and
drought (Faria et al., 1996; Hernández-Clemente et al., 2011). Very
few high spectral resolution reflectance studies been carried out on
cotton in China, and none of these have investigated the relation-
ships between canopy reflectance and amount of carotenoids. This
study is the first to investigate, in detail, the relationship between
different units of measurement of carotenoids and experimented
canopy reflectance measurement for cotton.

The present study investigated the relationship between cotton
canopy reflectance measurement and the amounts of carotenoids
by comparing carotenoids expressed as a mass per unit area (Car
(g/m2) and Car (lg/cm2)) and as a mass per unit mass (Car (mg/
g)) using stepwise multiple linear regression (SMLR), published
vegetation indices, band selection indices and partial least square
regression (PLSR) approaches. The main aims of the study were
(1) to analyze the relationships between canopy hyperspectral
reflectance and different units of measurement of carotenoids;
(2) to compare the estimation accuracy of the different units of
measurement of carotenoids; (3) to assess the prediction capability
of SMLR, published vegetation indices, band-selection indices and
PLSR in different units of measurement of carotenoids estimation.
2. Material and methods

2.1. Field data collection

The field experiment was conducted in June–September 2010
and 2011 at agricultural belts in Shihezi, Xinjiang, Northwest of
China (85�590E, 44�190N), where cotton is the dominate crop. The
continental arid climate of Xinjiang is characterized by aridity, rich
sunlight and rare rainfall, with sharply defined seasons, high an-
nual and diurnal fluctuations in air temperature, and low precipi-
tation. Cotton is generally planted in April–May, and harvested in
September–October. The whole growth period is about 180 days.
The medium loam soil at the experiment area had the following
properties: the field moisture capacity at depth of 10 cm was
0.33 g/cm3, the volumetric water content at depth of 10 cm was
1.59 g/cm3, and the saturation moisture content was 0.44 g/cm3.

Field data collection were conducted in June–September 2010–
2011 for eight times from seedling stage until boll stage (the actual
dates were 12 June, 14 July, 8 August, and 8 September, 2010; 24
June, 11 July, 28 July, and 17 August, 2011, respectively). This pro-
cedure ensured that the normally occurring variation due to
growth stage and measurement factors was included in the mod-
els, giving a more realistic basis for model development.

Canopy reflectance was obtained using an Analytical Spectral
Devices, FieldSpec Full Range (ASD FieldSpec FR, Analytical Spec-
tral Devices, Inc., Boulder, CO, USA) that acquires continuous spec-
tra from 350 to 2500 nm. All canopy spectral measurements were
taken on clear days with no visible cloud cover between 10:00 am
and 14:00 pm (Beijing local time) since during this period the
weather conditions and sunlight conditions were generally at the
most stable state. In each plot, representative plants were selected
for canopy spectral measurement. Taking into account the impact
of soil background, in the first field campaign, the sensor head
was placed about 0.3 m vertically above the canopies. This resulted
in a spot size of 13 cm in diameter in each measurement since the
ASD sensor has a field of view of 25 degrees. In the other field cam-
paigns, the sensor head was placed approximately 1 m vertically
above the canopies, leading to a spot size of approximately
44 cm in diameter on the canopies.

The reflectance of a white Spectralon panel (BaSO4) was mea-
sured before every reflectance was taken, then the reflectance
was calculated as the ratio between energy reflected by the canopy
and energy incident on the canopy. Every reflectance was an aver-
age of ten repeated scans that were automatically acquired by the
FieldSpec.
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Leaves were sampled from the top of the canopy, and were
placed in paper bags and then stored in a freezer at �4 �C prior
to carotenoids determination. Leaves healthy and homogenous col-
or without visible symptoms of damage were used in the experi-
ments. The wet lab extraction technique was used to determine
the carotenoids concentration. A 1.8 cm circle was cut from each
leaf sample. After weighing the fresh leaf weight, the samples were
grinded in 10 ml extract (80% acetone: waterless-ethanol: distilled
water = 4.5:4.5:1, volume proportion), and then another 10 ml ex-
tract were added for a total of 20 ml in each tube. Tubes were
stored in the dark at 25 �C for 48 h prior to spectrophotometer
measurements. Each sample for pigment determination was fil-
tered and placed in a cuvette, and absorbance measured at
470 nm, 645 nm and 663 nm using BECKMAN722S spectropho-
tometer. Chlorophyll a (Ca) chlorophyll b (Cb) and carotenoids
(Car) concentration were calculated using the extinction coeffi-
cient derived by Jiang and Zhu (1999), and absorbance measured
at 470 nm, 645 nm and 663 nm with Eqs. (1)–(3):

Ca ðmg=LÞ ¼ 9:784 � A663 � 0:990 � A645 ð1Þ

Cb ðmg=LÞ ¼ 21:426 � A645 � 4:650 � A663 ð2Þ

Car ðmg=LÞ ¼ 4:695 � A470 � 0:268 � ðCaþ CbÞ ð3Þ

where Ax is the absorbance of the extract solution at wavelength x.
The unit of the carotenoids was subsequently converted to concen-
tration (a mass per unit leaf area, lg/cm2), content (a mass per unit
leaf fresh weight, mg/g) and density (a mass per unit soil surface
area, g/m2), respectively, using data on the volume of leaf pigment
extract, the leaf fresh weight and the leaf disc area, with Eqs. (4) and
(5):

Car ðmg=gÞ ¼ Car ðmg=LÞ
� vol: solvent ðmlÞ=1000=leaf fresh weight ðgÞ ð4Þ

Car ðlg=cm2Þ ¼ Car ðmg=gÞ � 1000

� leaf fresh weight ðgÞ=leaf area ðcm2Þ ð5Þ

where vol. solvent is the volume of leaf pigment extract solution. If
the concentration or content at leaf level is multiplied by biomass or
LAI, one obtains a canopy value (i.e. canopy property, density) ex-
pressed as a mass per unit surface area (Homolová et al., 2013). In
our study, the carotenoids density (Car (g/m2)) was calculated on
the basis of carotenoids concentration (Car (mg/g)) and the amount
of fresh leaves per unit surface area m2:

Car ðg=m2Þ ¼ Car ðmg=gÞ=1000

� leaf fresh weight per unit surface area ðg=m2Þ
ð6Þ
2.2. Published spectral vegetation indices for carotenoids estimation

The literatures have proposed many spectral indices for Car
estimation using diverse combinations of wavelengths. However,
which kind of indices is an appropriate one for cotton carotenoids
has not been discussed. This part compared the performance of dif-
ferent indices applied on cotton canopy dataset and different units
of measurement of carotenoids to aid in the selection of an adapted
one. A detailed summary of the narrow-band vegetation indices in
this study is shown in Table 1. Candidate Car optical indices have
been grouped into two main categories based on the spectral re-
gion used: visible ratios (Gamon et al., 1992; Garrity et al., 2011;
Gitelson et al., 2003a; Gitelson et al., 2006; Hernández-Clemente
et al., 2011) and visible/NIR ratios (Blackburn, 1998; Chappelle
et al., 1992; Datt, 1998; Merzlyak et al., 1999; Peñuelas et al.,
1995). In the visible region, Gitelson et al. (2002) showed that
the sensitivity of reciprocal reflectance to carotenoids content
was maximal in a spectral range around 510 nm, and the 550
and 700 nm bands were used to remove the effect of chlorophyll,
proposing the CCI as (1/515)–(1/550) and (1/515)–(1/700). Gamon
et al. (1992) proposed PRI and calculated PRI with the 570 nm band
as a reference (PRI570), and later with 515 nm band as a reference
(PRI515) and has been found to minimize structural effects (Her-
nández-Clemente et al., 2011). In Table 1, Nos. 1–8 vegetation indi-
ces belong to this type. The main spectral bands proposed for
carotenoids estimation in the visible/NIR region are based on band
ratios in bands around R700–770 and the green region (500 and
550 nm) (Chappelle et al., 1992; Merzlyak et al., 1999). A few
examples are CRI700, and ratio indices R760/R550 (Nos. 9–13 in Ta-
ble 1). Other indices have been formulated as combinations of R800

or R860 with visible bands (470, 680, 635 nm) (Blackburn, 1998;
Peñuelas et al., 1995). Some examples are (R800 � R470)/
(R800 + R470) (Blackburn, 1998), ((R800 � R750)/(R750 � R670)) (Dash
and Curran, 2004) and R800/R510 (Datt, 1998).

2.3. Specific waveband selection

As shown by Le Maire et al. (2004,2008) testing all possible
combinations of wavebands may help to build better models. In
this section, two families of indices were tested: the normalized
difference (ND) (Eq. (7)) and the difference of reciprocal reflectance
index (1/R), (Eq. (8)). The reciprocal index (1/R) is selected because
some previous studies found that reciprocal reflectance at wave-
lengths out of the pigment absorption maxima could be success-
fully used for assessment of chlorophyll content in leaves of a
number plant species (Gitelson et al., 1999, 2002; Gitelson and
Merzlyak, 1994, 1996, 1997). This feature of leaf reflectance has
been used to estimate Chl content in leaves accurately (Gitelson
and Merzlyak, 1996, 1997). However, it should be examined
whether this approach can be used for Car retrieval from the can-
opy reflectance spectra. We test this technique for carotenoids esti-
mation. Moreover, ND indices and reciprocal indices normally
showed better results than other indices such as simple reflectance
and difference of reflectance.

NDVI ¼ Rk1 � Rk2ð Þ= Rk1 þ Rk2ð Þ ð7Þ

1=R ¼ 1=Rk1ð Þ � ð1=Rk2Þ ð8Þ

All possible two-band combinations of 650 (350–1000 nm)
wavelengths (422,500 combinations) were used in Eqs. (7) and
(8). A linear regression was performed in order to determine the
correlation coefficient (R2). All the R2 values were plotted in a ma-
trix plot and the plot revealed a characteristic pattern with a num-
ber of ‘‘hot spots’’ with relatively high coefficients of
determination. These ‘‘hot spots’’ were selected by choosing the
wavelength combinations that showed an R2 exceed 0.5. The band-
widths for each of the selected spots were determined by fitting a
rectangle that could the spot interest inside its limits. The advanta-
ges of the matrix plots are that they give a quick overview of thou-
sands of wavelength combinations and make it possible to detect
wavelengths of interest for further analysis Le Maire et al. (2004,
2008).

2.4. Partial least squares regression (PLSR)

PLSR is a bilinear calibration method using data compression by
reducing the large number of measured collinear spectral variables
to a few non-correlated latent variables. It is an extension of multi-
ple linear regressions modeling that statistically determines the
relative contribution of each chemical constituent to reflectance
(Asner et al., 2009, 2011). The PLSR approach could model several



Table 1
Hyperspectral vegetation indices proposed in other studies.

No. Vegetation index Index ID Formulations References

1 Carotenoid concentration index CRI550 (1/R515–1/R550) Gitelson et al. (2003a, 2006)
2 Carotenoid concentration index CRI700 (1/R515–1/R700) Gitelson et al. (2003a, 2006)
3 Carotenoid concentration index RNIR � CRI550 ((1/R515–1/R550) � R770) Gitelson et al. (2003a, 2006)
4 Carotenoid concentration index RNIR � CRI700 ((1/R515–1/R700) � R770) Gitelson et al. (2003a, 2006)
5 Photochemical reflectance index PRI (R570 � R530)/(R570 + R530) Gamon et al. (1992)
6 Modified photochemical reflectance

index
PRIm1 (R515 � R530)/(R515 + R530) Hernández-Clemente et al. (2011)

7 Carotenoid/chlorophyll ratio index PRI � CI ((R570 � R530)/(R570 + R530) � (R760/
R700–1))

Garrity et al. (2011)

8 R515/R570 Hernández-Clemente et al. (2012)
9 Ratio analysis of reflectance spectra RARS (R746/R513) Chappelle et al. (1992)
10 Chlorophyll index red edge CIred-edge (R750/R710) Haboudane et al. (2002); Meggio et al. (2010)
11 R760/R500 Chappelle et al. (1992)
12 Plant senescencing reflectance Index PSRI (R680 � R500)/R750 Merzlyak et al. (1999)
13 Modified chlorophyll absorption in

reflectance index
MCARI ((R700 � R670)�0.2(R700 � R550)) � (R700/

R670)
Daughtry et al. (2000)

14 Green chlorophyll index CIgreen ((R800/R550)�1) Gitelson et al. (2003a, 2003b, 2005)
15 Red-edge chlorophyll index CIRed_edge ((R800/R750)�1) Gitelson et al. (2003a, 2003b, 2005)
16 Structure insensitive pigment index SIPI (R800 � R445)/(R800 + R680) Gitelson and Merzlyak (1996); Peñuelas et al. (1995); Zarco-

Tejada et al. (2004)
17 MERIS terrestrial chlorophyll index MTCI (R800 � R750)/(R750 � R670) Dash and Curran (2004)
18 Pigment-specific simple ratio PSSRc (R800/R470) Blackburn (1998)
19 Pigment-specific normalized difference PSNDc (R800 � R470)/(R800 + R470) Blackburn (1998)
20 R800/R510 Datt (1998)
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response variables simultaneously while effectively dealing with
strongly collinear and noisy independent variables (Wold et al.,
2001). A large number of studies reported successful results and
potential applications of PLSR in various disciplines (Hansen and
Schjoerring, 2003; Hatonen et al., 1999; Lindberg et al., 1983).
The PLSR algorithm has inferential capability, which can be used
to model a possible linear relationship between carotenoids and
measured canopy reflectance spectra. PLSR implicitly incorporates
all wavebands in a linear fashion and finds a single equation typi-
cally via leave-one-out cross-validation (LOOCV) (Atzberger et al.,
2010; Wold et al., 2001). The number of factors entering into a final
model needs to be carefully chosen to avoid excessive overfitting
(Zhao et al., 2013). In this study, reflectance data in wavelength
range between 350 and 1000 were used for the PLSR analysis. A
leave-one-out cross-validation (LOOCV) scheme was employed to
determine the number of chosen factors by minimizing the pre-
dicted residual sums of squares (PRESS) (Chen et al., 2004). The ba-
sic PLSR algorithm will not be described in this paper, but further
information on the PLSR model can be obtained in (Lindberg
et al., 1983). Detailed description of the PLSR technique can be
found in Geladi and Kowalski (1986); Wold et al. (2001). In present
paper, the PLSR modeling was performed using MATLAB (version
7.8).

2.5. Quantitative of model performance

To quantify performance of carotenoid-reflectance models
based on stepwise multiple linear regression (SMLR), published
vegetation indices, band selection indices, and PLSR, various
parameters between estimated and measured carotenoids were
calculated: root mean square error (RMSE), relative RMSE (RMSE/
mean, RMSE%), mean and relative mean absolute errors (MAE
and MAE%). Both RMSE and MAE indicate absolute estimation er-
rors. RMSE provides a direct estimate of the modeling error ex-
pressed in original measurement units (Kvalheim, 1987), and
MAE indicates degree of agreement between measured and esti-
mated values (Nash and Sutcliffe, 1970). The equations for RMSE,
RMSE%, MAE and MAE% are given in Eqs. (9)–(12):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ŷi � yið Þ2

q
=n ð9Þ
MAE ¼
Xn

i¼1

jŷi � yij=n ð10Þ

RMSE% ¼ 100 � RMSE=�yi ð11Þ

MAE% ¼ 100 �MAE=�yi ð12Þ

where ŷi and yi are the estimated and measured crop variables,
respectively, and n is the number of samples.

Besides, coefficient of determination (R2) value was calculated
from each data set (calibration and validation). R2 indicates
strength of statistical correlation between measured and estimated
values for models. Detailed descriptions and definitions of these
model performance parameters are given in Cacuci (2005); Taylor
(1997).
3. Results and discussion

3.1. Carotenoids content and composition

The data set (n = 193) was divided into a calibration set
(n = 130) and a validation set (n = 63). To describe the distribution
of different units carotenoids, a number of statistics such as max-
imum, minimum, mean and standard deviation were calculated.
Basic statistics for the three different units of measurement of
carotenoids were summarized in Table 2.

The amount of carotenoids ranges from 0.036 to 1.097 for Car
(g/m2), from 6.90 to 44.69 for Car (lg/cm2), and from 0.256 to
1.009 for Car (mg/g), respectively. The wide range in the investi-
gated crop variables can make the relationship between plant per-
formance and reflectance measurements as realistic and universal
as possible.

The distribution of each unit measurement of carotenoids is
shown in Fig. 1. As seen, the distribution of Car (mg/g) can be fitted
with a Gaussian distribution, while the Car (lg/cm2) and Car (g/
m2) represented by a lognormal distribution. The most values were
centered at 0–0.2 for Car (g/m2), at 10–20 for Car (lg/cm2), and at
0.3–0.5 for Car (mg/g).

The correlations between different units of measurement of
carotenoids are shown in Fig. 2. Car (mg/g) and Car (lg/cm2) were



Table 2
Basic statistics computed on the three units of measurement of Car.

Group n g/m2 lg/cm2 mg/g

Mean Range SD Mean Range SD Mean Range SD

All 195 0.271 0.036–1.097 0.207 18.54 6.90–44.69 7.206 0.471 0.256–1.009 0.152
Calibration 130 0.281 0.044–1.097 0.222 18.73 6.90–44.69 7.560 0.469 0.269–1.009 0.149
Validation 63 0.239 0.036–0.681 0.156 18.16 9.35–38.04 6.493 0.458 0.256–0.844 0.131
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Fig. 1. Distributions of Car (g/m2), Car (lg/cm2) and Car (mg/g) in the entire data set.

Fig. 2. Correlation (r) between different units of measurement of carotenoids.

76 Q. Yi et al. / ISPRS Journal of Photogrammetry and Remote Sensing 91 (2014) 72–84
highly correlated. A low correlation was observed between Car
(lg/cm2) and Car (g/m2). The reason why Car (g/m2) was more cor-
related to Car (mg/g) than to Car (lg/cm2) probably because Car (g/
m2) was obtained using Car (mg/g) multiplied by leaf biomass per
unit surface area.
3.2. Correlation between simple reflectance and carotenoids

In order to develop better algorithms for estimating carote-
noids, the wavelength bands with maximum sensitivity to carote-
noids were identified from correlogram plots showing the
correlation coefficients between different units of measurement
of carotenoids and canopy reflectance at all wavelengths. The cor-
relogram is shown in Fig. 3.
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

350 450 550 650 750 850 950 1050

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 (r

)

Wavelength (nm)

Car(g/m2) Car(µg/cm2) Car(mg/g)

548 nm 718 nm

Car(g/m2) Car(µg/cm2) Car(mg/g) P0.001

539 nm

Fig. 3. Correlogram showing the correlation coefficient between amount of
carotenoids and simple reflectance (350–1000 nm) at each wavelength band.
The correlation between individual wavelengths and amount of
carotenoids were differed with carotenoids units expression, as
weight-normalized values (i.e. mg carotenoids per g fresh leaf
weight) or as area-normalized values (i.e. lg carotenoids per cm2

fresh leaf area and g carotenoids per m2 surface area). As can be
seen, the correlation coefficients of three units carotenoids were
visually similar in shape and absorption band positions, and all
the coefficients were reached a significant at P < 0.001 (horizontal
line represents the value significant at P = 0.001). The wavelengths
of maximum sensitivity to carotenoids were indicated by big neg-
ative correlation coefficient, as reflectance decreases with increas-
ing carotenoids at these wavelengths. The vertical lines show the
wavelength locations that have the maximum correlation coeffi-
cients value: Car (g/m2): 539 nm, Car (lg/cm2): 718 nm, and Car
(mg/g): 548 nm. In each case, there were two troughs in negative
correlation, at about 550 and 710 nm, between reflectance and
carotenoids. These two regions have been found to high sensitivity
to pigment content in many plant species (Chappelle et al., 1992;
Gitelson and Merzlyak, 1996, 2002). In the visible region, there
was a stronger linear relationship between reflectance and Car
(g/m2). At wavelengths between about 350 nm and 720 nm, the
relationships between reflectance and carotenoids were consis-
tently greater for (g/m2) (maximal correlation = �0.688 at
539 nm) and (mg/g) (maximal correlation = �0.625 at 548 nm)
compared with (lg/cm2) (maximal correlation = �0.630 at
718 nm). However, in the NIR region, at wavelengths between
720 nm and 1000 nm, the reflectance showed a higher correlation
with Car (lg/cm2).

In this section, stepwise multiple linear regression (SMLR) be-
tween 350 nm and 1000 nm with a maximum of two regressors
was performed with canopy reflectance measurement and three
units of measurement of carotenoids. The following algorithm
equations (Eqs. (13)–(15) were developed for the estimation of
three units of measurement of carotenoids using SMLR:

Car ðg=m2Þ ¼ 0:787� 62:69 � R536 þ 52:76 � R560 ð13Þ
Car ðlg=cm2Þ ¼ 23:09� 715:86 � R549 þ 574:82 � R700; ð14Þ
Car ðmg=gÞ ¼ 0:547� 14:84 � R548 þ 10:12 � R703 ð15Þ

Above equations shown that although the wavelengths selected
by the SMLR were different for all three units carotenoids, the se-
lected bands were all related to known absorption bands, around



Table 3
Correlation of vegetation indices with three units of measurement of carotenoids (n = 195).

No. Vegetation index Car (g/m2) Car (lg/cm2) Car (mg/g)

1 (1/R515–1/R550) 0.567 0.289 0.405
2 (1/R515–1/R700) 0.709 0.547 0.603
3 ((1/R515–1/R550) � R770) 0.224 (ns) �0.058 (ns) 0.068 (ns)
4 ((1/R515–1/R700) � R770) 0.44 0.191 (ns) 0.295
5 (R570 � R530)/(R570 + R530) 0.428 0.559 0.473
6 (R515 � R530)/(R515 + R530) 0.144 (ns) 0.404 0.268
7 ((R570 � R530)/(R570 + R530) � (R760/R700�1)) 0.655 0.558 0.562
8 R515/R570 �0.026 (ns) 0.252 0.116 (ns)
9 (R746/R513) 0.333 0.071 (ns) 0.183 (ns)
10 (R750/R710) 0.316 0.076 (ns) 0.172 (ns)
11 R760/R500 0.33 0.068 (ns) 0.178 (ns)
12 (R680 � R500)/R750 0.036 0.255 (ns) 0.137 (ns)
13 ((R700 � R670) � 0.2(R700 � R550)) � (R700/R670) �0.368 �0.467 �0.398
14 ((R800/R550) � 1) 0.526 0.324 0.401
15 ((R800/R750) � 1) 0.693 0.686 0.672
16 (R800 � R445)/(R800 + R680) 0.435 0.217 (ns) 0.312
17 ((R800 � R750)/(R750 � R670)) 0.672 0.706 0.671
18 (R800/R470) 0.391 0.14 (ns) 0.243
19 (R800 � R470)/(R800 + R470) 0.412 0.185 0.285
20 R800/R510 0.374 0.117 (ns) 0.225 (ns)

‘‘ns’’ indicates not significant at P = 0.001. The values in boldface indicate the highest correlation coefficients for three units of carotenoids.
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Fig. 4. The exponential and linear relationship between the best published indices and (a): Car (g/m2); (b): Car (lg/cm2); and (c): Car (mg/g).
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535 nm, 550 nm and 700 nm. The first selected wavelengths for all
three units carotenoids were all at green region, and the selected
bands for Car (lg/cm2) and Car (mg/g) were almost same. The cal-
ibration and validation statistics for Eqs. (13)–(15) were given in
the Section 3.6.
3.3. Sensitivity of published vegetation indices to different unit
carotenoids

The relationship between different units carotenoids and pub-
lished vegetation indices was examined by linear regression. The
correlation coefficients between these indices and carotenoids
are given in Table 3. All correlation coefficient reported were sig-
nificant at P 6 0.001 and those not significant were indicated by
‘‘ns’’. The results show that the published vegetation indices based
on band ratios in bands around R700 � R770 and the green region
(500 and 550 nm) (i.e. Nos. 9–13, Table 3) were not directly appli-
cable to estimation of carotenoids in cotton. The indices such as
((1/R515 � 1/R550) � R770), R515/R570 and (R800 � R445)/(R800 + R680)
were also poorly correlated with carotenoids. The indices with
the highest correlation coefficient (r = 0.709) for Car (g/m2) was a
reciprocal type index, i.e. (1/R515 � 1/R700), but it was not the opti-
mal index for estimating of Car (lg/cm2) and Car (mg/g). The nor-
malized differences type index (R800 � R750)/(R750 � R670) showed
the best correlation with Car (lg/cm2) and Car (mg/g), with r equal
to 0.706 and 0.671, respectively. Among the three units of
carotenoids, Car (g/m2) and Car (lg/cm2) showed a stronger and
stable correlation with most of the published vegetation indices.

A preliminary comparison of these indices indicated that the
CIred-edge index was the best index for Car (g/m2), and MTCI
was the best for both Car (lg/cm2) and Car (mg/g) estimation. Scat-
terplots were constructed to examine the correlation between the
selected vegetation indices and carotenoids, and to check for linear
and nonlinear relations. The linear and exponential relationship
between these indices and carotenoids were plotted in Fig. 4. As
seen, more variation was explained if the selected indices were
used in an exponential relationship to all three units carotenoids.

3.4. Band selection and development of indices

ND and 1/R narrow band vegetation indices were calculated
from the measured canopy reflectance spectra using all possible
two-band combinations. The R2 between these narrow band vege-
tation indices and carotenoids were computed. The illustrations R2

between the narrow band vegetation indices and carotenoids are
shown in Fig. 5.

The ‘‘hot spots’’ were selected by choosing the wavelength com-
binations that showed an R2 exceed 0.5 (Table 4). As can be seen,
for Car (g/m2), the difference of reciprocal reflectance type index
performed better than NDVI type index, but for Car (lg/cm2) and
Car (mg/g), NDVI type index was more efficient. Band combina-
tions provided by k1 at red edge spectral region from 600 to
750 nm combined with k2 in the green area 450–550 nm were rep-



Fig. 5. Coefficient of determination (R2) for the relation of all combinations of wavelengths used for a linear regression analysis of normalized vegetation index = (Rk1 � Rk2)/
(Rk1 + Rk2) and reciprocal index = (1/Rk1 � 1/Rk2) against Car (g/m2), Car (lg/cm2), and Car (mg/g), respectively. A total number of 650 � 650 = 422500 combinations were
investigated.
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resented in 50% of all selected hot spots for all three units of mea-
surement of carotenoids. Another effective band combination with
wavelengths was in the 750–800 nm and 780–860 nm. The red
edge region was almost present for all three units measurement
of cartenoids. So the determination coefficient (R2) spectra of band
combination indices at red-edge (750 nm) were detailed.

Spectra of the determination coefficient (R2) of the relationship
between the difference of reciprocal reflectance, (1/R750)–(1/Rk),
normalized difference index, (R750 � Rk)/(R750 + Rk), and different
units of measurement of carotenoids are shown in Fig. 6. For Car
(g/m2), very high correlation was observed in green region (around
550 nm), reciprocal type index. However, for Car (lg/cm2) and Car
(mg/g), a broad flat maximum of the correlation (R2 = 0.4–0.5) was
observed in the NIR region of the spectrum between 800 and
900 nm, both in reciprocal type index and the normalized differ-
ence type index. For all three units measurement of caroteonids,
correlations in the 600–700 nm range were lower than other
regions.

Based on R2 values in the 2-D correlation plots, band combina-
tions that formed the best indices were determined for Car. The



Table 4
Band width of hot spots with the coefficient of determination bigger than 0.5 (R2 > 0.5).

Units Band width 1/R NDVI

Hot spot1 (nm) Hot spot2 (nm) Hot spot3 (nm) Hot spot1 (nm) Hot spot2 (nm)

Car (g/m2) k1 500–510 600–650 700–1000
k2 460–500 450–510 520–570

Car (lg/cm2) k1 797–799 750–800 700–705
k2 800–801 780–860 535–565

Car (mg/g) k1 750–780 410–411
k2 800–870 407–409
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Fig. 6. The spectra of the determination coefficient (R2) of the relationship (a) between (1/R750)–(1/Rk) and carotenoids; and (b) between (R750 � Rk)/(R750 + Rk) and
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Table 5
Band positions and R2 values between the optimal indices and three different units of
measurement of carotenoids.

Units Optimal indices R2

Car (g/m2) 1/R532 � 1/R707 0.575
Car (lg/cm2) (R800 � R762)/(R800 + R762) 0.584
Car (mg/g) (R800 � R762)/(R800 + R762) 0.545

Q. Yi et al. / ISPRS Journal of Photogrammetry and Remote Sensing 91 (2014) 72–84 79
best performing indices and the band positions are tabulated in
Table 5.

Both linear (y = ax + b) and exponential (y = a � expbx) fitting
procedures were tested using these new indices and their equa-
tions and the values of R2 are shown on the graphs (Fig. 7). Same
to the results of published vegetation indices, more variation was
explained if the selected indices were used in an exponential rela-
tionship to all three units carotenoids. Among the three units
carotenoids, the coefficient of determination for the relationship
between the optimal band selection index (1/R532)–(1/R707) and
Car (g/m2) was greater than the coefficients of determination for
Car (lg/cm2) and Car (mg/g).

3.5. Performance of partial least square regression (PLSR)

The relationship between the numbers of latent variables and
the prediction residual error sum of squares (PRESS) statistics were
shown in Fig. 8. It can be learned that the optimal number of latent
variables in the final models for Car (g/m2), Car (lg/cm2) and Car
(mg/g) were 10, 8 and 9, respectively (see Fig. 8).

The contribution of each wavelength can be visualized by anal-
ysis of the computed loading weights (LW) (Fig. 9). Computed LWs
stress further the results of 2-D correlograms analysis that spectral
bands useful for carotenoids were those in 750, 715 and 550 nm
regions. These zones showed a significant peak. The first three
LWs showed some common trends, reflecting the relationship be-
tween the spectral data and the canopy. Two zones at approxi-
mately 550 and 700–740 nm of major importance for the PLSR
models could be identified.
Calibration equation coefficients (B-coefficients) were also used
to determine the importance of spectral bands (Haaland and Tho-
mas, 1988; Hansen and Schjoerring, 2003; Wold et al., 2001; Zhao
et al., 2013) (Fig. 10). In the PLSR model, B-coefficients represent
the contribution of each predictor (waveband) to the model. The
closer to zero a coefficient is, the less useful the associated band
is. Strong co-variation between Car and canopy reflectance in the
green (520–550 nm) and red-edge regions (680–750 nm) can also
be visualized in the form of negative and positive peaks of the
regression coefficient B.

The accuracy of the estimated carotenoids values and the per-
formance of predictive models were deduced based on the perfor-
mance statistics derived from measured and estimated carotenoids
values and on the calculated model performance indices (Table 6).
The results show that accurate predictions of cartenoids can be
made based on PLSR models. As can be seen, the difference in R2

values inside each of the three units measurements of carotenoids
were very small (2–3%). The best coefficient of determination (R2)
was obtained for estimates of Car (lg/cm2). The highest RMSE%
and MAE% values were obtained for Car (g/m2). The high R2 value
indicates the strong linear relationship between the measured
Car (g/m2) and canopy reflectance, but the high RMSE% and
MAE% confirm the large difference between measured and esti-
mated Car (g/m2) values. For Car (mg/g), the smallest R2 value,
RMSE%, and MAE% were all obtained. This discrepancy (poor corre-
lationship but low estimation errors) probably suggests non-linear
relationship between Car (mg) and canopy reflectance, but the
PLSR made a good linear fit. Among these three units measurement
of carotenoids, the model performance indices for Car (lg/cm2) has
a high degree of agreement among R2, RMSE% and MAE%.

3.6. Comparison of the estimation accuracies of different units
carotenoids

The predictive accuracies of SMLR, published vegetation indices,
optimal waveband selection indices and PLSR models were
assessed against independent validation data sets (n = 63) not
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concluded in the calibration phase, and the results were also com-
pared with calibration data set (n = 130). The values of R2, RMSE,
RMSE%, MAE and MAE% are given in Table 7. Because the model
performance indices for Car (lg/cm2) has a high degree of consis-
tency, the values of R2, RMSE% and MAE% for Car (g/m2) and Car
(mg/g) were all compared with those for Car (lg/cm2). The
differences between R2, RMSE% and MAE% for Car (g/m2) and Car
(mg/g) and those for Car (lg/cm2) are shown in brackets (Table 7).
For calibration data set, the average R2 between estimations and
observations was 0.554 for Car (g/m2), 0.592 for Car (lg/cm2), and
0.547 for Car (mg/g). In generally, higher explanations of variation
(R2 values) were obtained by expressing the carotenoids on the ba-
sis of content (g/m2) or (lg/cm2) than by expressing the data on
the basis of concentration (mg/g). The highest R2 values were al-
ways obtained for Car (lg/cm2) by all four methods. The differ-
ences of R2 values between Car (g/cm2) and Car (lg/cm2) and



Table 6
Performance statistics of PLSR predictive models.

R2 RMSE RMSE% MAE MAE%

Car (g/m2) 0.645 0.132 46.95 0.094 33.52
Car (lg/cm2) 0.665 4.359 23.27 3.24 17.29
Car (mg/g) 0.635 0.089 19.07 0.061 12.96
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between Car (mg/g) and Car (lg/cm2) decreased 3.8% and 4.5%,
respectively. The highest R2 values of three units carotenoids were
all obtained by PLSR, with R2 = 0.665 for (lg/cm2), R2 = 0.645 for (g/
m2), and R2 = 0.635 for (mg/g), respectively (Table 7). However, the
distributions of RMSE% and MAE% values for three units carote-
noids were not coincident with R2 values. As seen, the average rel-
ative root mean square errors (RMSE%) were 53.27% for Car (g/m2),
25.79% for Car (lg/cm2), and 21.11% for Car (mg/g) with average
MAE% of 35.98%, 18.32% and 15.03%, respectively. Compared to
the results yielded for Car (lg/cm2), the average RMSE% and
MAE% for Car (g/m2) increased 27.48% and 17.66%, while for Car
(mg/g), both RMSE% and MAE% decreased 4.68% and3.29%, respec-
tively. The lower R2, RMSE% and MAE% values were all observed for
Car (mg/g). The relatively low R2 value between measured and esti-
mated Car (mg/g) values probably indicated poor linear relation-
ship between the measured Car (mg/g) and canopy reflectance.
Whereas, the low RMSE% and MAE% values suggested considerable
similarity between measured and estimated Car (mg/g). Just as
mentioned before, this discrepancy (poor correlationship but low
estimation errors) probably suggests non-linear relationship (e.g.
exponential relationship mentioned in Sections 3.4 and 3.5) be-
tween Car (mg/g) and canopy reflectance, but the algorithm made
a good linear fit.

For validation data set, the variation tendency of all model per-
formance indices was a little different from that for calibration
data set. First, the highest R2 values by different methods were
not always obtained for Car (lg/cm2), especially when published
indices and SMLR were used (Table 7). Also worth noting, the high-
est RMSE% and MAE% values were still always obtained by Car (g/
m2). This result indicated the large difference between measured
and estimated Car (g/m2) values. Second, for the calibration data
set, the highest R2 and the lowest RMSE% and MAE% for Car (g/
m2), Car (lg/cm2) and Car (mg/g) were all derived from PLSR.
Table 7
Performance statistics of predictive models.

Methods Data sets Calibration (n = 130)

Units R2 RMSE RMSE% MA

SMLR (g/m2) 0.521 0.153 54.54 0.11
(�2.8%) (27.53)

(lg/cm2) 0.548 5.060 27.01 3.77
(mg/g) 0.516 0.103 21.96 0.07

(�3.2%) (�5.05)

Published VI (g/m2) 0.465 0.164 58.50 0.10
(�8.8%) (31.24)

(lg/cm2) 0.553 5.105 27.25 3.42
(mg/g) 0.523 0.103 21.96 0.07

(�3.0%) (�5.30)

Band selection indices (g/m2) 0.559 0.149 53.08 0.09
(�4.4%) (27.44)

(lg/cm2) 0.603 4.803 25.64 3.28
(mg/g) 0.543 0.101 21.45 0.07

(�6.0%) (�4.19)

PLSR (g/m2) 0.645 0.132 46.95 0.09
(�2%) (23.68)

(lg/cm2) 0.665 4.359 23.27 3.24
(mg/g) 0.635 0.089 19.07 0.06

(�3%) (�4.2)
However, the comparison of performances obtained with valida-
tion data set shows that PLSR cannot lead to the highest R2 value
for Car (g/m2) anymore. PLSR and published vegetation indices per-
formed better than those optimal band selection indices, which
was especially true for Car (g/m2) and Car (mg/g). Those results
showed that the main disadvantage of band selection indices prob-
ably was their empirical base, which can result in a lack of gener-
ality (Féret et al., 2011). Finally, the summary statistics (see
Table 7) showed a high degree of agreement among the R2 values
and RMSE% and MAE% values for Car (lg/cm2) for both calibration
and validation data sets.

The algorithm equations were used to predict the carotenoids
with reflectance measurement or vegetation indices calculated
from the validation samples. The good agreement between the
estimated and measured values of carotenoids was indicated by
the scatterplots in Fig. 11. The values of slope and intercept were
shown on the graphs. Ideally, when the slope = 1 and intercept = 0,
it should be a perfect match.

The results in Fig. 11 and Table 7 both indicated that better re-
sults were obtained by expressing the carotenoids on the basis of
content (g/m2) or (lg/cm2) than by expressing the data on the ba-
sis of concentration (mg/g). As can be seen, the highest slope value
was obtained by Car (g/m2) using band selection VI approach, with
slope = 0.701. However, it was very apparent from Fig. 11, although
the estimated and measured Car (g/m2) showed a perfect linear
relationship, the estimated Car (g/m2) values were normally great-
er than measured Car (g/m2), which could explain why the higher
R2 values and higher RMSE% and MAE% values were all observed
for Car (g/m2) as indicated in Table 7. Besides, it was worth noting
that carotenoids were generally underestimated on higher values.
These saturation-like patterns were found in the relationships be-
tween all three units carotenoids and vegetation indices or spectral
reflectance. The same saturation effects were also found in the
relationship between leaf carotneoids content and canopy R515/
R570 for LAI values above 3 by Zarco-Tejada et al. (2013). More
investigations are needed to indentify the saturation relationships
between carotneoids and vegetation indices.

In addition, a detailed comparison of how significant the differ-
ences are among the estimation accuracies of those three units
carotenoids was performed by a paired-t-test (see Table 8).
Paired-t-test (a = 0.05) was performed on the relative residuals val-
Validation (n = 63)

E MAE% R2 RMSE RMSE% MAE MAE%

1 39.49 0.431 0.139 53.10 0.107 40.92
(19.32) (2.2%) (24.83) (21.42)

8 20.17 0.410 5.134 28.27 3.541 19.50
7 16.50 0.346 0.129 27.23 0.086 18.18

(�3.67) (�6.4%) (�1.04) (�1.32)

5 37.41 0.468 0.115 48.72 0.088 37.30
(19.13) (4.3%) (21.83) (19.05)

5 18.28 0.426 4.800 26.88 3.260 18.25
2 15.37 0.451 0.099 21.55 0.069 15.12

(�2.91) (2.6%) (�5.33) (�3.14)

4 33.51 0.390 0.145 60.92 0.098 40.99
(15.99) (�7.0%) (34.68) (23.89)

2 17.52 0.459 4.685 26.24 3.053 17.10
2 15.29 0.365 0.108 23.59 0.073 16.04

(�2.23) (�9.4%) (�2.65) (�1.06)

4 33.52 0.466 0.129 53.63 0.010 41.37
(16.23) (�9.7%) (31.56) (25.35)
17.29 0.563 3.99 22.07 2.89 16.02

1 12.96 0.456 0.097 21.07 0.068 14.69
(�4.33) (�10.7%) (�1.00) (�1.33)
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Fig. 11. Scatter plots of measured vs. estimated Car (g/m2), Car (lg/cm2) and Car (mg/g) derived from (a) SMLR; (b) the best published vegetation indices; (c) the best band
selection indices; and (d) PLSR.

Table 8
P-values of paired-t test between the relative residuals of Car (g/m2), Car (lg/cm2) and Car (mg/g).

SMLR Published VI Band selection VI PLSR

Car (lg/cm2) Car (mg/g) Car (lg/cm2) Car (mg/g) Car (lg/cm2) Car (mg/g) Car (lg/cm2) Car (mg/g)

Car (g/m2) 0.020 0.010 0.100 0.035 0.056 0.039 0.002 0.002
Car (lg/cm2) 0.493 0.574 0.67 0.97
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ues from Car (g/m2), Car (lg/cm2) and Car (mg/g). It can be learned
from Table 8, the differences of estimation accuracies between Car
(lg/cm2) and Car (mg/g) were not significant no matter what kind
methods were used. Whereas, the differences of relative residuals
values between Car (g/m2) and Car (lg/cm2) and between Car (g/
m2) and Car (lg/cm2) were always significant (P < 0.05), which



Table 9
P-values of paired-t test between estimated carotenoids values by SMLR (M1),
Published VI (M2), Band selection indices (M3) and PLSR (M4).

Car (g/m2) Car (lg/cm2) Car (mg/g)

M2 M3 M4 M2 M3 M4 M2 M3 M4

M1* 0.000 0.006 0.184 0.830 0.245 0.912 0.985 0.356 0.614
M2 0.423 0.000 0.055 0.787 0.423 0.459
M3 0.042 0.350 0.192

* M1: SMLR; M2: published VI; M3: band selection VI; M4: PLSR.
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was especially true when PLSR were used. These results indicated
that Car (lg/cm2) and Car (mg/g) can be equally estimated without
significant differences, but the estimation accuracies of Car (g/m2)
were significantly influenced by the used methods.

Finally, the performances of individual models based on differ-
ent methods have been assessed using statistical parameters de-
scribed in Table 7, but the performance differences among those
adopted methods have not been quantified. In order to statistically
compare the differences of all four methods in the estimation of
different units carotenoids, a paired-t-test (a = 0.05) was also per-
formed on estimated Car (g/m2), Car (lg/cm2) and Car (mg/g) val-
ues obtained by SMLR (M1), published vegetation indices (M2),
band selection vegetation indices (M3), and PLSR (M4) (see
Table 9).

The results in Table 9 showed that four methods can be equally
used for Car (lg/cm2) and Car (mg/g) without significant differ-
ences (P > 0.05). Whereas, the estimation results for Car (g/m2)
were significant different when different methods were used. Com-
bined with the results in Table 7, it can be inferred that the estima-
tion results of Car (g/m2) based on published vegetation indices
(M2) were significantly better than the estimation results based
on SMLR (M1) and PLSR (M4) (P < 0.000). These results indicated
that the estimation accuracies of Car (g/m2) were strongly influ-
enced by what kind of methods was used.
4. Conclusions

This paper examines SMLR, published vegetation indices, band
selection indices and PLSR modeling for estimation of carotenoids
on the basis of content (g/m2) and (lg/cm2), and on the basis of
concentration (mg/g), from canopy spectral data obtained at exper-
iment. The focus of the study was to systematically compare the
accuracy of carotenoids estimation based on different unit expres-
sions at leaf level and canopy level. The results allow drawing the
following conclusions:

(1) The relationship between the remotely sensed observations
and the amounts of carotenoids was investigated by com-
paring carotenoids expressed as a mass per unit area (Car
(g/m2) and Car (lg/cm2)) and as a mass per unit mass (Car
(mg/g)) with (i) reflectance between 350 and 1000 nm; (ii)
all possible combinations of wavebands between 350 and
1000 nm; (iii) published vegetation indices and (iv) partial
least squares regression. All the results indicated that
spectral bands useful for carotenoids were those in
515–550 nm, 715 and 750 nm regions, which matched
wavelengths described by previous studies. Furthermore,
the differences of the correlationship between these three
units carotenoids and canopy reflectance were small, nor-
mally the coefficients of correlation for Car (g/m2) and Car
(lg/cm2) were slightly greater than those for Car (mg/g).
Additionally, the band combination of the differences of
reciprocal reflectance type indices were found much more
efficient than the normalize indices for Car (g/m2), while
for Car (lg/cm2) and Car (mg/g), the normalized indices
performed better.

(2) The assessment of prediction models suggested that no mat-
ter carotenoids expressed as concentration (mg/g) or con-
tent (lg/cm2) at leaf level or content at canopy level (g/
m2), all can be estimated by reflectance measurement at
canopy level without significant differences. Compared to
Car (g/m2) and Car (mg/g), a high degree of consistency
was observed among the model performance indices, i.e.
R2, RMSE% and MAE%, for Car (lg/cm2).

(3) The best relationships between canopy reflectance measure-
ments and Car (lg/cm2) and Car (mg/g) were both obtained
by PLSR, with the coefficient of determination R2 = 0.56 and
R2 = 0.46, respectively. Car (g/m2) was best estimated by
published vegetation index CIred-edge, with coefficient of
determination R2 = 0.47. Further comparison by a paired-t-
test indicated that Car (lg/cm2) and Car (mg/g) can be
equally estimated by all four adopted methods without sig-
nificant differences. Whereas, the estimation results for Car
(g/m2) obtained by published vegetation indices were signif-
icantly better than those obtained by SMLR (P < 0.000).

In summary, the results of this study show that even the carote-
noids expressed on concentration (mg/g) or content (lg/cm2) basis
at leaf level can be estimated with almost the same prediction
accuracies to the carotenoids expressed as a mass per unit surface
area (g/m2) at canopy level using reflectance measurement at can-
opy level. The conclusion in this study gives rise to positive expec-
tations for predicting a given chemical expressed on a
concentration (mg/g) or content (lg/cm2) basis from airborne
and space-borne sensors at the landscape or regional scales.
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